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Abstract: As potential new analgesics, the corresponding 4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-
3-carboxanilides have been obtained by amidation of ethyl 4-hydroxy-2,2-dioxo-1H-2λ6,
1-benzothiazine-3-carboxylate with aniline and its halogenated analogsin boiling dry xylene.
The peculiarities of the mass and nuclear magnetic resonance (1H and 13C) spectra of the synthesized
compounds are discussed. Using X-ray diffraction analysis, the ability of the compounds to form
stable solvates with N,N-dimethylformamide has been shown on the example of 4-bromo-substituted
derivative. It should be further studied to be considered in their crystallization. According to the
results of the pharmacological testing conducted on the model of the thermal tail-flick (tail immersion
test) among halogen-substituted 4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxanilides,
substances which are considerably superior to meloxicam and piroxicam by their analgesic activity
have been found. They are of interest for further profound studies.
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1. Introduction

The search for promising, new substances with analgesic activity and the subsequent creation
of highly effective and safe painkillers on this basis are among the critical tasks of pharmaceutical
chemistry. It must be emphasized that in terms of modern ideas, such drugs should not cause addiction
in human sand moreover, physical or psychological dependence, i.e., agonism with opioid receptors,
is not acceptable in the mechanism of their analgesic action. Recently, with the purpose of searching
for analgesics meeting such requirements, the agonists of neuronal nicotinic acetylcholine receptors
(nAChR) were actively studied [1–6]. Furthermore, they are of interest as potential agents to fight the
manifestations of age-related neurodegeneration (Alzheimer’s disease [7,8], Parkinson’s disease [9],
and various types of dementia [10]).

The prime cause of the rapid development in this direction was the study of the structure and
biological properties of the natural alkaloid epibatidine (I, Figure 1) with the chlorine-substituted
pyridine core in its base [11]. In experiments in animals, this compound, isolated from the skin of the
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Ecuadorian tree frog Epipedobates tricolor, appeared to be 200–500 times more active than morphine;
moreover, the resulting analgesia was not eliminated by the antagonists of opioid receptors (naloxone or
naltrexone). In further research, it was found that the potent analgesic effect of epibatidine was through
the activation of neuronal nicotinic acetylcholine receptors; after this discovery a lot of researchers
began to pay particularly close attention to the representatives of this group of pharmacologically
active substances [12].
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Figure 1. Natural (I) and synthetic (II and III) analgesics—agonists of nicotinic acetylcholine receptors 
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probability that derivatives of 2,1-benzothiazine would also be agonists of nicotinic acetylcholine 
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Figure 1. Natural (I) and synthetic (II and III) analgesics—agonists of nicotinic acetylcholine
receptors [12–14] and their possible analogs (IV) by their mechanism of action.

Synthetic compounds of various chemical classes were studied [12]. However, the most successful
findings were made, in the first place, among the derivatives of nitrogen-containing heterocycles.
In particular, 5-(trifluoromethyl)-6-(1-methylazepan-4-yl)methyl-1H-quinolin-2-one (II) [13] and
N-(3-pyridylmethyl)-4-hydroxy-6,7-dimethoxy-2-oxo-1,2-dihydroquinoline-3-carboxamide (III)
appeared to be promising analgesics [14]. Their structural similarity with 1-R-4-hydroxy-N-(pyridin-2-
yl)-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamides (IV) [15,16] allowed us to assume with high
probability that derivatives of 2,1-benzothiazine would also be agonists of nicotinic acetylcholine
receptors by the mechanism of the analgesic action. It is of interest that N-(5-chloropyridin-2-
yl)amide (IV, R = Me, R′ = 5-Cl) showed the most potent analgesic properties among the
substances of this series [15]. This fact was the impetus for involvement of halogen-substituted
4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxanilides in our expanded search for new analgesics.

Several important points were considered when choosing exactly these compounds as the
study objects. First, replacement of pyridylamine fragments in compounds IV by anilide ones
can be considered as one of the most obvious variants of optimization of the base molecule
according to the methodology of “bioisosteric replacements” [17]. Secondly, halogen-substituted
benzene cores have a positive effect on the analgesic properties of compounds of different chemical
classes as evidenced by their presence in the structure of many drugs of this pharmacological
group (Figure 2) [18]. Finally, the high analgesic activity is characteristic for 4-hydroxy-2,2-dioxo-
1H-2λ6,1-benzothiazine-3-carboxamides with different substituents in the terminal amide fragment,
including hetaryl [15,16,19,20], aryl alkyl amide [21], and anilide [22–25] ones.
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Figure 2. Analgesics containing the fragments of halogen-substituted benzene [18]. 
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Figure 2. Analgesics containing the fragments of halogen-substituted benzene [18].

2. Materials and Methods

2.1. Chemistry

1H- and 13C-NMR spectra were acquired on a Varian Mercury-400 (Varian Inc., Palo Alto, CA,
USA) instrument (400 and 100 MHz, respectively) in DMSO-d6 with tetramethylsilane as internal
standard. The chemical shift values were recorded on a δ scale and the coupling constants (J) in
hertz. The following abbreviations were used in reporting spectra: s = singlet, d = doublet, t = triplet,
m = multiplet. The electron impact mass spectra were recorded on a Varian 1200 L (Varian Inc., Walnut
Creek, CA, USA) mass spectrometer with complete scanning in the m/z range from 35 to 700 and direct
sample inlet. The electron impact ionization was at 70 eV. Elemental analysis was performed on a Euro
Vector EA-3000 (Eurovector SPA, Redavalle, Italy) microanalyzer. Melting points were determined in
a capillary using a Stuart SMP10 (Bibby Scientific Limited, Stone, UK) digital melting point apparatus.

2.2. General Procedure for the Synthesis of N-aryl-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-
carboxamides (2a–l)

A mixture of ethyl ester 1 (2.69 g, 0.01 mol), corresponding aniline (0.01 mol), and dry xylene
(5 mL) was kept for 1 h at 150 ◦C on a liquid metal bath using a suitable air-cooled distilling column
that allowed us to distill off the ethanol formed without removing the xylene solvent. The reaction
mixture was cooled, EtOH (5 mL) was added, and the mixture was left for several hours at room
temperature. The crystalline amide 2 precipitate was filtered off, washed with cold EtOH, dried,
and recrystallized from the suitable solvent. Anilides 2a–l were colorless or white with yellowish
tinted crystals.

4-Hydroxy-N-phenyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamide (2a). Yield: 91%; melting point
(mp) 207–209 ◦C (methanol); 1H-NMR (400 MHz, DMSO-d6): δ 15.40 (br. s, 1H, 4-OH), 12.25 (br. s,
1H, SO2NH), 9.47 (s, 1H, CONH), 8.00 (d, 1H, J = 8.0 Hz, H-5), 7.67–7.56 (m, 3H, H-7,2′,6′), 7.39 (t,
2H, J = 7.7 Hz, H-3′,5′), 7.27 (t, 1H, J = 7.7 Hz, H-6), 7.23–7.15 (m, 2H, H-8,4′). 13C-NMR (100 MHz,
DMSO-d6): δ167.8 (C-OH), 163.7 (C=O), 136.6 (C-1′), 134.3 (C-8a), 128.1 (C-7), 126.2 (C-3′,5′), 124.5
(C-4′), 123.4 (C-4a), 122.9 (C-5), 121.2 (C-2′,6′), 119.1 (C-6), 118.2 (C-8), 104.5 (C-3). Mass Spectrum (MS)
(m/z, %): 316 [M]+ (3.7), 224 (1.0), 93 (100), 92 (12.7), 77 (10.6). Analytical Calculated (Anal. Calcd.) for
C15H12N2O4S: C, 56.95; H, 3.82; N, 8.86; S 10.14%. Found: C, 57.03; H, 3.89; N, 8.78; S 10.21%.
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N-(2-Fluorophenyl)-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamide (2b). Yield: 86%; mp
212–214 ◦C (methanol–methylene chloride, 1:1); 1H-NMR (400 MHz, DMSO-d6): δ 15.26 (br. s, 1H,
4-OH), 12.31 (br. s, 1H, SO2NH), 9.72 (s, 1H, CONH), 8.20 (t, 1H, J = 7.8 Hz, H-3′), 8.00 (d, 1H, J = 8.0 Hz,
H-5), 7.64 (t, 1H, J = 7.7 Hz, H-7), 7.28 (t, 1H, J = 7.6 Hz, H-6), 7.24–7.18 (m, 4H, H-8,4′,5′,6′). 13C-NMR
(100 MHz, DMSO-d6): δ168.9 (C-OH), 164.3 (C=O), 154.1/152.0 (d, 1JC–F = 243 Hz, C-2′-F), 137.8 (C-8a),
136.3 (C-7), 124.5 (C-5′), 126.3 (C-4′), 126.1/126.0 (d, 2JC-F = 14.8 Hz, C-1′), 124.6 (C-6′), 124.5 (C-5),
123.6 (C-4a), 123.1 (C-6), 118.2 (C-8), 115.5/115.3 (d, 2JC-F = 19.3 Hz, C-3′), 103.8 (C-3). MS (m/z, %):
334 [M]+ (1.4), 224 (1.2), 111 (100), 110 (11.2), 77 (12.5). Anal. Calcd. for C15H11FN2O4S: C, 53.89; H,
3.32; N, 8.38; S 9.59%. Found: C, 53.97; H, 3.38; N, 8.30; S 9.52%.

N-(3-Fluorophenyl)-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamide (2c). Yield: 93%; mp
218–220 ◦C (methanol–methylene chloride, 1:1); 1H-NMR (400 MHz, DMSO-d6): δ 15.30 (br. s, 1H,
4-OH), 12.32 (br. s, 1H, SO2NH), 9.61 (s, 1H, CONH), 8.00 (d, 1H, J = 8.0 Hz, H-5), 7.66–7.58 (m,
2H, H-7,2′), 7.42–7.25 (m, 3H, H-6,4′,6′), 7.21 (d, 1H, J = 8.2 Hz, H-8), 6.94 (t, 1H, J = 7.8 Hz, H-5′).
13C-NMR (100 MHz, DMSO-d6): δ167.0 (C-OH), 163.1/160.7 (d, 1JC-F = 249 Hz, C-3′-F), 164.2 (C=O),
141.8 (C-1′), 136.7 (C-5′), 133.9 (C-8a), 130.5 (C-7), 123.4 (C-4a), 122.8 (C-5), 119.5 (C-6), 118.0 (C-6′),
116.8 (C-8), 115.1/115.0 (d, 2JC-F = 16.2 Hz, C-2′), 111.2/111.0 (d, 2JC-F = 21.7 Hz, C-4′), 105.3 (C-3).
MS (m/z, %): 334 [M]+ (2.8), 224 (6.7), 132 (10.3), 111 (100), 104 (16.8), 92 (34.5), 77 (10.2). Anal. Calcd.
for C15H11FN2O4S: C, 53.89; H, 3.32; N, 8.38; S 9.59%. Found: C, 53.95; H, 3.35; N, 8.42; S 9.65%.

N-(4-Fluorophenyl)-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamide (2d). Yield: 95%; mp
235–237 ◦C (methanol–methylene chloride, 1:2); 1H-NMR (400 MHz, DMSO-d6): δ 15.25 (br. s, 1H,
4-OH), 12.24 (br. s, 1H, SO2NH), 9.47 (s, 1H, CONH), 7.99 (d, 1H, J = 8.0 Hz, H-5), 7.67–7.58 (m, 3H,
H-7,2′,6′), 7.27 (t, 1H, J = 7.7 Hz, H-6), 7.21 (d, 1H, J = 8.2 Hz, H-8), 7.15 (t, 2H, J = 8.6 Hz, H-3′,5′).
13C-NMR (100 MHz, DMSO-d6): δ167.7 (C-OH), 163.7 (C=O), 160.2/157.7 (d, 1JC-F = 250 Hz, C-4′-F),
136.7 (C-8a), 134.2 (C-1′), 128.2 (C-7), 126.0 (C-2′,6′), 123.6 (C-5), 123.4 (C-4a), 121.1 (C-6), 119.5 (C-8),
115.6/115.4 (d, 2JC-F = 24.2 Hz, C-3′,5′), 104.5 (C-3). MS (m/z, %): 334 [M]+ (6.3), 224 (8.6), 132 (8.0),
111 (100), 92 (13.9), 83 (17.1). Anal. Calcd. for C15H11FN2O4S: C, 53.89; H, 3.32; N, 8.38; S 9.59%. Found:
C, 53.81; H, 3.26; N, 8.302; S 9.51%.

N-(3,4-Difluorophenyl)-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamide (2e). Yield: 90%; mp
217–219 ◦C (methanol); 1H-NMR (400 MHz, DMSO-d6): δ15.27 (br. s, 1H, 4-OH),12.23 (br. s, 1H,
SO2NH), 9.57 (s, 1H, CONH),7.99 (d, 1H, J = 7.9 Hz, H-5), 7.79 (d, 1H, J = 7.8 Hz, H-2′), 7.63 (t, 1H,
J = 7.7Hz, H-7), 7.37–7.31 (m, 2H, H-5′,6′), 7.26 (t, 1H, J = 7.5Hz, H-6), 7.20 (d, 1H, J = 8.2Hz, H-8).
13C-NMR (100 MHz, DMSO-d6): δ 167.0 (C-OH), 163.3 (C=O), 149.9/147.5 (d, 1JC-F = 244 Hz, C-3′-F),
147.2/144.8 (d, 1JC-F = 241 Hz, C-4′-F), 136.7 (C-8a), 134.0 (C-1′), 128.2 (C-7), 126.1 (C-6′), 123.4 (C-4a),
122.9/122.7 (d, 2JC-F = 16.7 Hz, C-5′), 119.5 (C-5), 117.9 (C-6), 117.5 (C-8), 110.8/110.6 (d, 2JC-F = 17.9 Hz,
C-2′), 105.2 (C-3). MS (m/z, %): 352 [M]+ (13.0), 224 (1.7), 129 (100), 128 (20.4), 92 (12.0), 77 (57.1). Anal.
Calcd. for C15H10F2N2O4S: C, 51.14; H, 2.86; N, 7.95; S 9.10%. Found: C, 51.21; H, 2.93; N, 7.90; S 9.17%.

N-(2-Chlorophenyl)-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamide (2f). Yield: 85%; mp
223–225 ◦C (methanol–methylene chloride, 1:1); 1H-NMR (400 MHz, DMSO-d6): δ 15.23 (br. s, 1H,
4-OH), 12.28 (br. s, 1H, SO2NH), 9.88 (s, 1H, CONH), 8.27 (d, 1H, J = 8.0 Hz, H-3′), 8.01 (d, 1H,
J = 8.0 Hz, H-5), 7.62 (t, 1H, J = 7.6 Hz, H-7), 7.50 (d, 1H, J = 8.4 Hz, H-6′), 7.36 (t, 1H, J = 7.7 Hz, H-5′),
7.28 (t, 1H, J = 7.8 Hz, H-6), 7.24–7.17 (m, 2H, H-8,4′). 13C-NMR (100 MHz, DMSO-d6): δ169.1 (C-OH),
164.4 (C=O), 137.9 (C-1′), 136.2 (C-8a), 134.6 (C-3′), 133.3 (C-5′), 129.4 (C-7), 128.9 (C-2′-Cl), 127.7 (C-4′),
126.3 (C-6′), 123.7 (C-4a), 123.0 (C-5), 122.6 (C-6), 118.4 (C-8), 103.7 (C-3). MS (m/z, %): 350/352 [M]+

(2.3/1.7), 315 (7.2), 224 (1.9), 127/129 (100/25.2), 77 (10.1). Anal. Calcd. for C15H11ClN2O4S: C, 51.36;
H, 3.16; N, 7.99; S 9.14%. Found: C, 51.44; H, 3.23; N, 8.07; S 9.06%.

N-(3-Chlorophenyl)-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamide (2g). Yield: 89%; mp
204–206 ◦C (methanol–methylene chloride, 1:1); 1H-NMR (400 MHz, DMSO-d6): δ 15.30 (br. s, 1H,
4-OH), 12.33 (br. s, 1H, SO2NH), 9.59 (s, 1H, CONH), 8.00 (d, 1H, J = 7.9 Hz, H-5), 7.80 (s, 1H, H-2′),
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7.63 (t, 1H, J = 7.7 Hz, H-7), 7.48 (d, 1H, J = 7.4 Hz, H-6′), 7.37 (t, 1H, J = 7.7 Hz, H-5′), 7.26 (t, 1H,
J = 7.5 Hz, H-6), 7.22–7.17 (m, 2H, H-8,4′). 13C-NMR (100 MHz, DMSO-d6): δ167.6 (C-OH), 163.6
(C=O), 138.7 (C-1′), 136.6 (C-8a), 133.8 (C-3′-Cl), 130.4 (C-5′), 128.1 (C-7), 126.2 (C-4′), 124.3 (C-2′),
123.4 (C-4a), 122.6 (C-5), 120.5 (C-6′), 119.4 (C-6), 117.8 (C-8), 105.3 (C-3). MS (m/z, %): 350/352 [M]+

(8.2/4.9), 224 (1.2), 127/129 (100/10.8), 77 (21.4). Anal. Calcd. for C15H11ClN2O4S: C, 51.36; H, 3.16; N,
7.99; S 9.14%. Found: C, 51.42; H, 3.11; N, 7.91; S 9.20%.

N-(4-Chlorophenyl)-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamide (2h). Yield: 92%; mp
241–243 ◦C (methanol–methylene chloride, 1:2); 1H-NMR (400 MHz, DMSO-d6): δ 15.36 (br. s, 1H,
4-OH), 12.27 (br. s, 1H, SO2NH), 9.52 (s, 1H, CONH), 7.99 (d, 1H, J = 8.0 Hz, H-5), 7.66–7.57 (m, 3H,
H-7,2′,6′), 7.38 (d, 2H, J = 8.4 Hz, H-3′,5′), 7.27 (t, 1H, J = 7.7 Hz, H-6), 7.21 (d, 1H, J = 8.2 Hz, H-8).
13C-NMR (100 MHz, DMSO-d6): δ168.3 (C-OH), 163.7 (C=O), 137.9 (C-1′), 136.8 (C-8a), 133.5 (C-4′-Cl),
129.0 (C-3′,5′), 128.7 (C-7), 126.3 (C-2′,6′), 123.5 (C-4a), 122.3 (C-5), 120.9 (C-6), 119.5 (C-8), 105.0 (C-3).
MS (m/z, %): 350/352 [M]+ (41.8/24.9), 224 (5.7), 127/129 (100/11.4), 125 (16.3), 105 (30.7), 104 (33.1),
103 (39.7), 92 (30.5), 77 (63.9), 76 (30.4). Anal. Calcd. for C15H11ClN2O4S: C, 51.36; H, 3.16; N, 7.99;
S 9.14%. Found: C, 51.44; H, 3.23; N, 8.07; S 9.08%.

N-(2,5-Dichlorophenyl)-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamide (2i). Yield: 86%; mp
235–237 ◦C (methanol–methylene chloride, 1:1); 1H-NMR (400 MHz, DMSO-d6): δ 15.32 (br. s, 1H,
4-OH), 12.36 (br. s, 1H, SO2NH), 10.02 (s, 1H, CONH), 8.39 (s, 1H, H-6′), 8.01 (d, 1H, J = 7.8 Hz, H-5),
7.64 (t, 1H, J = 7.6 Hz, H-7), 7.52 (d, 1H, J = 8.4 Hz, H-4′), 7.28 (t, 1H, J = 7.6 Hz, H-6), 7.24–7.19 (m, 2H,
H-8,5′). 13C-NMR (100 MHz, DMSO-d6): δ167.8 (C-OH), 164.1 (C=O), 136.2 (C-5′-Cl), 135.0 (C-1′), 134.3
(C-8a), 131.7 (C-3′), 130.5 (C-7), 130.0 (C-2′-Cl), 126.5 (C-4′), 125.2 (C-6′), 123.3 (C-4a), 122.4 (C-5), 121.6
(C-6), 118.1 (C-8), 104.6 (C-3). MS (m/z, %): 384/386/388 [M]+ (4.5/2.8/0.6), 350/352 (11.3/2.9), 224
(1.3), 161/163/165 (79.5/15.2/2.9),145 (10.0), 135 (21.3), 133 (25.1), 132 (25.8), 120 (28.2), 119 (42.4), 104
(58.1), 103 (44.4), 102 (28.3), 90 (58.3), 88 (28.4), 77 (100), 76 (63.4). Anal. Calcd. for C15H10Cl2N2O4S: C,
46.77; H, 2.62; N, 7.27; S 8.32%. Found: C, 46.86; H, 2.69; N, 7.19; S 8.26%.

N-(2-Bromophenyl)-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamide (2j). Yield: 84%; mp
223–225 ◦C (methanol–methylene chloride, 1:2); 1H-NMR (400 MHz, DMSO-d6): δ 15.24 (br. s, 1H,
4-OH), 12.26 (br. s, 1H, SO2NH), 9.76 (s, 1H, CONH), 8.19 (d, 1H, J = 8.4 Hz, H-3′), 8.00 (d, 1H,
J = 8.0 Hz, H-5), 7.67–7.58 (m, 2H, H-7,6′), 7.39 (t, 1H, J = 7.6 Hz, H-5′), 7.27 (t, 1H, J = 7.6 Hz, H-6), 7.21
(d, 1H, J = 8.0 Hz, H-8), 7.13 (t, 1H, J = 7.4 Hz, H-4′). 13C-NMR (100 MHz, DMSO-d6): δ169.5 (C-OH),
164.9 (C=O), 138.5 (C-1′), 136.1 (C-8a), 135.5 (C-3′), 132.6 (C-7), 128.1 (C-5′), 126.9 (C-6′), 126.3 (C-4′),
124.5 (C-4a), 123.1 (C-5), 120.4 (C-6), 118.5 (C-8), 115.9 (C-2′-Br), 103.5 (C-3). MS (m/z, %): 394/396 [M]+

(3.2/2.8), 315 (6.8), 224 (4.6), 197/199 (29.6/32.3), 171/173 (18.2/15.5), 120 (14.9), 119 (20.1), 92 (17.2),
90 (100), 82 (12.8), 81 (14.5). Anal. Calcd. for C15H11BrN2O4S: C, 45.58; H, 2.81; N, 7.09; S 8.11%. Found:
C, 45.50; H, 2.74; N, 7.00; S 8.18%.

N-(3-Bromophenyl)-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamide (2k). Yield: 90%; mp
212–214 ◦C (methanol–methylene chloride, 1:2); 1H-NMR (400 MHz, DMSO-d6): δ 15.27 (br. s, 1H,
4-OH), 12.21 (br. s, 1H, SO2NH), 9.56 (s, 1H, CONH), 8.00 (d, 1H, J = 8.0 Hz, H-5), 7.92 (s, 1H, H-2′),
7.62 (t, 1H, J = 7.7 Hz, H-7), 7.52 (d, 1H, J = 7.3 Hz, H-6′), 7.36–7.31 (m, 2H, H-5′, 4′), 7.27 (t, 1H, J = 7.6
Hz, H-6), 7.21 (d, 1H, J = 8.2 Hz, H-8). 13C-NMR (100 MHz, DMSO-d6): δ168.4 (C-OH), 164.3 (C=O),
138.9 (C-1′), 136.7 (C-8a), 134.0 (C-5′), 130.9 (C-7), 128.1 (C-3′-Br), 126.2 (C-2′), 123.5 (C-4′), 122.8 (C-4a),
121.5 (C-6′), 119.9 (C-5), 119.5 (C-6), 118.0 (C-8), 105.4 (C-3). MS (m/z, %): 394/396 [M]+ (7.9/5.1),
224 (3.7), 197/199 (30.7/30.5), 171/173 (100/88.8), 119 (30.9), 104 (25.0), 92 (53.7), 90 (65.5), 82 (12.3),
81 (23.3), 77 (17.4). Anal. Calcd. for C15H11BrN2O4S: C, 45.58; H, 2.81; N, 7.09; S 8.11%. Found: C,
45.64; H, 2.75; N, 6.99; S 8.07%.

N-(4-Bromophenyl)-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamide (2l). Yield: 95%; mp
229–231 ◦C (methanol–methylene chloride, 1:3); 1H-NMR (400 MHz, DMSO-d6): δ 15.29 (br. s, 1H,
4-OH), 12.26 (br. s, 1H, SO2NH), 9.52 (s, 1H, CONH), 7.99 (d, 1H, J = 8.0 Hz, H-5), 7.63 (t, 1H, J = 7.7 Hz,
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H-7), 7.57 (d, 2H, J = 8.5 Hz, H-2′,6′), 7.51 (d, 2H, J = 8.5 Hz, H-3′,5′), 7.26 (t, 1H, J = 7.6 Hz, H-6),
7.21 (d, 1H, J = 8.2 Hz, H-8). 13C-NMR (100 MHz, DMSO-d6): δ167.4 (C-OH), 163.5 (C=O), 136.8 (C-1′),
134.1 (C-8a), 131.7 (C-3′,5′), 128.3 (C-7), 126.1 (C-2′,6′), 123.0 (C-4a), 121.2 (C-5′), 119.5 (C-6), 118.0 (C-8),
116.3 (C-4′-Br), 104.9 (C-3). MS (m/z, %): 394/396 [M]+ (1.5/1.7), 224 (5.4), 197/199 (1.7/1.5), 171/173
(84.5/84.0), 132 (12.2), 119 (8.8), 104 (44.2), 92 (100), 91 (28.5), 77 (11.4). Anal. Calcd. for C15H11BrN2O4S:
C, 45.58; H, 2.81; N, 7.09; S 8.11%. Found: C, 45.65; H, 2.86; N, 7.13; S 8.17%.

2.3. X-ray Structural Analysis

Crystal data for N-(4-bromophenyl)-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamide
dimethylformamide monosolvate: C15H11BrN2O4S·C3H7NO, colorless, monoclinic (DMF,
mp 197–199 ◦C decomposition). At 20 ◦C a = 21.592(4), b = 12.809(1), c = 29.564(5) Å, β = 134.04(3)◦,
V = 5878(2) Å3, Mr = 468.32, Z = 12, space group P21/c, dcalc = 1.588 g/cm3, µ(MoKα) = 2.240 mm−1,
F(000) = 2856. The unit cell parameters and intensities of 40460 reflections (10335 independent,
Rint = 0.119) were measured on an Xcalibur-3 (Oxford Diffraction Limited, Oxford, UK) diffractometer
(MoKα radiation, CCD detector, graphite monochromator,ω-scanning to 2θmax = 50◦). The structure
was solved by the direct method using the SHELXTL program package (Institute of Inorganic
Chemistry, Göttingen, Germany) [26]. Absorption correction was made using a semi-empirical
multi-scan method (Tmin = 0.553, Tmax = 0.807). The hydrogen atom positions were revealed by
differential synthesis of electron density and refined according to the “rider” model with Uiso = nUeq

for the non-hydrogen atom bonded to a given hydrogen atom (n = 1.5 for methyl group, n = 1.2 for the
rest of the hydrogen atoms). The hydroxyl and amino group hydrogen atoms participating in hydrogen
bonds were refined in isotropic approximation. The structure was refined using F2 full-matrix
least-squares analysis in the anisotropic approximation for non-hydrogen atoms to wR2 = 0.173 for
10293 reflections (R1 = 0.069 for 799 reflections with F > 4σ (F), S = 0.902). CCDC 1474415 contains the
supplementary crystallographic data for this paper. These data can be obtained free of charge from the
Cambridge Crystallographic Data Centre [27].

2.4. Pharmacology

All biological experiments were carried out in full accord with the European Convention
on the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes
and the Ukrainian Law No. 3447-IV ”On protection of animals from severe treatment” (2006)
(project ID 3410U14 approved October 15, 2015). The analgesic activities of the synthesized
4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxanilides 2a–l were studied compared to
piroxicam (Jenapharm, Jena, Germany) and meloxicam (Boehringer Ingelheim, Ingelheim am Rhein,
Germany), two structurally similar compounds, on the model of the thermal tail-flick procedure
in white rats (tail immersion test) [28]. The conditions of our pharmacological experiments were
previously described in detail [21]. The test compounds and the reference drugs were administered
orally in a screening dose of 20 mg/kg.

3. Results and Discussion

3.1. Chemistry

The synthesis of halogen-substituted 4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-
carboxanilides 2a–l was carried out by amidation of ethyl 4-hydroxy-2,2-dioxo-1H-2λ6,1-
benzothiazine-3-carboxylate (1) previously described [29] with the corresponding anilines in
boiling dry xylene (Scheme 1). This rather simple method allows for easy obtainment of the target
compounds in one step and with good yields.
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Scheme 1. Synthesis of 4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxanilides 2a–l. 2: аR = H; 
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Scheme 1. Synthesis of 4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxanilides 2a–l. 2: aR = H;
bR = 2-F; cR = 3-F; dR = 4-F; eR = 3,4-F2; fR = 2-Cl; gR = 3-Cl; hR = 4-Cl; iR = 2,5-Cl2; jR = 2-Br;
kR = 3-Br; lR = 4-Br.

Most anilides 2a–l are colorless crystalline substances, although sometimes some of them may be
white samples with a slight yellowish tint. At room temperature they are moderately soluble, and when
heated they are readily soluble in N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO).
However, these solvents (at least DMF) should not be used for purification of anilides 2a–l. Using X-ray
diffraction analysis (Figure 3), the ability of the compounds studied to form stable solvates with DMF
has been shown on the example of 4-bromo-substituted derivative 2l. But the presence of DMF in any
biologically active substance (taking into account its rather high toxicity) is exceptionally undesirable.
Therefore, for the recrystallization of anilides 2a–l, it is better to use other solvents—for example,
easily removable methanol, methylene chloride, or their mixtures (see Materials and Methods).
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Figure 3. The standard representation of different atoms in different colors. The molecular structure of
4-bromoanilide 2l N,N-dimethylformamide monosolvate with atoms represented by thermal vibration
ellipsoids of 50% probability.

In addition, according to the results of the X-ray diffraction study, interesting structural
peculiarities have been revealed for 4-bromoanilide 2l. The asymmetric part of the cell unit
contains three molecules of this compound and three solvate molecules of DMF. At the same time,
the dihydrothiazine heterocycle adopts a “twist-boat” conformation in all cases (the puckering
parameters [30] are: S = 0.51, Θ = 41.0◦, Ψ = 25.8◦ in molecule A, S = 0.58, Θ = 42.5◦, Ψ = 26.2◦

in molecule B, and S = 0.56, Θ = 46.4◦, Ψ = 24.5◦ in molecule C). Deviations of the S(1) and C(8) atoms
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from the mean plane of the remaining atoms of the cycle are 0.63 Å and 0.17 Å in molecule A, 0.73 Å
and 0.21 Å in molecule B, and −0.74 Å and−0.22 Å in molecule C, respectively. The N(1) atom has
a pyramidal configuration (the sum of the valence angles centered on it is 355.6◦ in molecule A,
354.7◦ in molecule B, and 339.6◦ in molecule C).

The carboxamide fragment of the substituent at the C(8) atom is coplanar to the C(7)–C(8) endocyclic
bond (the C(7)–C(8)–C(9)–O(2) torsion angle is 3(1)◦ in A, 0(1)◦ in B, and 1(1)◦ in C). Formation of the
O–H···O hydrogen bond leads to the electron density redistribution in the O(1)–C(7)–C(8)–C(9)–O(2)
fragment. It is evident as elongation of the C(9)–O(2) bond to 1.245(9) Å in A, 1.259(7) Å in B, 1.243(9) Å
in C, and C(7)–C(8) to 1.356(8) Å in A, 1.364(9) Å in B, and 1.366(8) Å in C compared to their mean
values [31]: 1.210 and 1.326 Å, respectively. At the same time, the C(7)–O(1) bond is shortened up to
1.332(8) Å in A, 1.349(8) Å in B, and 1.343(8) Å in C (the mean value is 1.362 Å). The para-bromophenyl
cycle is located in the ap-position relatively to the C(8)–C(9) bond and is turned relatively to the
carboxamide fragment in molecule A, whereas in molecules B and C, it is practically coplanar to
this plane (C(8)–C(9)–N(2)–C(10) torsion angles are −169.8(8)◦ in A, −179.8(8)◦ in B, −171.9(8)◦ in
C; C(9)–N(2)–C(10)–C(11) 19(1)◦ in A, 4(1)◦ in B, and 8(1)◦ in C). In the crystal phase, the molecule
4-bromoanilide 2l is bonded with the DMF solvate molecule by the N(1)–H···O(1S)′ intermolecular
hydrogen bonds (H···O 1.73 Å, N–H···O 166◦ in A, H···O 1.75 Å, N–H···O 166◦ in B, and H···O 1.69 Å,
N–H···O 166◦ in C).

According to the data of 1H-nuclear magnetic resonance (NMR) spectroscopy, all 4-hydroxy-2,2-
dioxo-1H-2λ6,1-benzothiazine-3-carboxanilides 2a–l synthesized in DMSO-d6 solution also exist in
4-OH form. This is confirmed by the singlets of the hydroxyl protons in the range of 15.5–15.0 ppm;
they easily enter into deuterium exchange due to the pronounced acid properties of 4-OH-groups and
quickly disappear after adding D2O. A similar behavior is also observed in the singlet signals of protons
of cyclic sulfamide groups, which originally resonate in a slightly stronger field—at 12.3–12.2 ppm.
This indicates the acidic nature of these fragments, which cannot be said about acyclic anilide
NH-groups—their protons appearing in the 1H-NMR spectra as singlets at 10.0–9.4 ppm, on the
contrary, enter into deuterium exchange very slowly. Analysis of the “aromatic” region of the proton
spectra of anilides 2a–l does not cause difficulties in general. However, sometimes it is difficult to
make a specific assignment of one and all signals, since resonance frequencies of certain protons are
very close or completely coincide. Complex multiplets observed in such cases can only be interpreted
by the total integrated intensity.

The number and chemical shifts of signals recorded in the 13C-NMR spectra completely
correspond to the structural formulas of the 4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-
carboxanilides 2a–l studied. In the case of compounds 2b–e, 13C-NMR spectroscopy allows us
to reliably prove the presence of the fluorine atoms in their anilide fragments. This is shown by
both significant paramagnetic shifts (more than 30 ppm compared to the unsubstituted analog 2a)
of the signals of carbon atoms associated with them and splitting of the atoms in the doublets with
typical constants of the spin–spin interaction for C–F bonds in aromatic compounds (see Materials
and Methods). In the 13C-NMR spectra of chloro-substituted anilides 2f–i, there is also a shift in
the weak field of signals of carbon atoms bound directly with halogens. However, it is expressed
much less than in fluoroanilides 2b–e. Due to the “heavy atom” effect, bromine affects the position
of its neighboring carbon atom in the 13C-NMR spectra not so categorically: diamagnetic shielding
(ortho-and para-bromoanilides 2j, 2l) is observed more often, a paramagnetic shift of the C-3′ signal in
the spectrum of meta-bromoanilide 2k is only 1.9 ppm.

Unlike fluorine, atoms of chlorine and bromine do not possess the magnetic moment
and have no effect on the multiplicity of carbon signals related to them. For this reason,
NMR spectroscopy is not able to reliably distinguish chloro- and bromo-substituted analogs.
Mass spectrometry (MS) can solve such analytical problems easily. It was also used by us to
confirm the structure of the substances synthesized. In the conditions of electron impact ionization,
4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxanilides 2a–l do not have a high stability.
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As a result, the intensity recorded in the mass spectra of the peaks of their molecular cation-radicals
usually is extremely low. However, in all cases these peaks are observed; and here, in addition to values
of m/z (i.e., the molecular weight of each test sample) multiplicity is important. It gives additional
useful information about the types of halogens that are present in the molecule and their number.
For example, peaks of molecular ions of fluoro anilides 2b–e are singlets regardless of the number of
fluorine atoms, since fluorine is monoisotopic (Figure 4). In nature, chlorine exists as two isotopes:
35Cl and 37Cl in the ratio of 75.5 and 24.5%, respectively [32]. Therefore, in the mass spectra of
monochloro-substituted anilides 2f–h, the molecular ions appear in doublets with a more intense
peak with a smaller m/z value, which corresponds to the 35Cl isotope (Figure 4). In one molecule,
the dichloro-substituted anilide 2i may contain isotopes of chlorine both with identical and different
mass numbers. But according to their natural prevalence, the molecular ion peak in this case has the
appearance of a triplet with the intensity ratio close to 9:6:1. A distinctive feature of the mass spectra
of monobromanilides 2j–l is the fact that both peaks in the doublet of their molecular ions are very
close in intensity since bromine exists as two isotopes—79Br and 81Br in the ratio of 50.54 and 49.46%,
respectively [32].
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For hetarylamides [15,16,19,20], as well as alkyl- [22,25], hydroxy- and alkoxy-substituted [24]
anilides of 1-R-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylic acids, two directions of the
primary fragmentation of molecular ions are characteristic: breaking of the heterocycle–3-carbamide
fragment bond (pathway A) or destruction of the acyclic carbamide bond (pathway B). It is interesting
that in the case of anilide 2a and its halogenated analogs 2b–l, this behavior (Scheme 2) is recorded only
in bromo-substituted derivatives 2j–l. Obviously, peaks associated with the corresponding anilines
are usually the most intense in the mass spectra of the compounds under study. It is noteworthy that
fragment ions [M − Hal]+, being typical for halogen-containing compounds in the mass spectra of
4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxanilides 2b–l, are observed only in the case of
ortho-chloro-2f and ortho-bromo-2j substituted derivatives.
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3.2. Evaluation of the Analgesic Activity

The results of studying the analgesic properties of all 4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-
3-carboxanilides 2a–l synthesized are presented in Table 1. They show that in principle, halogenation
of the anilide fragment can be an easy and very effective way of optimizing analgesics of the
2,1-benzothiazine series. A significant increase in the activity that accompanies the transition
from the unsubstituted anilide 2a to some of its halogenated analogs is evidenced in favor of
this conclusion. Its positive role is also played by a virtually unlimited range of commercially
available halogen-substituted anilines; it allows us to perform various chemical modifications of
the base molecule without any special expenses. Thus, it is now clear that ortho-mono-substituted
products are not of interest as analgesics irrespective of the halogen nature. At the same
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time, most of their meta- and para-isomers are able to suppress the pain response at the level
of meloxicam. Sometimes the introduction of the second atom of halogen in the anilide part
of the molecule may not substantially affect the analgesic effect, for example in the case of
3,4-difluoroanilide 2e. However, 2,5-dichloroanilide 2i, which significantly exceeds meloxicam
by the level of specific activity, proves conclusively the feasibility of further research among
halogen-substituted 4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxanilides with at least two
halogen atoms in the anilide fragment.

Table 1. Analgesic Activity of Anilides 2a–l and the Reference Drug.
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4. Conclusions

This study presents halogen-substituted 4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-
carboxanilides synthesized as potential analgesics. Based on X-ray diffraction analysis,
NMR spectroscopy (1H and 13C), and mass spectrometry, it has been determined that in the
crystalline form and in solution the substances obtained exist in the 4-hydroxy form. The ability
of halogen-substituted 4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxanilides to form
solvates with DMF has been experimentally confirmed, and it should be considered in their
purification. According to the results of the pharmacological testing conducted, highly active
analgesics have been found among the compounds studied. The structural and biological
relationships identified are discussed. The expediency of further research among 4-hydroxy-2,2-
dioxo-1H-2λ6,1-benzothiazine-3-carboxanilides with several atoms of halogens in the anilide fragment
has been demonstrated.
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