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Abstract 
A library of 600 taxonomically diverse Panamanian plant extracts was screened 
for DPPH scavenging and UV-B protective activities, and the methanolic 
extracts of Mosquitoxylum jamaicense, Combretum cacoucia, and Casearia 
commersionia were submitted to HPLC-based activity profiling. The compounds 
located in the active time windows were isolated and identified as gallic acid 
derivatives and flavonoids. Gallic acid methyl ester (3) and digallic acid 
derivatives (2, 6) showed the highest DPPH scavenging activity (<10 μg/mL), 
while protocatechuic acid (7) and isoquercitrin (10) exhibited the highest UV-B 
protective properties. 
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Introduction 
The skin is the largest organ of the human body, functioning as an effective barrier against 
the harmful effects of the environment [1]. Several factors affect skin health and promote 
skin aging, such as ionizing radiation, severe physical and psychological stress, alcohol 
intake, poor nutrition, overeating, environmental pollution, and exposure to UV radiation. 
The latter is believed to contribute up to 80% of extrinsic skin damage [2].  

In cosmetics, natural products play a major role as active ingredients given that they are 
considered by many as safer alternatives to synthetic products and, therefore, possess 
higher consumer acceptance. Numerous cosmetic products for dry skin, skin protection 
(ROS, radicals, and UV light), prevention or alleviation of skin inflammation, hyper-
pigmentation, and anti-aging products are commercially available [3–5].  

Free radical formation can induce skin damage through a series of mechanisms leading to 
cell death and ultimately, to skin aging. In a search for new active ingredients for skin care 
products, compounds and extracts of natural origin are of significant interest [6]. The 
potential of purified plant compounds in skin protection is generally recognized, but plant 
extracts also show significant potential due to their complex composition [7]. 

In the field of cosmetic ingredients, relatively few studies on novel plant extracts or pure 
natural products have been published in recent years, and the majority of these studies 
were linked to ethnobotanical sources [3]. Screening of taxonomically diverse and unique 
plant collections is an alternative strategy to an ethnobotany-driven approach, and it has 
been successfully applied in the drug discovery field [8]. A diversity-oriented approach is 
the most successful if plants from regions of high biodiversity can be accessed. Panama is 
located in one of the 25 biodiversity hotspots worldwide. Despite the small surface of the 
country, its flora comprises 9,893 vascular plant species including 1,327 (13.4%) endemic 
plants [9–11]. The flora of Panama is a rich source of bioactive molecules and represents 
a largely untapped source for new compounds with promising activities for pharmaceutical, 
agrochemical, and cosmetic industries [12–14].  

In an FP7 framework project aiming at the discovery of new natural products for cosmetic 
use, we screened a library of 600 extracts generated from a set of taxonomically diverse 
Panamanian plants. The focus was on the identification of plants with promising UV-
protective and anti-aging properties. The best extracts were submitted to a process termed 
HPLC-based activity profiling [15], whereby physicochemical data recorded online are 
combined with bioassay data of HPLC microfractions. 

A broad range of assays have been reported for the analysis of radical scavenging and 
antioxidant activities of natural products, and for the assessment of UV-protective 
properties. Free radical scavenging properties are frequently detected with the stable 
radical, 2,2-diphenyl-1-picrylhydrazyl (DPPH), due to the simplicity of the assay which is 
easily amenable to screening large numbers of samples [16]. UV protection can be readily 
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assessed based on the capability of the test products to reverse UV-induced cell death by 
using the widely accepted MTT methodology [17–19]. 

Results and Discussion 
A library of 600 extracts prepared from Panamanian plants was screened for antioxidant 
capacity and the ability to protect human skin fibroblasts against UV-B-induced cell death. 
The screening results of the selected extracts are given in Table 1, and a flow chart for the 
further progression of samples is shown in Fig. 1. A total of 19 extracts were found to 
possess considerable radical scavenging activity, i.e. IC50 ≤ 30 μg/ml in the DPPH assay. 
These extracts were screened for their ability to protect human skin fibroblasts against UV-
B-induced cytotoxicity, and three extracts were found to reduce UV-B-induced cell death to 
≤15% of the control.  

Tab. 1. Activity data of selected extracts in DPPH and UV-B protection assays 

 

Active extracts were then submitted to HPLC-based activity profiling [15] in order to track 
the active constituents in the extract. Time-based microfractions were collected and 
submitted to screens. HPLC traces and activity profiles are shown in Fig. 2. Extracts were 
then prioritized on the basis of HPLC traces and activity profiles. In the case of the MeOH 
extract of Casearia commersionia (Salicaceae) (Fig. 2A), a broad window of activity 

Species Family Organ Extract 

DPPH 
scav-

enging 

UV-
induced 

cell death 
IC50  

(μg/ml) 
% of 

control 
Casearia commersoniana Camb. Salic. Stem MeOH 25 0 
Combretum cacoucia Exell ex Sandw. Combret. Leaves MeOH 28 0 
Mosquitoxylum jamaicense Krug. & Urb. Anacardi. Leaves MeOH 17 15 
Terminalia oblonga (R. & P.) Steud. Combret. Branch MeOH 30 28 
Eugenia sp. Myrt. Inflorescens MeOH 26 29 
Terminalia amazonia (J.F. Gmel.) Exell Combret. Branch MeOH 29 39 
Spondias purpurea L. Anacardi. Bark (Stem) MeOH 14 42 
Cordia megalantha Blake Boragin. Bark (Stem) MeOH 29 44 
Terminalia lucida Hoffmanns ex. Mart. Combret. Stem MeOH 19 48 
Terminalia lucida Hoffmanns ex. Mart. Combret. Leaves MeOH 20 71 

Caesalpinia coriaria (Jacq.) Willd. Fab.- 
Caesalpin. Stem MeOH 23 78 

Mosquitoxylum jamaicense Krug. & Urb. Anacardi. Stem EtOAc 20 89 
Psychotria chagrensis Standl. Rubi. Stem EtOAc 24 97 
Mosquitoxylum jamaicense Krug. & Urb. Anacardi. Stem MeOH 10 99 
Miconia nervosa (Sm.) Triana Melastomat. Leaves MeOH 17 >100 
Terminalia oblonga (R. & P.) Steud. Combret. Fruit MeOH 25 >100 
Mosquitoxylum jamaicense Krug. & Urb. Anacardi. Leaves EtOAc 25 >100 
Psychotria chagrensis Standl. Rubi. Leaves EtOAc 28 >100 
Psychotria horizontalis Sw. Rubi. Stem EtOAc 29 >100 
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corresponded to a broad hump in the baseline of the HPLC chromatogram. This was a 
strong indicator for the presence of tannins, and the extract was therefore excluded from 
the follow-up. In contrast, for the MeOH extracts of Mosquitoxylum jamaicense 
(Anacardiaceae) (Fig. 2B) and Combretum cacoucia (Combretaceae) (Fig. 2C), the activity 
profile correlated with discrete peaks in the chromatograms, even though broad humps in 
the baseline were also indicative of tannins. These two extracts were selected for 
characterization of the active constituents. 

 
Fig. 1.  Workflow for the discovery of cosmetics from Panamanian plant extracts 

The tannins in the two extracts were removed by filtration over polyamide (Figs 1S and 2S, 
Supporting Information). The MeOH leaf extract of Mosquitoxylum jamaicense showed 
activity in time windows corresponding to UV-absorbing peaks in the HPLC chromatogram 
(Fig. 2B). The tannin-depleted fractions from polyamide (Fig 1S, Supporting Information) 
were submitted to further purification by HPLC. Peak 1 was identified as gallic acid (Fig. 
3), by spiking with a commercial reference and by NMR spectroscopy. Given that the 
radical scavenging and antioxidant properties of gallic acid are known [20], the compound 
was not pursued further. The other two early-eluting peaks were identified as a 7:3-mixture 
of meta- and para-digallic acid (2) [21] and a gallic acid methyl ester (3) [22]. Both 
compounds were found to possess good radical scavenging activity (Table 2), which was 
in accordance with the well-known radical scavenging properties of gallic acid [20]. In 
addition, compounds 2 and 3 showed protective capacity against UV-B radiation.  
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Fig. 2. HPLC-based activity profiling of the three selected plant extracts in the active 

time window (0–20 min). SunFire C18 column (150 x 10 mm i.d., 5 μm); 5–100% 
MeCN/0.1% aqueous formic acid for 30 min and 100% MeCN/0.1% aqueous 
formic acid for 5 min, 4 mL/min; time-based fractionation; detection: 200–500 
nm, maxplot.  
A Casearia commersoniana (stems) MeOH extract.  
B Mosquitoxylum jamaicense (leaves) MeOH extract.  
C Combretum cacoucia (leaves) MeOH extract.  
The assay results are expressed as the radical scavenging capacity of the 
microfractions in the DPPH assay, compared to gallic acid as the positive 
control, and as cell death in the UV-B protection assay, as compared to the 
UV-B irradiated cells without the addition of fractions. 
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Fig. 3. Structures of identified compounds, gallic acid (1), 7:3-mixture of meta- and 

para-digallic acid (2), gallic acid methyl ester (3), quercetin-3-O-(2’’-O-galloyl)-β-
galactopyranoside (4), quercetin-3-O-(2’’-O-galloyl)-β-glucopyranoside (5), 7:3-
mixture of meta- and para-digallic acid methyl ester (6), protocatechuic acid (7), 
hyperoside (8), 3,3’-dimethylellagic acid 4-O-β-glucopyranoside (9), 
isoquercitrin (10), guaijaverin (11), and quercetin (12) 

The major peak at tR 10 min in the HPLC chromatogram consisted of two co-eluting 
flavonol glycosides 4 and 5. Compound 4 was purified and identified as quercetin-3-O-(2’’-
O-galloyl)-β-galactopyranoside [23], while quercetin-3-O-(2’’-O-galloyl)-β-glucopyranoside 
(5) [24] was identified from a fraction containing 4 and 5. Compound 4 was found to be a 
slightly weaker antioxidant and photoprotectant than 2 and 3 (Table 2). Peak a consisted 
of several co-eluting compounds and was not pursued further. Peak 6 was enriched by 
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filtration over polyamide, and HPLC purification afforded a 7:3-mixture of meta- and para-
digallic acid methyl ester (6) [25]. Compound 6 showed radical scavenging activity 
comparable to 2 and 3, but no protective capacity against UV-B (Table 2).  

Tab. 2. Activity data of pure compounds 
Compound IC50 in DPPH-scavenging 

assay (μg/ml) 
Cell death in UV-B 
protection assay  

(% of control) 
Meta and para digallic acid (7:3 mixture) (2) 9.0 (± 0.4) 14.0 (± 2.9)a 
Gallic acid methyl ester (3) 7.3 (± 0.8) 10.5 (± 1.0) 
Quercetin-3-O-(2’’-O-galloyl)-β-
galactopyranoside (4) 20.4 (± 1.7) 17.4 (± 1.6) 

Meta and para digallic acid methyl ester 
(7:3 mixture) (6) 8.7 (± 0.4) 96.8 (± 5.7)a 

Protocatechuic acid (7) 60.1 (± 1.0) 6.1 (± 2.1) 
Hyperoside (8) 24.2 (± 1.0) 14.4 (± 0.3) 
Isoquercitrin (10) 27.8 (± 0.4) 3.3 (± 0.8) 
Guaijaverin (11) 28.0 (± 0.9) 28.9 (± 3.1)a 
Quercetin (12) 12.6 (± 1.2) 72.8 (± 26.9)a 
a compounds tested at 20 μg/ml in the UV-B protection assay, due to cytotoxicity at 100 μg/ml. 

 

The activity profile recorded for the methanolic leaf extract of Combretum cacoucia 
showed a zone of radical scavenging capacity between tR 5 and 15 min (Fig. 2C). Filtration 
over polyamide afforded five tannin-depleted fractions (Fig. 2S, Supporting Information) 
from which peaks b and c had disappeared. The main peak at tR 10 min consisted of three 
compounds which were further purified and identified as hyperoside (8) [26], 3,3’-di-
methylellagic acid 4-O-β-glucopyranoside (9) [27], and isoquercitrin (10) [26]. Compound 9 
could not be obtained at a purity of ≥95% required for further testing. Compounds 8 and 10 
were found to possess DPPH scavenging activity and the capacity to protect human skin 
fibroblasts from UV-B radiation (Table 2). Isoquercitrin (10) almost completely blocked cell 
death. Three minor peaks (7, 11, and 12) in the active time window were enriched in 
fraction PA2, and were identified as protocatechuic acid (7) [28], guaijaverin (11) [29], and 
quercetin (12) [30]. Compound 7 could only be obtained at 90% purity, with traces of 
phenolic glycosides as contaminants. The compound was nevertheless tested and 
exhibited weak antioxidant activity, but very good UV-B protection. Quercetin (12) and its 
glycosides 8, 10, and 11 showed significant free radical scavenging properties as 
previously reported [31–33], but only the glycosides 8, 10 and 11 showed significant UV-
protective activity (Table 2). However, the lower test concentrations for compounds 11 and 
12 had to be taken into account.  

The screening of a taxonomically diverse library of Panamanian plant extracts followed by 
an activity-driven identification of radical scavenging and UV-B protecting properties led to 
the identification of a series of known polyphenols. The example shows that the profiling 
approach can be efficiently used not only for the discovery of bioactive compounds of 
pharmaceutical, but also of cosmetic interest. 
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Experimental 
Chemicals and General Experimental Procedures 
Quercetin (12, >98%) was purchased from Sigma-Aldrich. Gallic acid (1, >98%), 
hyperoside (8, >95%), isoquercitrin (10, >95%), and polyamide (particle size: 0.05–0.16 
mm) were from Carl Roth. HPLC-grade acetonitrile and methanol (Reuss Chemie AG), 
and distilled water were used for HPLC separations. 

Preparative HPLC was carried out on an LC 8A preparative liquid chromatograph 
equipped with a SPD-M10A VP PDA detector (all Shimadzu). A SunFire C18 column (150 x 
30 mm i.d., 5 μm; Waters) connected to a pre-column (10 x 10 mm) was used, at a flow 
rate of 20 mL/min. HPLC-based activity profiling was performed on an Agilent 1100 system 
equipped with a PDA detector. A SunFire C18 column (150 x 10 mm i.d., 5 μm; Waters) 
connected to a pre-column (10 x 10 mm) was used. The flow rate was 4 mL/min. Time-
based fractions were collected with a Gilson FC204 fraction collector. ESI-MS spectra 
were obtained on an Esquire 3000 Plus ion trap mass spectrometer (Bruker Daltonics). 
NMR spectra were recorded on an Avance III 500 MHz spectrometer (Bruker BioSpin) 
equipped with a 1-mm TXI microprobe.  

Plant Material 
The leaves of Mosquitoxylum jamaicense were collected in May 2000 in Parque Nacional 
Soberanía, Camino del Oleoducto, Km 17, Panama. The leaves of Combretum cacoucia 
were collected in April 1995 in Costa Arriba, San Antonio, Colón, Panama. Casearia 
commersoniana was collected in Peninsula Gigante, Chorrera in June, 1995. The plant 
material was identified by Alex Espinosa and voucher specimens have been deposited at 
the Herbarium of the University of Panama (PMA). Also, vouchers were kept at the 
Division of Pharmaceutical Biology, University of Basel: Nr. 857 (M. jamaicense), Nr. 859 
(C. cacoucia), and 903 (C. commersoniana). 

HPLC-Based Activity Profiling 
Extract solutions dissolved in DMSO (50 mg/mL) were separated by semi-preparative 
HPLC. Two aliquots of 200 μL corresponding to 10 mg of the extract were injected. A 
gradient of 5–100% MeCN in 30 min in 0.1% aqueous formic acid, followed by 100% 
MeCN over 5 min was used. Fractions of 0.75 min were collected from t = 3 min to t = 33 
min. Fractions were transferred into 96-deepwell plates, evaporated, and submitted to 
screening. 

Extraction and Isolation 
Powdered leaves of M. jamaicense (704.6 g) were percolated with 12 L MeOH to afford 
198.5 g of the extract. A portion (20.2 g) of the extract was re-dissolved in 200 mL MeOH 
and submitted to filtration over a polyamide (200 g) column. Four fractions (PA1-PA4) of 
500 mL each, and one fraction (PA5) of 3 L were collected. A portion (1.01 g) of PA1 (4.99 
g) was separated by preparative HPLC (16% MeCN in 0.1% aqueous formic acid) to afford 
gallic acid methyl ester (3, 14.3 mg, tR 11.3 min). Preparative HPLC of fraction PA3 (338.9 
mg) (50–80% MeOH in 0.1% aqueous formic acid over 15 min) yielded a 7:3-mixture of 
meta- and para-digallic acid methyl ester (6, 24.5 mg, tR 12.5 min). Fraction PA5 (629.2 
mg) was separated on a Sephadex LH-20 column (5 x 75 cm i.d.) and eluted with MeOH 
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to give 17 fractions (Fr. 1-17). Preparative HPLC (25% aqueous MeOH with 0.1% formic 
acid) of Fr. 11 (136.3 mg) afforded a 7:3-mixture of meta- and para-digallic acid (2, 67.8 
mg, tR 12.1 min). From Fr. 13 (69.8 mg), quercetin-3-O-(2’’-O-galloyl)-β-galactopyranoside 
(4, 8.2 mg, tR 11.3 min) and a mixture of quercetin-3-O-(2’’-O-galloyl)-β-glucopyranoside 
(5, tR 11.5 min) and 4 were obtained by preparative HPLC (44% aqueous MeOH with 0.1% 
formic acid).  

Powdered leaves of C. cacoucia (125.2 g) were percolated with MeOH (3 L) to afford 
14.1 g of the extract. A portion (10.1 g) of the extract was re-dissolved in 200 mL MeOH 
and filtered over a polyamide (200 g) column. Two fractions (PA1-PA2) of 500 mL each, 
two fractions (PA3-PA4) of 1 L each, and one fraction (PA5) of 3 L were collected. 
Polyamide fractions were submitted to preparative HPLC. A portion (1.07 g) of fraction 
PA1 (3.79 g) was separated with a gradient of MeCN in 0.05% aqueous formic acid  
(5–40% over 15 min) to afford protocatechuic acid (7, 8.5 mg, tR 10.1 min). From PA2 
(473.4 mg), 3,3’-dimethylellagic acid 4-O-β-glucopyranoside (9, 7.8 mg, tR 6.8 min) and 
isoquercitrin (10, 20.2 mg, tR 7.8 min) were isolated using 50% MeOH in 0.1% aqueous 
formic acid. Final purification of 10 was with 20% MeCN in 0.1% aqueous formic acid (1.6 
mg, tR 18.6 min). Fraction PA3 (283.8 mg) was separated with a gradient of MeCN in 
0.05% aqueous formic acid (20–60%, 20 min) to afford a mixture of hyperoside (8) and 
isoquercitrin (10) (35.5 mg, tR 7.9 min), and guaijaverin (11, 14.9 mg, tR 8.9 min). 
Quercetin (12, 16.7 mg, tR 11.1 min) was isolated from fraction PA4 (161.8 mg) using a 
gradient of 30-60% MeCN in 0.05% aqueous formic acid over 20 min. 

Compounds were identified with the aid of 1H- and 2D-NMR, and ESI-MS spectroscopy, 
and by comparison with the literature data. The purity of the isolated compounds was 
>95% as determined by NMR except for compounds 7 (90%) and 9 (<70%). 

DPPH Radical Scavenging Assay 
The antioxidant potential of the test samples was monitored by the change in optical 
density of the DPPH radical. A stock solution of 0.314 mM DPPH in EtOH was prepared. 
This stock solution was prepared fresh every day. Extracts were initially tested at 200 
μg/ml. Samples that exhibited a strong DPPH scavenging activity, i.e > 80% scavenging, 
were further evaluated at lower concentrations.  

Dry microfractions of the selected extracts in 96-deepwell plates were dissolved in DMSO 
and tested directly against DPPH scavenging. When a large number of active 
microfractions appeared for one extract, the most active fractions were tested at a 5-fold 
dilution. In a 96-well plate, 10 μl of the sample (extract/ fraction/ compound) in DMSO and 
190 μl of DPPH solution were mixed and incubated in the dark for 30 min at ambient 
temperature. Absorbance was measured at 517 nm using an Infinite M200Pro plate reader 
(Tecan, Männedorf, Switzerland). Measurements were done in triplicate. Blanks for every 
sample without DPPH were also measured. Gallic acid was used as the positive control. 
The percentage of DPPH scavenging was estimated by the following equation:  

{[(A-B)-(C-D)]/(A-B)}x100, where A: Control (without sample), B: Blank (without sample, 
without DPPH), C: Sample, D: Blank sample (without DPPH). IC50 values, which are 
defined as the amount of sample necessary to decrease the initial free radical 
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concentration by 50%, were estimated for the isolated compounds and most active 
extracts.  

Cell Protection Against UV-B Irradiation 
A human skin fibroblast cell line (AG01523; Coriell Institute for Medical Research, 
Camden, NJ, USA) was used for the assessment. Cells were routinely cultured in 
Dulbecco’s Modified Eagle Medium (DMEM) supplemented with antibiotics (100 IU/ml 
penicillin; 100 μg/ml streptomycin) and 15% Fetal Bovine Serum (FBS) in an environment 
of 5% CO2, 85% humidity, at 37°C, and subcultured once a week at a 1:2 split ratio, using 
a trypsin–citrate solution (0.25%–0.3%, respectively). Cell counting after trypsinization was 
performed using a Coulter counter. 

For assessing the possible cytotoxicity of the samples (extracts, fractions, or isolated 
compounds), cells were plated in flat-bottom, tissue culture-treated 96-well plates at a 
density of 5,000 cells/well. After 48 hours of growth, the medium was changed to serum-
free, phenol red-free DMEM, and serial dilutions of the test samples were added. The 
corresponding dilutions of dimethylsulfoxide (DMSO) served as negative controls. 
Following incubation with the test samples for 72 hours, the medium was changed to 
serum-free, phenol red-free DMEM containing 1 mg/ml 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) as described by Kostakis et al. [34]. After incubation 
with MTT for 4 hours, the medium was discarded, and the MTT-formazan crystals were 
dissolved in isopropanol. Absorbance was measured at 550 nm (reference wavelength; 
690 nm) in an Infinite M200 microplate reader (Tecan) using MagellanTM software. 

The highest non-cytotoxic concentration of each sample (extract, fraction, or isolated 
compound) was tested for the ability to protect human skin fibroblasts against toxicity of 
UV-B irradiation. Cells were plated in 96-well-plates and left to grow as described above. 
Then samples were added at the test concentrations determined as described above, 
along with serum-free, phenol red-free DMEM. After incubation for 18 hours, cells were 
subjected to UV-B irradiation for 10 min (corresponding to 726 mJ/cm2) using a black box 
equipped with a closely spaced array of four Sankyo Denki UV-B lamps (Zhe Jiang, China) 
emitting between 280 nm and 360 nm (peak at 306 nm). Following further incubation for 
72 hours, cytotoxicity was estimated using the MTT-method, as described in the previous 
paragraph. The plates treated in an identical manner, except for the UV-B irradiation, were 
used as the controls. The UV-B-protective capacity of the samples was calculated using 
the following equation: % Cell death = [1-(D/C)/1-(B/A)]x100 where A = absorbance 
(DMSO untreated), B = absorbance (DMSO UV-B-treated), C = absorbance (test sample 
untreated), and D = absorbance (test sample UV-B-treated). A value of 100 indicated the 
absence of protection, and 0 indicated the maximum protective capacity against UV-B. 
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