

Figure S1. (a) Overlaid Chromatogram of impurity mix solution Impurity-I (1), Impurity-II (2), Impurity-III (3), Impurity-IV (4), Impurity-V (5), Impurity-VI (6), Impurity-VII (7), Impurity-VIII (8), Impurity-IX (9), placebo, diluent blank and standard solution (b) System suitability solution.

Figure S2. Chromatograms showing degradation studies in (a) Unstressed; (b) Acid; (c) Base and (d) Peroxide.

Figure S3. Chromatograms showing degradation studies in (**a**) Water; (**b**) Thermal; (**c**) Photolytic and (**d**) Humidity.

Tables (Supplementary)

	Software						
			Factor 1	Factor 2	Factor 3	Resolution -1 (R1)	Resolution-2 (R2)
Std	Run	Туре	A:M.PB (ACN) %	B:Buffer pH	C:Flow Rate mL/Min	IMP-VII (7) and IMP-I (1)	IMP-I (1) and LGP
6	1	Factorial	95.0	2.50	1.10	1.9	2.8
4	2	Factorial	95.0	3.50	0.90	2.3	2.8
9	3	Center	90.0	3.00	1.00	2.0	3.2
8	4	Factorial	95.0	3.50	1.10	2.1	2.7
3	5	Factorial	85.0	3.50	0.90	1.8	3.3
11	6	Center	90.0	3.00	1.00	2.0	3.2
7	7	Factorial	85.0	3.50	1.10	1.7	3.3
10	8	Center	90.0	3.00	1.00	2.0	3.2
5	9	Factorial	85.0	2.50	1.10	1.6	3.3
2	10	Factorial	95.0	2.50	0.90	2.1	3.0
1	11	Factorial	85.0	2.50	0.90	1.7	3.5

Table S1. Design of Experiment (DoE) design and results obtained by full factorial design with Design Expert

 Software

Devenue of over	% of LGP Impurities									
rarameters	(I)	(II)	(III)	(IV)	(V)	(VI)	(VII)	(VIII)	(IX)	LGP
Precision (% RSD)	1.5	1.4	1.6	1.6	0.8	2.1	1.7	0.8	0.1	2.3
Intermediate Precision (% RSD)	0.5	0.8	0.2	0.2	0.6	1.1	0.4	0.3	0.1	0.6
LOD (%)	0.012	0.012	0.014	0.014	0.014	0.014	0.010	0.014	0.010	0.013
LOQ (%)	0.040	0.037	0.041	0.038	0.041	0.047	0.036	0.043	0.039	0.037
Accuracy at LOQ (%)	93.9	95.6	104.6	99.2	108.4	92.8	86.5	108.3	96.4	100.5
Accuracy at 150%	99.3	100.2	97.8	100.8	96.0	112.8	99.5	101.2	108.1	95.9
Correlation Coefficient (r)	0.9999	0.9999	0.99999	0.99999	0.99999	0.99999	0.99999	0.99999	0.99999	0.9972
% Bias at 100%	0.03	0.19	-0.59	0.16	0.98	0.98	0.10	0.36	0.07	0.69

Table S2. Results of Precision (*n*=6), Intermediate Precision (*n*=6), LOD and LOQ (n=6), Accuracy at LOQ (*n*=3), Accuracy at 150% (*n*=6), correlation coefficient (*r*) and %Bias at 100%

Table S3 Results of forced degradation with respect to individual impurity

Nature of Stress	IMP-I	IMP-II	IMP-III	IMP-IV	IMP-V	IMP-VI	IMP-VII	IMP-VIII	IMP-IX
Linchrossed	0.0272	Not	Not	0.0272	Not	Not	0 1127	0 1000	Not
Unstressed	0.0275	Detected	Detected	0.0275	Detected	Detected	0.1127	0.1099	Detected
المنع ا	0.0202	Not	Not	Not	Not	Not	0 1010	0 1172	Not
Acid	0.0392	Detected	Detected	Detected	Detected	Detected	0.1218	0.1172	Detected
Pass	0.0701	Not	Not	0.0569	Not	Not	Not	0.0827	Not
Dase	0.0701	Detected	Detected	0.0366	Detected	Detected	Detected	0.0827	Detected
Dorovido	Not	Not	Not	0.0425	Not	Not	0.0405	0 1110	Not
reroxide	Detected	Detected	Detected	0.0455	Detected	Detected	0.0493	0.1116	Detected
Water	Not	Not	Not	0.0446	Not	Not	0.0600	0 1096	Not
water	Detected	Detected	Detected	0.0440	Detected	Detected	0.0609	0.1086	Detected
Thormal	0.0205	Not	Not	0 5221	Not	Not	0 1254	0 4279	Not
mermai	0.0295	Detected	Detected	0.5551	Detected	Detected	0.1234	0.4376	Detected
Dhatabatia	0.0492	Not	Not	0.0272	Not	Not	0 1171	0 1 2 7 0	Not
Photolytic	0.0483	Detected	Detected	0.0372	Detected	Detected	0.1171	0.1279	Detected
T Terreri diter	Not	Not	Not	0.000	Not	Not	0.0757	0 1229	Not
numiaity	Detected	Detected	Detected	0.2238	Detected	Detected	0.0757	0.1338	Detected

NMR Assignments for structural elucidation of Impurity-VII (7), Impurity-VIII (8) and Impurity-IX (9)

a) NMR Assignments for structural elucidation of Impurity-VII (7)

In proton NMR spectrum of impurity it was observed that one amine proton is absent. The proton count is having 11 extra protons. Unaccounted signals were observed in proton and carbon NMR spectrum indicates impure nature of compound.

Position ¹	1H	δ (ppm)	$J(Hz)^2$	gCOSY	¹³ C	DEPT	gHSQC
2	-	-	-	-	168.9	-	-
3	1H	7.80	d, 8.0	(4H, 7.60)	125.7	СН	(3H, 7.80)
				(3H, 8.15)			
4	1H	7.90	t, 7.6		127.2	CH	(4H, 7.90)
				(5H, 7.85)			
				(4H, 7.60)			
5	1H	7.66	m		134.1	CH	(5H, 7.66)
				(6H, 7.80)			
6	1H	8.22	d, 8.4	(5H, 7.85)	127.9	CH	(6H, 8.22)

Table S4 NMR assignments for Impurity-VII (7)

8	-	-	-	-	161.0	-	-
9	-	-	-	-	150.9	-	-
10	-	-	-	-	122.5	-	-
11	2H	5.32	S	-	45.5	CH ₂	(11H, 5.32)
13	-	-	-	-	156.0	-	-
15	-	-	-	_	156.1	-	-
18	-	-	-	-	153.2	-	-
19	-	-	-	_	103.3	-	-
20	-	-	-	-	150.0	-	-
21	2H	4.86	m	(24H, 1.78)	35.5	CH ₂	(21H, 4.86)
22	-	-	-	-	63.1	-	-
23	-	-	-	-	97.3	-	-
24	3H	1.76	S	(21H, 4.90)	3.1	CH ₃	(24H, 1.76)
26	1Ha	3.16	m	(26He, 3.67) (27Ha, 1.78) (27He, 1.89)	50.2	CH ₂	(26Ha, 3.16)
	1He	3.54	m	(26Ha, 3.10) (27Ha, 1.78) (27He, 1.89)	-	-	(26He, 3.54)
27	1Ha	1.70	m	(26Ha, 3.10) (26He, 3.67) (27He, 1.89) (28Ha, 1.42) (28He, 2.02)	23.2	CH ₂	(27Ha, 1.70)
	1He	1.84	m	(26Ha, 3.10) (26He, 3.67) (27Ha, 1.78) (28Ha, 1.42) (28He, 2.02)	-	-	(27He, 1.84)

28	1Ha	1.54	m	(27Ha, 1.78) (27He, 1.89) (28He, 2.02) (29H, 3.02)	33.5	CH ₂	(28Ha, 1.54)
	1He	1.87	m	(27Ha, 1.78) (27He, 1.89) (28Ha, 1.42) (29H, 3.02)	-	-	(28He, 1.87)
29	1H	2.60	m	(28Ha, 1.42) (28He, 2.02) (30Ha, 2.88) (30He, 3.75)	54.1	СН	(29H, 3.97)
30	1Ha	2.70	m	(29H, 3.02) (30He, 3.75)	55.2	CH ₂	(30Ha, 2.7)
	1He	3.80	m	(29H, 3.02) (30Ha, 2.88)	-	-	(30He, 3.80)
31	NH	8.22	br	-	-	-	-
32	3Н	3.40	S	-	29.9	CH ₃	(32H, 3.40)
33	3Н	2.88	S	-	22.1	CH ₃	(33H, 2.88)
34	2H	-	S		52.0	CH ₂	(34H, 8.03)
35	-	-	-	-		-	-
36	1H	3.7	m	-	77.3	СН	(36H, 3.7)
37	1H	3.6	m	-	69.9	СН	(34H, 3.6)
38	1H	3.6	m	-	69.3	CH	(38H, 3.6)
39	2H	3.5	m	-	63.6	CH ₂	(39H, 3.5)

¹Refer the structural formula in previous page for numbering

²This column gives the ¹H-¹H multiplicity and coupling constants

s-singlet, d-doublet, t-triplet, m-multiplet.

b) NMR Assignments for structural elucidation of Impurity-VIII (8)

In proton NMR spectrum of impurity it was observed that one amine proton is absent. One proton at 8.0ppm was observed corresponding to proton of formaldehyde (34H). In ¹³C NMR spectrum of impurity it was observed that one carbon signal at 160.9ppm was observed corresponding to carbon of formaldehyde (34C). In DEPT spectrum one methyl signal at 160.9ppm was observed, this indicates presence of aldehydic CH. The Heteronuclear Single Quantum Coherence (HSQC) spectrum of impurity showed correlation between 34C at 160.9ppm and 34H at 8.03ppm, indicating N-formylation at 31N position. The correlation for 29C with 31H at 8.22 ppm and 34H at 8.03ppm, through bond observed in Hetronuclear Multiple Bond Correlation (HMBC) spectrum of impurity. This indicates the bond formation between 31N and 34C (N-formaldehyde bond formation)

Position ¹	1H	δ (ppm)	$J(Hz)^2$	gCOSY	¹³ C	DEPT	gHSQC
2	-	-	-	-	171.0	-	-
3	1H	7.80	d, 8.0	(4H, 7.60)	126.7	CH	(3H, 7.80)

Table S5 NMR assignments for Impurity-VIII (8)

	411			(3H, 8.15)			(1H 7 90)
4	1H	7.90	t, 7.6	(5H, 7.85)	128.6	СН	(4H, 7.90)
				(4H 760)			
5	1H	7.66	m	(411, 7.00)	135.5	CH	(5H <i>,</i> 7.66)
				(6H, 7.80)			
6	1H	8.22	d, 8.4	(5H, 7.85)	128.9	СН	(6H, 8.22)
8	-	-	-	-	162.4	-	-
9	-	-	-	-	150.8	-	-
10	-	-	-	-	124.2	-	-
11	2H	5.32	S	-	47.2	CH ₂	(11H, 5.32)
13	-	-	-	-	155.6	-	-
15	-	-	-	-	158.3	-	-
18	-	-	-	-	153.4	-	-
19	-	-	-	-	105.7	-	-
20	-	-	-	-	150.0	-	-
21	2H	4.90	m	(24H, 1.78)	36.9	CH ₂	(21H, 4.90)
22	-	-	-	-	74.4	-	-
23	-	-	-	-	82.5	-	-
24	3H	1.76	S	(21H, 4.90)	3.3	CH ₃	(24H, 1.76)
				(26He, 3.67)			
26	1Ha	3.16	m	(27Ha, 1.78)	51.7	CH ₂	(26Ha, 3.16)
				(27He, 1.89)			
				(26Ha, 3.10)			
	1He	3.54	m	(27Ha, 1.78)	-	-	(26He, 3.54)
				(27He, 1.89)			
				(26Ha, 3.10)			
27	1Ha	1.70	m	(26He, 3.67)	24.8	CH ₂	(27Ha, 1.70)
	-	-		(27He, 1.89)			
				(28Ha, 1.42)			

				(28He, 2.02)			
				(26Ha, 3.10)			
				(26He, 3.67)			
	1He	1.84	m	(27Ha, 1.78)	-	-	(27He, 1.84)
				(28Ha, 1.42)			
				(28He, 2.02)			
				(27Ha, 1.78)			
20	111-	1 54		(27He, 1.89)	22.0	CU	(2911 - 1 = 4)
28	Іпа	1.34	m	(28He, 2.02)	33.9	CH2	(2811a, 1.54)
				(29H, 3.02)			
				(27Ha, 1.78)			
	111	1.07		(27He, 1.89)			
	IHe	1.87	m	(28Ha, 1.42)	-	-	(28He, 1.87)
				(29H, 3.02)			
				(28Ha, 1.42)			
20	111	2.07		(28He, 2.02)	40 E	CU	
29	IH	3.97	m	(30Ha, 2.88)	48.5	СН	(29H, 3.97)
				(30He, 3.75)			
	411	2 00		(29H, 3.02)	F 0 0	011	(2011 2 00)
30	IHa	3.00	m	(30He, 3.75)	58.2	CH ₂	(30Ha, 3.00)
				(29H, 3.02)			
	1He	3.65	m	(30Ha, 2.88)	-	-	(30He, 3.65)
31	NH	8.22	br	-	-	-	-
32	3Н	3.40	S	-	30.3	CH ₃	(32H, 3.40)
33	3H	2.88	S	-	21.8	CH ₃	(33H, 2.88)
34	1H	8.03	S			CH	(34H, 8.03)

¹Refer the structural formula in previous page for numbering

²This column gives the ¹H-¹H multiplicity and coupling constants

s-singlet, d-doublet, t-triplet, m-multiplet.

c) NMR Assignments for structural elucidation of Impurity-IX (9)

In proton NMR spectrum of impurity it was observed that one amine proton is absent. Two exchangeable protons at 5.32ppm were observed (35H). In ¹³C NMR spectrum of impurity it was observed that one carbon signal at 161.0ppm was observed corresponding to carbon position 34C. In Hetronuclear Multiple Bond Correlation (HMBC) spectrum of impurity through bond correlation was observed for 34C at 161.0 and 35H at 5.32ppm.

Position ¹	¹Η	δ (ppm)	$J(Hz)^2$	gCOSY	¹³ C	DEPT	gHSQC
2	-	-	-	-	168.8	-	-
3	1H	8.24	d, 7.6	(4H, 7.67)	125.8	СН	(3H, 8.24)
4	1H	7 67	t 72	(3H, 8.24)	127.2	СН	(4H 767)
Ĩ			<i>t, 7</i> .2	(5H, 7.91)	127.2	CII	(111,7.07)
5	1H	7.91	m	(4H, 7.67)	134.1	СН	(5H, 7,91)
U				(6H, 7.81)	10 111	011	(011) / 011)
6	1H	7.81	d, 8.4	(5H, 7.91)	127.9	СН	(6H, 7.81)
8	-	-	-	-	161.0	-	-

Table S6 NMR assignments for Impurity-IX (9)

9	-	-	-	-	150.9	-	-
10	-	-	-	-	122.5	-	-
11	2H	5.32	S	-	45.3	CH ₂	(11H, 5.46)
13	-	-	-	-	155.9	-	-
15	-	-	-	-	158.0	-	-
18	-	-	-	_	153.2	-	-
19	-	-	-	_	103.3	-	-
20	-	-	-	-	149.0	-	-
21	2H	4.91	m	(24H, 1.78)	35.4	CH ₂	(21H, 4.91)
22	-	-	-	-	73.7	-	-
23	-	-	_	_	81.3	-	-
24	3H	1.78	S	(21H, 4.90)	3.1	CH ₃	(24H, 1.78)
26	1Ha	3.12	m	(26He, 3.67) (27Ha, 1.78) (27He, 1.89)	49.8	CH ₂	(26Ha, 3.12)
	1He	3.58	m	(26Ha, 3.10) (27Ha, 1.78) (27He, 1.89)	-	-	(26He, 3.58)
27	1Ha	1.71	m	(26Ha, 3.12) (26He, 3.58) (27He, 1.83) (28Ha, 1.42) (28He, 1.85)	23.1	CH2	(27Ha, 1.71)
	1He	1.83	m	(26Ha, 3.12) (26He, 3.58) (27Ha, 1.71) (28Ha, 1.42) (28He, 1.85)	-	-	(27He, 1.83)
28	1Ha	1.42	m	(27Ha, 1.78) (27He, 1.89)	29.9	CH ₂	(28Ha, 1.42)

				(28He, 2.02)			
				(29H, 3.02)			
				(27Ha, 1.71)			
	111.	1 05		(27He, 1.83)			()
	THe	1.85	m	(28Ha, 1.42)	-	-	(28He, 1.85)
				(29H, 3.68)			
				(28Ha, 1.42)			
				(28He, 1.85)			
29	1H	3.68	m	(30Ha, 2.92)	45.5	CH	(29H, 3.68)
				(30He, 3.67)			
				(31H, 6.13)			
20	1H-	າດາ	m	(29H, 3.68)	54.6	CH	$(20H_{2}, 2.02)$
30	11 Id	2.92	111	(30He, 3.67)	54.0	CI 12	(3011a, 2.92)
	1He	3.67	m	(29H, 3.68)	-	-	(30He, 3.67)
				(30Ha, 2.92)			
21	NH	6 1 2	472	(20H 2 68)			
51	1111	0.15	u, 7.2	(2911, 5.00)	-	-	-
32	3H	3.51	S	-	29.4	CH ₃	(32H, 3.51)
33	3H	2.90	S	-	21.6	CH ₃	(33H, 2.90)
34	-	-	-	-	147.6	-	-
.35	NH ₂	5 48	c		_	_	
00	1 11 12	0.10	3		_		

¹Refer the structural formula in previous page for numbering

²This column gives the ¹H-¹H multiplicity and coupling constants

s-singlet, d-doublet, t-triplet, m-multiplet.