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Abstract: Molecular interactions of plumbagin inclusion complexes with β-cyclodextrin (BCD),
dimethyl-β-cyclodextrin (MBCD), and hydroxypropyl-β-cyclodextrin (HPBCD) were investigated by
semi-empirical, Parameterization Method 6 and 7 (PM6, and PM7) in the aqueous phase using polarizable
continuum calculations. The results revealed two different binding modes of the plumbagin molecule
inside the BCD cavity with a negative value of the complexation energy. In conformation-I, the hydroxyl
phenolic group of plumbagin was placed in the BCD cavity near the narrow-side of the host molecule.
In the other model, conformation-II, the methyl quinone group of plumbagin was placed in the cavity of
BCD near the narrow-side of the host molecule. The higher the negative value of the complexation energy,
the more favorable is the pathway of inclusion-complex formation.
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1. Introduction

Molecular modeling techniques are currently widely used in chemistry and pharmacology to obtain
insight into information at the molecular level of systems of interest. The computational results help
explain the molecular interactions and suggest the mechanisms that govern the processes when experimental
techniques are insufficient. The calculation models are able to predict and screen the results when varying
the compounds or the system conditions prior to laboratory tests. Semi-empirical quantum mechanical
calculations have been successful for descriptions in organic chemistry because some parameters are
approximated or generalized to simplify the calculation or to yield a result based on experimental data.
Modern semi-empirical quantum mechanical models such as Parameterization Method 6 and 7 (PM6 and
PM7) are often used to explore the electronic structure dependent properties of large molecules, where ab initio
electronic structure methods (without approximations) are too expensive [1]. The PM7 method improved
the description of some properties such as the heats of formation or the height of the reaction barriers for
reactions and included them into the description of the dispersion interaction and hydrogen bonding in the
parameterization [2], which is suitable for a description of noncovalent interactions. In this work, the molecular
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interactions of a plumbagin inclusion complex with β-cyclodextrin (BCD), dimethyl-β-cyclodextrin (MBCD),
and hydroxypropyl-β-cyclodextrin (HPBCD) were investigated. The inclusion complex formation takes
place mainly by hydrophobic interactions—namely, van der Waals, hydrogen bonding, and dipole–dipole
interactions—which are noncovalent interactions [3,4]. Therefore, the PM7 method should be appropriate to
investigate the complexation mechanism of plumbagin with cyclodextrins. The results were also compared to
the previous PM6 method.

β-cyclodextrin is a nontoxic cyclic oligosaccharide comprising seven α-D-glucoses [5]. The inner
hydrophobic cavity of BCD consists of carbon and hydrogen atoms. The rims of the cavity comprise
primary and secondary hydroxyl groups, giving it a hydrophilic property. The secondary hydroxyl
groups are at the C2 and C3 positions of the cyclodextrin (CD), which is located on the wide-side of the
truncated cone. The primary hydroxyl group is at the C6 position, which is located at the narrow-side
of the truncated cone [3]. Methylated β-cyclodextrin and hydroxypropyl-β-cyclodextrin are BCD
derivatives that are widely used in drug encapsulation because of their inclusion ability and high
water solubility (>500 mg/mL) while the solubility in water of BCD is 18.5 mg/mL at 25 ◦C [6].

Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) is an organic compound extracted from the
Plumbago indica root [7]. Plumbagin has anti-microbial, neuroprotective, and anti-carcinogenic properties
and is generally used in Thai herbal medicines [8]. There are some reports using BCD and HPBCD to form
a 1:1 inclusion complex with plumbagin to increase its solubility in water and reduce the cytotoxicity of the
compound [9–11]. Unfortunately, no experimental papers report the use of MBCD as a host for encapsulation
with plumbagin.

To understand the properties of the complex geometries and the encapsulation process,
we used semi-empirical PM6 and PM7 methods to describe the complexation of plumbagin/BCD,
plumbagin/MBCD, and plumbagin/HPBCD systems in water. The complex energy, molecular
interactions, and insertion pathway of plumbagin/BCDs were examined.

2. Materials and Methods

2.1. Molecular Structure Construction

All calculations were performed using GaussView 6.0 and Gaussian 16 software packages [12].
The crystal structure of plumbagin, BCD, MBCD, and HPBCD molecules were downloaded from Cambridge
Crystallographic Data Centre [13] with the Cambridge Structural Database (CSD) Entry: PVVAQS01 [14],
BCDEXD03 [15], BOYFOK04 [16], and KOYYUS [17], respectively (Figures 1 and 2). Hydrogen atoms were
added into the structures, and then fully optimized by the semi-empirical quantum mechanical PM6 and
PM7 methods. The polarizable continuum model (PCM) [18] was used to model solvation effects for water
as the solvent. Sci. Pharm. 2018, x, x FOR PEER REVIEW  3 of 13 

 

 

Figure 1. Schematic representations of glucose unit and atomic numbering of β-cyclodextrin (BCD), 
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substituted by methyl groups on all of the glucose units in MBCD. In HPBCD, only the hydroxyl 
group at the R1 position of one glucose unit is substituted by a hydroxypropyl group. 
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2.2. Molecular Docking Calculation 

AutoDock 4.2.6 [19] with the Lamarckian genetic algorithm [20] was used to generate the 
possible conformations of plumbagin/BCDs inclusion complexes. AutoDock calculations were 
performed in four steps: (1) preparation of coordinate files using AutoDockTools, (2) pre-calculation 
of atomic affinities using AutoGrid, (3) docking of ligands using AutoDock, and (4) analysis of results 
using AutoDockTools.  

The first step was to prepare the guest (plumbagin) and host (BCDs) coordinate files to include 
the information needed by AutoGrid and AutoDock. The non-polar hydrogens were deleted and 
their charges were merged with the carbon atoms. The atom types were assigned, defining hydrogen 
bond acceptors and donors and aromatic and aliphatic carbon atoms. The rotatable bonds of the 
guests were defined while the hosts were kept fixed. AutoGrid was used to calculate the grid maps, 
one for each atom type present in the guest being docked. The systems were investigated in a three-
dimensional volume divided into many small grid boxes with a grid spacing of 0.375 Å. The grid 
center of the boxes were set at the center of the host molecules. The box has x × y × z dimensions of 
14.25 Å × 14.25 Å × 7.50 Å, 15.75 Å × 14.25 Å × 9.75 Å and 18.75 Å × 14.25 Å × 9.00 Å for BCD, MBCD, 
and HPBCD, respectively. AutoDock used the Lamarckian genetic algorithm to calculate the 

Figure 1. Schematic representations of glucose unit and atomic numbering of β-cyclodextrin (BCD),
dimethyl-β-cyclodextrin (MBCD) and hydroxypropyl-β-cyclodextrin (HPBCD). All R1 and R2 are
substituted by methyl groups on all of the glucose units in MBCD. In HPBCD, only the hydroxyl group
at the R1 position of one glucose unit is substituted by a hydroxypropyl group.
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Figure 2. Chemical structure of plumbagin (C11H8O3) and the dimensions of its minimized
molecular conformation.

2.2. Molecular Docking Calculation

AutoDock 4.2.6 [19] with the Lamarckian genetic algorithm [20] was used to generate the
possible conformations of plumbagin/BCDs inclusion complexes. AutoDock calculations were
performed in four steps: (1) preparation of coordinate files using AutoDockTools, (2) pre-calculation of
atomic affinities using AutoGrid, (3) docking of ligands using AutoDock, and (4) analysis of results
using AutoDockTools.

The first step was to prepare the guest (plumbagin) and host (BCDs) coordinate files to include
the information needed by AutoGrid and AutoDock. The non-polar hydrogens were deleted and their
charges were merged with the carbon atoms. The atom types were assigned, defining hydrogen bond
acceptors and donors and aromatic and aliphatic carbon atoms. The rotatable bonds of the guests were
defined while the hosts were kept fixed. AutoGrid was used to calculate the grid maps, one for each atom
type present in the guest being docked. The systems were investigated in a three-dimensional volume
divided into many small grid boxes with a grid spacing of 0.375 Å. The grid center of the boxes were set
at the center of the host molecules. The box has x × y × z dimensions of 14.25 Å × 14.25 Å × 7.50 Å,
15.75 Å × 14.25 Å × 9.75 Å and 18.75 Å × 14.25 Å × 9.00 Å for BCD, MBCD, and HPBCD, respectively.
AutoDock used the Lamarckian genetic algorithm to calculate the conformational states of a flexible guest,
using the grid maps generated by AutoGrid to evaluate the guest–host interaction at each point in the
docking simulation. One hundred docking calculations were performed on each guest–host complex.
The results were clustered to identify similar conformations based on all-atom root mean square deviation
within 2 Å. At the end of molecular docking calculations, AutoDockTools was used to perform a cluster
analysis of the different docked conformations. The lowest energy representative docked conformation
from molecular docking was selected for further full geometry optimization.

2.3. Complexation Energy Calculation

The selected docked conformation of plumbagin/BCD inclusion complexes was then fully
geometry optimized by the PM6 and PM7 methods. All atoms were allowed to move freely in
an aqueous environment. The most stable conformation of the plumbagin/BCD, plumbagin/MBCD,
and plumbagin/HPBCD inclusion complexes were selected by considering the complexation energy
(∆E) as being the difference between the heat of formation of the complex and the heat of formation of
the involved free molecules

∆E = EPL/BCD − (EPL + EBCD) (1)

where EPL/BCD, EPL, and EBCD represent the heat of formation of the complex, isolated plumbagin
molecule, and isolated BCD molecule, respectively.

3. Results and Discussion

3.1. Molecular Docking Calculation

Molecular docking was used to calculate the possibility of binding between a plumbagin molecule
complex with each BCD by fixing the host structure and allowing the guest to be flexible in the specified
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grid box. The calculations indicated two possible conformations of the 1:1 guest:host ratio for all
systems, as shown in Tables 1 and 2. In conformation-I, the hydroxyl phenolic group of plumbagin was
placed in the BCD cavity near the narrow-side of the host molecule. In the other model, conformation-II,
the methyl quinone group of plumbagin was placed in the BCD cavity near the narrow-side of the
host molecule, as illustrated in Figure 3.
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Figure 3. Schematic representation of two conformations of the inclusion complex. The secondary
hydroxyl groups are at the C2 and C3 positions of the BCD, which are located on the wide-side of the
truncated cone. The primary hydroxyl group is at the C6 position of the BCD, which is located at the
narrow-side of the truncated cone.

Table 1. The lowest and the average values of free energy of binding (∆G) of plumbagin/BCDs
inclusion complexes and the number of conformations in a cluster (frequency) obtained from molecular
docking calculations at 298.15 K. The starting geometry of the host and guest molecules were calculated
by the PM6 method.

Guest/Host Cluster Conformation Frequency (%)
∆G (kcal/mol)

Lowest Average

plumbagin/BCD 1 I 100 −6.21 −6.19
plumbagin/MBCD 1 I 85 −5.14 −5.13

2 II 15 −5.03 −5.02
plumbagin/HPBCD 1 II 48 −5.76 −5.75

2 I 2 −5.74 −5.73
3 I 50 −5.72 −5.71

Table 2. The lowest and the average values of free energy of binding (∆G) of plumbagin/BCDs
inclusion complexes and the number of conformations in a cluster (frequency) obtained from molecular
docking calculations at 298.15 K. The starting geometry of the host and guest molecules were calculated
by the PM7 method.

Guest/Host Cluster Conformation Frequency (%)
∆G (kcal/mol)

Lowest Average

plumbagin/BCD 1 I 61 −5.34 −5.26
2 I 2 −5.24 5.23
3 II 24 −5.22 −5.21
4 II 13 −5.20 −5.18

plumbagin/MBCD 1 I 100 −5.12 −5.12
plumbagin/HPBCD 1 II 100 −5.89 −5.87

Molecular docking results indicated that plumbagin/BCD and plumbagin/MBCD complexes
in conformation-I were favorable while the plumbagin/HPBCD complex preferred conformation-II,
using both of PM6 and PM7 minimized starting geometries. However, the rigidity of the host molecule
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in the docking calculations was not realistic. Therefore, the semi-empirical PM6 and PM7 methods
in the aqueous phase using polarizable continuum calculations, were used to further investigate the
molecular interactions of plumbagin with three different BCD hosts.

3.2. Complexation Energy Calculation

An inclusion complex of plumbagin with each of the BCD systems from docking calculations
was generated. Both conformation-I and conformation-II, were then fully optimized by the PM6 and
PM7 methods, which provide free motions for host and guest molecules in an aqueous environment.
From PM6 and PM7 results (Table 3), the heat of formation of the minimized structure of the complex
was always lower than that of the sum of the heat of formation of the isolated guest and host
molecules indicating the formation of a favorable complex in all models. The complexation energy (∆E),
according to Equation (1), is also shown in Table 3. The more negative the value of the complexation
energy, the more favorable the pathway of inclusion-complex formation. Table 3 shows the favorable
formation of a 1:1 guest:host ratio of plumbagin with three type of BCD in both possible conformations.

Table 3. Heat of formation energy (E) and complexation energy (∆E) of the minimized inclusion
complexes structures from PM6 and PM7 methods.

PM6 PM7

E (kcal/mol) ∆E (kcal/mol) E (kcal/mol) ∆E (kcal/mol)

Isolated molecule
Plumbagin −84.56 −87.09

BCD −1614.25 −1648.53
MBCD −1543.64 −1573.87
HPBCD −1659.94 −1701.90

Inclusion Complex
BCD-I −1704.99 −6.18 −1768.09 −32.47
BCD-II −1704.97 −6.15 −1765.72 −30.10

BCD-I–BCD-II −0.03 −2.37
MBCD-I −1636.23 −8.03 −1702.37 −41.41
MBCD-II −1640.97 −12.78 −1699.12 −38.17

MBCD-I–MBCD-II 4.75 −3.24
HPBCD-I −1753.57 −9.08 −1820.19 −31.21
HPBCD-II −1750.20 −5.70 −1829.73 −40.75

HPBCD-I–HPBCD-II −3.38 9.54

The values of complexation energy (∆E) from PM7 (−41.41 to −30.10 kcal/mol) were considerably
lower than PM6 (−12.78 to −5.70 kcal/mol). The PM7 method includes the description of the
dispersion interaction and hydrogen bonding [2] in the parameterization, and thus, should be suitable
for the description of noncovalent interactions in plumbagin/BCD complexes.

The difference in ∆E between the two conformations (conformation-I–conformation-II), is also
presented in Table 3. The obtained results indicated that plumbagin/BCD inclusion complexes prefer
conformation-I (BCD-I) in a water environment. For the inclusion complex formation of plumbagin
with modified β-cyclodextrins (MBCD and HPBCD), both conformation-I and conformation-II
are favorable.

Table 4 presents the distance of the intermolecular hydrogen bonds, which are found in PM6 and PM7
minimized inclusion complex structures. Three types of hydrogen bonds were established. The first one,
which is often found in inclusion complex systems, is between an ether-like anomeric oxygen atom of the
host molecule and a hydrogen atom of plumbagin’s hydroxyl group (O4(host) . . . H(OH-PL)). The second
one, found only in plumbagin/BCD complexes, is from an oxygen atom of plumbagin’s carbonyl group
and the hydrogen atom of the secondary hydroxyl group at O3 of BCD-I (O(CO-PL) . . . H(O3H-BCD)) and the
primary hydroxyl at O6 of BCD-II (O(CO-PL) . . . H(O6H-BCD)). The third one, is found only in HPBCD-II,
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between an oxygen atom of plumbagin’s hydroxyl group and the hydrogen atom of the secondary hydroxyl
at O2 of HPBCD (O(OH-PL) . . . H(O2H-HPBCD)). The molecular interactions of each host–guest system in
an aqueous environment are further discussed below.

Table 4. Distance of hydrogen bonds between plumbagin (PL) and three different types of
cyclodextrins (BCD, MBCD, and HPBCD) molecules, obtained from PM6 and PM7 minimized inclusion
complex structures.

Distance (Å)

PM6 BCD-I O4(BCD) . . . H(OH-PL) 2.05
O(CO-PL) . . . H(O3H-BCD) 2.93

PM6 BCD-II O4(BCD) . . . H(OH-PL) 1.92
O(CO-PL) . . . H(O6H-BCD) 2.95

PM6 MBCD-I O4(MBCD) . . . H(OH-PL) 2.11
PM6 HPBCD-I O4(HPBCD)n . . . H(OH-PL) 2.20

O4(HPBCD)n+1 . . . H(OH-PL) 2.97
PM6 HPBCD-II O4(HPBCD) . . . H(OH-PL) 3.07

O(OH-PL) . . . H(O2H-HPBCD) 2.09
PM7 BCD-II O4(BCD)n . . . H(OH-PL) 2.60

O4(BCD)n+1 . . . H(OH-PL) 2.60
PM7 HPBCD-I O4(HPBCD . . . H(OH-PL) 2.46
PM7 HPBCD-II O4(HPBCD) . . . H(OH-PL) 2.62

3.3. Plumbagin/β-cyclodextrin Inclusion Complex

Two conformations of a plumbagin/BCD inclusion complex can be formed in an aqueous
environment, as shown in Figure 4. The intermolecular hydrogen bonds between plumbagin and BCD
are depicted in Figure 5. BCD-I has a 0.03 and 2.37 kcal/mol lower complexation energy from the PM6
and PM7 methods, respectively, than BCD-II. The minimized plumbagin/BCD conformations obtained
from the two methods were similar. However, in BCD-I from the PM7 calculation, the plumbagin
molecule dipped deeper into the BCD cavity than the structure from the PM6 calculation. This occurred
due to the hydrogen bond between the oxygen atom of plumbagin’s carbonyl group and the hydrogen
atom of the secondary hydroxyl group at O3 of BCD-I (O(CO-PL)···H(O3H-BCD)), as shown in Figure 5a.
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Figure 4. Energy-minimized structure of the 1:1 plumbagin/BCD complexes in an aqueous
environment using polarizable continuum model (PCM). BCD is presented as a line model with
a surface, with a probe radius of 1.4 Å. The plumbagin molecule is presented as a stick model.
(a) plumbagin/BCD conformation-I obtained from PM6 method, (b) plumbagin/BCD conformation-II
obtained from PM6 method, (c) plumbagin/BCD conformation-I obtained from PM7 method and
(d) plumbagin/BCD conformation-II obtained from PM7 method.
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3.4. Plumbagin/Dimethyl-β-cyclodextrin Inclusion Complex

The plumbagin molecule is located near the wide-side of the MBCD molecule in all complex
conformations, as shown in Figures 6 and 7. These occurred due to the presence of methyl groups at the
primary hydroxyl group of all glucose units (C6 position), condensing the cavity near the narrow-side
of MBCD. In MBCD-I, without the steric hindrance from the guest molecule, all seven methoxy groups
at the C6 position can be accommodated. After insertion of a plumbagin molecule in MBCD-II, two of
the methoxy groups at the C6 position of MBCD move away from the cavity due to the presence of the
methyl group of the plumbagin molecule, located at the narrow-side of MBCD, as seen in Figure 6b,d.
According to the steric and electronic hindrances, plumbagin should enter into MBCD at the wide side
to form the inclusion complexes MBCD-I and MBCD-II. The plumbagin/MBCD inclusion complex
structures are very complicated. Using the same initial starting geometry, the energy-minimized
conformations obtained from the PM6 and PM7 calculations were altered.
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with a surface, with a probe radius of 1.4 Å. The plumbagin molecule is presented as a stick
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method and (d) plumbagin/MBCD conformation-II obtained from PM7 method.
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Figure 7. Hydrogen bonds in 1:1 plumbagin/MBCD complexes. (a) plumbagin/MBCD conformation-I
obtained from PM6 method, (b) plumbagin/MBCD conformation-II obtained from PM6 method,
(c) plumbagin/MBCD conformation-I obtained from PM7 method and (d) plumbagin/MBCD
conformation-II obtained from PM7 method.
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3.5. Plumbagin/Hydroxypropyl-β-cyclodextrin Inclusion Complex

The inclusion complex of plumbagin and HPBCD in conformation-I and conformation-II were
stabilized in a water environment, as shown in Figures 8 and 9. The presence of the hydroxypropyl group
at the C2 position on a glucose unit in HPBCD enlarges the width of the wide-side. The energy-minimized
structures of HPBCD-I from the PM6 and PM7 methods were similar. The hydroxypropyl group of
HPBCD lined up in the parallel direction with the methyl group of the plumbagin molecule. The guest
molecule is located inside the HPBCD’s cavity with an H-bond between the hydrogen atom of plumbagin’s
hydroxy group and the ether-like anomeric oxygen atom of HPBCD.

PM6 and PM7 calculations yield different HPBCD-II energy-minimized structures in a water
environment. In HPBCD-II, for the PM6 calculation, the guest molecule is located near the wide-side of
HPBCD (Figure 8b), due to the H-bond which formed between the hydroxyl group of plumbagin and
the secondary hydroxyl group at O2 of HPBCD (O(OH-PL) . . . H(O2H-HPBCD)), as mentioned in Table 4
and depicted in Figure 9b. Therefore, the guest molecule could not go deeper inside the HPBCD’s
cavity, yielding HPBCD-I as the preferable complex with a lower complexation energy (3.38 kcal/mol)
than HPBCD-II in the PM6 calculations. In the PM7 calculations, HPBCD-II was more favorable with
a lower complexation energy (9.54 kcal/mol) than HPBCD-I. The methyl part of the hydroxypropyl
group substituent falls into the HPBCD’s cavity and pushes the plumbagin molecule deeper inside the
cavity due to the hydrophobic interaction.
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Figure 8. Energy-minimized structure of the 1:1 plumbagin/HPBCD complexes in an aqueous
environment using polarizable continuum model (PCM). HPBCD is presented as a line model
with a surface, with a probe radius of 1.4 Å. The plumbagin molecule is presented as a stick
model. (a) plumbagin/HPBCD conformation-I obtained from PM6 method, (b) plumbagin/HPBCD
conformation-II obtained from PM6 method, (c) plumbagin/HPBCD conformation-I obtained from
PM7 method and (d) plumbagin/HPBCD conformation-II obtained from PM7 method.
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conformation-II obtained from PM7 method.

4. Conclusions

The complexation energy values of each system obtained by the PM7 method are significantly
lower than those obtained by the PM6 method. The obtained results agree with the experimental data
for a 1:1 guest:host ratio of plumbagin with BCD and HPBCD inclusion complexes. We predict that
by using MBCD to increase the solubility and reduce the cytotoxicity of the plumbagin compound,
a 1:1 guest:host inclusion complex can be produced. Our results revealed two different binding modes
of the plumbagin molecule inside the BCD cavity. In conformation-I, the hydroxyl phenolic group of
plumbagin was placed in the BCD cavity near the narrow-side of the host molecule. In the other model,
conformation-II, the methyl quinone group of plumbagin was placed in the cavity of BCD near the
narrow-side of the host molecule. The intermolecular hydrogen bond, van der Waals, and hydrophobic
interactions play an important role in complexation process of plumbagin with BCDs.
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