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Abstract: In order to identify new regularities of the “structure–analgesic activity”
relationship in the series of 2,1-benzothiazine derivatives, the synthesis of methyl
4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate and a group of its analogs substituted in
the benzene moiety of the molecule, as well as their mono-and diammonium salts, was performed
with tris(hydroxymethyl)aminomethane. The algorithm was proposed; it allows for uniquely solving
the question of the nature of the substituent and its true position in the benzothiazine core based on the
complex use of NMR (1H and 13C) and mass spectrometry data. Using single-crystal X-ray diffraction
analysis it was proven that salt formation first passes through the cyclic sulfamide group and only
then through the 4-hydroxyl group, and is always accompanied by a significant conformational
rearrangement of the molecule. Based on the results of pharmacological tests it was found that
modification of the benzene moiety of the molecule can be used as a method for enhancing the
analgesic properties of the class of compounds studied. The presence of a substitute in position 7
is particularly effective, regardless of its nature. A comparative analysis of the analgesic activity of
the initial esters and their mono- and diammonium salts convincingly showed that the common
belief about a direct relationship between the solubility of a substance and the level of its biological
effect is not always true. As it turned out, increasing the solubility in water can lead to a variety of
consequences: From a significant increase in analgesia to its complete elimination. It was suggested
that the analgesic activity of the compounds studied is determined not by solubility, but by the
molecular conformations formed during their obtainment.
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1. Introduction

Methyl esters of numerous carboxylic acids are very common in wildlife. The flora of our planet
is especially rich in them. The purposes for which plants produce such compounds are very diverse
and sometimes not always clear. However, this did not prevent a person from successfully using
these gifts of nature for medicinal purposes since ancient times. For example, essential oils containing
large amounts of methyl benzoate (I, R = H, Figure 1), methyl anthranilate (I, R = NH2), methyl
salicylate (I, R = OH) or their chemically more complex derivatives have proven to be effective external
analgesics and anti-inflammatory agents [1–4]. Another methyl ester—cocaine—has long been known
to humans (Figure 1). If this natural substance did not have an extremely undesirable ability to cause
drug addiction, it could take a worthy place in the range of modern pain killers. The characteristic
property of cocaine, which is quite rare among analgesics, to cause a powerful surface local anesthesia
is very popular in such areas of medicine as nasal and lacrimal duct surgery [5].

Sci. Pharm. 2020, 88, x FOR PEER REVIEW 2 of 17 

 

1. Introduction 

Methyl esters of numerous carboxylic acids are very common in wildlife. The flora of our planet 
is especially rich in them. The purposes for which plants produce such compounds are very diverse 
and sometimes not always clear. However, this did not prevent a person from successfully using 
these gifts of nature for medicinal purposes since ancient times. For example, essential oils containing 
large amounts of methyl benzoate (I, R = H, Figure 1), methyl anthranilate (I, R = NH2), methyl 
salicylate (I, R = OH) or their chemically more complex derivatives have proven to be effective 
external analgesics and anti-inflammatory agents [1–4]. Another methyl ester—cocaine—has long 
been known to humans (Figure 1). If this natural substance did not have an extremely undesirable 
ability to cause drug addiction, it could take a worthy place in the range of modern pain killers. The 
characteristic property of cocaine, which is quite rare among analgesics, to cause a powerful surface 
local anesthesia is very popular in such areas of medicine as nasal and lacrimal duct surgery [5]. 

Methyl carboxylates are also widely represented in the list of synthetic pharmaceuticals [6,7]. 
They can be found in different pharmacological groups, including numbing agents: Local anesthetics 
carticaine and tolycaine, analgesic remifentanil (Figure 1) and others. Conducting a targeted search 
for new pain control agents in the series of derivatives of 4-hydroxy-2,2-dioxo-1H-2λ6,1-
benzothiazine-3-carboxylic acids, a high analgesic effect in methyl esters of general formula II was 
previously repeatedly noted [8]. It has been convincingly shown in numerous examples that the 
biological properties of esters II can be significantly affected by chemical modification of the R 
substituent at a cyclic nitrogen atom [8–11]. The bioisosteric replacement of a hydroxyl in position 4 
of these compounds on the 4-methyl group was studied in detail [12]. At the same time, an equally 
interesting and promising fragment of the substances studied—the benzene moiety of the 
benzothiazine bicycle—remained completely unaffected. We made an attempt to fill this gap in this 
study. 

COOMe

R

I

COOMeMe

Cocaine

Me

Me

Me

COOMe

Carticaine

Me

COOMe Me

Me

Tolycaine

Me

COOMe

COOMe

Remifentanil

OH

COOMe

R

II

N
S

O
O

O

N

N

N

H

N

O

O

O
N

N

H

O

N

HS

 
Figure 1. Natural and synthetic methyl esters with marked analgesic properties [1–11]. 
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Methyl carboxylates are also widely represented in the list of synthetic pharmaceuticals [6,7].
They can be found in different pharmacological groups, including numbing agents:
Local anesthetics carticaine and tolycaine, analgesic remifentanil (Figure 1) and others.
Conducting a targeted search for new pain control agents in the series of derivatives of
4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylic acids, a high analgesic effect in methyl
esters of general formula II was previously repeatedly noted [8]. It has been convincingly shown in
numerous examples that the biological properties of esters II can be significantly affected by chemical
modification of the R substituent at a cyclic nitrogen atom [8–11]. The bioisosteric replacement of a
hydroxyl in position 4 of these compounds on the 4-methyl group was studied in detail [12]. At the
same time, an equally interesting and promising fragment of the substances studied—the benzene
moiety of the benzothiazine bicycle—remained completely unaffected. We made an attempt to fill this
gap in this study.
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2. Materials and Methods

2.1. Chemistry

1Н-and 13C-NMR (proton and carbon nuclear magnetic resonance) spectra were obtained on a
Varian Mercury-400 (Varian Inc., Palo Alto, CA, USA) instrument (400 and 100 MHz, respectively) in
hexadeuterodimethyl sulfoxide (DMSO-d6) with tetramethylsilane as internal standard. The chemical
shift values were recorded on a δ scale and the coupling constants (J) in hertz. The following
abbreviations were used in reporting spectra: s = singlet, d = doublet, t = triplet. The electron
impact mass spectra (EI-MS) were recorded on a Varian 1200 L (Varian Inc., Walnut Creek, CA,
USA) mass spectrometer with complete scanning in the m/z range from 35 to 700 and direct sample
inlet. The electron impact ionization was at 70 eV. Melting points were determined in a capillary
using Electrothermal IA9100X1 (Bibby Scientific Limited, Stone, UK) digital melting point apparatus.
The elemental analysis was performed on a Euro Vector EA-3000 (Eurovector SPA, Redavalle, Italy)
microanalyzer. In the synthesis of methyl 4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylates
(4) described in this article, the commercial substituted 2-aminobenzoic acids (1) or their methyl esters
(2) of Aldrich company (St. Louis, MO, USA) were used.

2.2. General Procedure for the Synthesis of Methyl Anthranilates (2a–p)

To the solution of the corresponding anthranilic acid (1) (10.0 g) in anhydrous methyl alcohol
(30 mL), the concentrated sulfuric acid (10 mL) is carefully added, after that it is refluxed on a sand bath
at a temperature of 80 ◦C for 20 h. The reflux condenser is changed to a distillation one, and the excess
of methyl alcohol is removed from the reaction mixture at reduced pressure. First cold water (40 mL) is
added to the residue, then Na2CO3 to рН8. The isolated crystals of ester 2 are filtered, washed with
cold water and dried in the air. If ester 2 is released as an oily liquid, then one proceeds as follows:
The reaction mixture is treated with CH2Cl2 (3 × 20 mL). Organic extracts are combined, after that the
solvent is removed (at reduced pressure at the end). It is not necessary to dry organic extracts since
water residues are easily removed in the form of azeotrope with CH2Cl2.

In this way, methyl anthranilates (2) are obtained with yields of 85–92%. They are used in further
syntheses without additional purification. As a rule, after the isolation of esters 2, a certain amount of
the original anthranilic acids (1) remains in aqueous solutions of Na2CO3. Taking into account their
high cost it is advisable to acidify these solutions with HCl to pH ≈ 3, after that filter the precipitates of
acids (1), dry and use further as necessary.

2.3. General Procedure for the Synthesis of Methyl 4-Hydroxy-2,2-Dioxo-1H-2λ6,1-Benzothiazine-3-
Carboxylates (4a–p)

Methyl (chlorosulfonyl) acetate (1.90 g, 0.011 mol) is added dropwise, with stirring, to the solution
of the corresponding methyl anthranilate 2 (0.010 mol) and triethylamine (1.54 mL, 0.011 mol) in
CH2Cl2 (20 mL) and cooled (−5 to 0 ◦C). In 10 h, water (50 mL) is added to the reaction mixture; then it
is acidified to pH 4 with 1 N HCl and mixed thoroughly. The organic layer is separated, dried over
anhydrous CaCl2, and the solvent is distilled (at reduced pressure at the end). The resulting anilide 3
is subjected to heterocyclization without purification. The solution of sodium methylate in anhydrous
methanol (from metallic Sodium (0.69 g, 0.030 mol) and absolute methanol (20 mL)) is added and the
mixture is boiled and stored for 15 h at room temperature. The reaction mixture is diluted with cold
water and acidified with 1N HCl to pH 4. The solid ester 4 is filtered, separated, washed with water,
and dried in the air. It is crystallized from methanol. If there is a need to purify esters 4 with activated
charcoal, only their brands that do not contain impurities of iron salts should be used. Otherwise,
the final products acquire a stable yellow and even red color, which is further very difficult to get rid of.
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Methyl 4-Hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate (4a). The yield was 2.39 g (94%);
colorless crystals; melting point (mp) 189–191 ◦C (methanol); 1H-NMR (400 MHz, DMSO-d6): δ 12.23
(br. s, 2H, 4-OH + SO2NН), 7.94 (d, 1Н, J = 8.1 Hz, Н-5), 7.67 (t, 1Н, J = 7.6 Hz, Н-7), 7.26 (t, 1Н, J = 7.7
Hz, Н-6), 7.11 (d, 1Н, J = 8.3 Hz, Н-8), 3.90 (s, 3Н, OCH3). 13C-NMR (100 MHz, DMSO-d6): δ 167.3
(4-C-ОН), 166.3 (C=О), 140.9, 135.5, 126.9, 123.7, 119.1, 117.6, 105.4, 53.8 (ОCH3). Mass spectrum (MS)
(m/z, %): 255 [M]+ (60.4), 222 [M−CH3OH]+ (100). This was analytically calculated (Anal. Calcd.) for
C10H9NO5S: C, 47.06; H, 3.55; N, 5.49; S 12.56%. We found: C, 46.99; H, 3.50; N, 5.53; S 12.61%.

Methyl 6-Fluoro-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate (4b). The yield was 2.46 g (90%);
colorless crystals; m.p. 213–215 ◦C (methanol); 1H-NMR (400 MHz, DMSO-d6): δ 12.28 (br. s, 2H, 4-OH
+ SO2NН), 7.66 (dd, 1Н, 3JHF = 9.1 Hz, 4J = 2.6 Hz, Н-5), 7.55 (dd, 1Н, 3JHF = 9.7 Hz, J = 8.7 Hz, Н-7),
7.17 (dd, 1Н, J = 8.9 Hz, 4JHF 4.6 Hz, Н-8), 3.91 (s, 3Н, OCH3). 13C-NMR (100 MHz, DMSO-d6): δ 166.7
(4-C-OH), 166.1 (C=О), 158.0 (d, JC-F 239.8 Hz, C-6), 135.8, 123.2 (d, 2JC-F 23.6 Hz, C-5), 120.5 (d, 3JC-F

7.8 Hz, C-8), 117.3 (d, 3JC-F 7.9 Hz, C-4a), 112.3 (d, 2JC-F 24.6 Hz, C-7), 106.8 (C-3), 53.9 (OCH3). Mass
spectrum (MS) (m/z, %): 273 [MH]+ (62.1), 241 [M−CH3OH]+ (100), 121 (68.8), 95 (12.6). The Anal.
Calcd. was for C10H8FNO5S: C, 43.96; H, 2.95; N, 5.13; S 11.73%. We found: C, 44.05; H, 3.03; N, 5.06;
S 11.78%.

Methyl 7-Fluoro-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate (4c). The yield was 2.51 g (92%);
colorless crystals; m.p. 193–195 ◦C (methanol); 1H-NMR (400 MHz, DMSO-d6): δ 12.31 (br. s, 2H,
4-OH + SO2NН), 7.98 (dd, 1Н, J = 7.6 Hz, 4JHF = 6.6 Hz, Н-5), 7.10 (dd, 1Н, 3JHF = 8.7 Hz, J = 8.7 Hz,
Н-6), 6.89 (d, 1Н, 3JHF = 9.7 Hz, Н-8), 3.92 (s, 3Н, OCH3). 13C-NMR (100 MHz, DMSO-d6): δ 167.3
(4-C-OH), 164.8 (C=О), 152.4 (d, JC-F 241.5 Hz, C-7), 141.4 (d, 3JC-F 12.9 Hz, C-8a), 130.2 (d, 3JC-F 11.3
Hz, C-5), 112.5, 111.5 (d, 2JC–F 22.9 Hz, C-6), 105.0 (C-3), 104.6 (d, 2JC-F 25.6 Hz, C-8), 53.9 (OCH3). Mass
spectrum (MS) (m/z, %): 273 [M]+ (37.4), 241 [M−CH3OH]+ (100), 149 (26.4). The Anal. Calcd. was for
C10H8FNO5S: C, 43.96; H, 2.95; N, 5.13; S 11.73%. We found: C, 44.02; H, 2.92; N, 5.05; S 11.67%.

Methyl 6,7-Difluoro-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate (4d). The yield was 2.53 g
(87%); colorless crystals; m.p. 206–208 ◦C (methanol); 1H-NMR (400 MHz, DMSO-d6): δ 11.10 (br. s,
2H, 4-OH + SO2NН), 7.91 (dd, 1Н, 3JHF = 9.3 Hz, 4JHF = 9.0 Hz, Н-5), 7.14 (dd, 1Н, 3JHF = 6.9 Hz, 4JHF

= 6.8 Hz, Н-8), 3.92 (s, 3Н, OCH3). 13C-NMR (100 MHz, DMSO-d6): δ 166.6 (4-C-OH), 165.7 (C=О),
153.9 (d, JC-F 253.1 Hz, C-6), 146.3 (d, JC-F 246.8 Hz, C-7), 137.0, 115.4 (d, 2JC-F 19.8 Hz, C-5), 112.7, 107.5
(d, 2JC-F 20.4 Hz, C-8), 106.1 (C-3), 53.9 (OCH3). Mass spectrum (MS) (m/z, %): 291 [M]+ (43.5), 259
[M−CH3OH]+ (100), 155 (39.4), 139 (49.3), 112 (15.6). The Anal. Calcd. was for C10H7F2NO5S: C, 41.24;
H, 2.42; N, 4.81; S 11.01%. We found: C, 41.31; H, 2.48; N, 4.73; S 10.93%.

Methyl 5-Chloro-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate (4e). The yield was 2.43 g (84%);
colorless crystals; m.p. 191–193 ◦C (methanol); 1H-NMR (400 MHz, DMSO-d6): δ 12.37 (br. s, 2H, 4-OH
+ SO2NН), 7.58 (t, 1Н, J = 7.9 Hz, Н-7), 7.34 (d, 1Н, J = 7.5 Hz, Н-6), 7.13 (d, 1Н, J = 7.5 Hz, Н-8), 3.93 (s,
3Н, OCH3). 13C-NMR (100 MHz, DMSO-d6): δ 168.7 (4-C-OH), 167.4 (C=О), 141.6, 135.2, 133.5, 127.2,
118.8, 118.3, 107.3 (C-3), 54.1 (OCH3). Mass spectrum (MS) (m/z, %): 289/291 [M]+ (40.7/11.5), 257/259
[M−CH3OH]+ (100/32.0), 153/155 (81.3/33.0), 126 (38.1). The Anal. Calcd. was for C10H8ClNO5S: C,
41.46; H, 2.78; N, 4.83; S 11.07%. We found: C, 41.54; H, 2.83; N, 4.75; S 10.98%.

Methyl 6-Chloro-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate (4f). The yield was 2.57 g (89%);
colorless crystals; m.p. 215–217 ◦C (methanol); 1H-NMR (400 MHz, DMSO-d6): δ 12.15 (br. s, 2H, 4-OH
+ SO2NН), 7.89 (s, Н-5), 7.71 (d, 1Н, J = 8.4 Hz, Н-7), 7.17 (d, 1Н, J = 8.8 Hz, Н-6), 3.93 (s, 3Н, OCH3).
13C-NMR (100 MHz, DMSO-d6): δ 166.6 (4-C-OH), 165.8 (C=О), 138.1, 135.2, 127.4, 125.9, 120.5, 117.2,
106.7 (C-3), 53.9 (OCH3). Mass spectrum (MS) (m/z, %): 289/291 [M]+ (37.1/11.7), 257/259 [M−CH3OH]+

(100/36.6), 137 (25.3). The Anal. Calcd. was for C10H8ClNO5S: C, 41.46; H, 2.78; N, 4.83; S 11.07%.
We found: C, 41.51; H, 2.85; N, 4.87; S 11.00%.

Methyl 7-Chloro-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate (4g). The yield was 2.69 g (93%);
colorless crystals; m.p. 230–232 ◦C (methanol); 1H-NMR (400 MHz, DMSO-d6): δ 12.20 (br. s, 2H,
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4-OH + SO2NН), 7.95 (d, 1Н, J = 8.7 Hz, Н-5), 7.32 (d, 1Н, J = 9.0 Hz, Н-6), 7.17 (s, 1Н, Н-8), 3.94 (s,
3Н, OCH3). 13C-NMR (100 MHz, DMSO-d6): δ 167.0 (4-C-OH), 166.6 (C=О), 140.3, 139.8, 128.9, 123.7,
117.7, 114.6, 105.9 (C-3), 53.9 (OCH3). Mass spectrum (MS) (m/z, %): 289/291 [M]+ (37.2/10.2), 257/259
[M−CH3OH]+ (100/28.9), 165 (13.1). The Anal. Calcd. was for C10H8ClNO5S: C, 41.46; H, 2.78; N, 4.83;
S 11.07%. We found: C, 41.40; H, 2.72; N, 4.77; S 11.13%.

Methyl 8-Chloro-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate (4h). The yield was 2.54 g
(88%); colorless crystals; m.p. 247–249 ◦C (methanol); 1H-NMR (400 MHz, DMSO-d6): δ 11.35 (br. s,
2H, 4-OH + SO2NН), 7.95 (d, 1Н, J = 7.9 Hz, Н-5), 7.84 (d, 1Н, J = 7.8 Hz, Н-7), 7.36 (t, 1Н, J = 8.0
Hz, Н-6), 3.95 (s, 3Н, OCH3). 13C-NMR (100 MHz, DMSO-d6): δ 166.7 (4-C-OH), 166.5 (C=О), 135.9,
135.2, 126.0, 125.3, 124.9, 120.4, 107.7 (C-3), 53.9 (OCH3). Mass spectrum (MS) (m/z, %): 289/291 [M]+

(40.0/11.1), 257/259 [M−CH3OH]+ (100/32.6), 137 (18.7). The Anal. Calcd. was for C10H8ClNO5S: C,
41.46; H, 2.78; N, 4.83; S 11.07%. We found: C, 41.54; H, 2.83; N, 4.75; S 10.98%.

Methyl 6-Bromo-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate (4i). The yield was 3.13 g (94%);
colorless crystals; m.p. 240–242 ◦C (methanol); 1H-NMR (400 MHz, DMSO-d6): δ 11.60 (br. s, 2H, 4-OH
+ SO2NН), 7.98 (s, 1Н, Н-5), 7.79 (d, 1Н, J = 8.1 Hz, Н-7), 7.08 (d, 1Н, J = 8.7 Hz, Н-8), 3.91 (s, 3Н, OCH3).
13C-NMR (100 MHz, DMSO-d6): δ 166.6 (4-C-OH), 165.8 (C=О), 138.4, 137.9, 128.8, 120.7, 117.5, 115.0,
106.6 (C-3), 53.9 (OCH3). Mass spectrum (MS) (m/z, %): 333/335 [M]+ (37.4/36.1), 301/303 [M−CH3OH]+

(92.0/100), 197/199 (43.8/41.5). The Anal. Calcd. was for C10H8BrNO5S: C, 35.95; H, 2.41; N, 4.19; S
9.60%. We found: C, 36.04; H, 2.49; N, 4.11; S 9.52%.

Methyl 7-Bromo-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate (4j). The yield was 3.06 g (92%);
colorless crystals; m.p. 248–250 ◦C (methanol); 1H-NMR (400 MHz, DMSO-d6): δ 12.04 (br. s, 2H, 4-OH
+ SO2NН), 7.83 (d, 1Н, J = 8.7 Hz, Н-5), 7.43 (d, 1Н, J = 8.7 Hz, Н-6), 7.29 (s, 1Н, Н-8), 3.91 (s, 3Н, OCH3).
13C-NMR (100 MHz, DMSO-d6): δ 166.9 (4-C-OH), 166.7 (C=О), 140.3, 128.8, 128.7, 126.5, 120.6, 114.9,
106.1 (C-3), 53.9 (OCH3). Mass spectrum (MS) (m/z, %): 333/335 [M]+ (44.0/46.6), 301/303 [M−CH3OH]+

(93.3/100), 197/199 (25.2/20.4). The Anal. Calcd. was for C10H8BrNO5S: C, 35.95; H, 2.41; N, 4.19; S
9.60%. We found: C, 36.01; H, 2.46; N, 4.24; S 9.54%.

Methyl 6,8-Dibromo-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate (4k). The yield was 2.32 g
(81%); colorless crystals; m.p. 157–159 ◦C (methanol); 1H-NMR (400 MHz, DMSO-d6): δ 12.00 (br. s,
2H, 4-OH + SO2NН), 7.87 (s, 1Н, Н-5), 7.85 (s, Н-7), 3.85 (s, 3Н, OCH3). 13C-NMR (100 MHz, DMSO-d6):
δ 166.9 (4-C-OH), 166.2 (C=О), 147.6, 139.5, 132.1, 130.0, 112.4, 111.3, 105.6 (C-3), 53.0 (OCH3). Mass
spectrum (MS) (m/z, %): 411/413/415 [M]+ (4.1/7.1/3.3), 379/381/383 [M−CH3OH]+ (14.1/27.2/16.4),
307/309/311 (41.4/88.7/43.6), 275/277/279 (50.1/100/53.8). The Anal. Calcd. was for C10H7Br2NO5S: C,
29.08; H, 1.71; N, 3.39; S 7.76%. We found: C, 29.15; H, 1.80; N, 3.32; S 7.68%.

Methyl 4-Hydroxy-6-iodo-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate (4l). The yield was 3.39 g (89%);
colorless crystals; m.p. 208–210 ◦C (methanol); 1H-NMR (400 MHz, DMSO-d6): δ 12.27 (br. s, 2H, 4-OH
+ SO2NН), 8.15 (s, 1Н, Н-5), 7.92 (d, 1Н, J = 7.4 Hz, Н-7), 6.93 (d, 1Н, J = 8.6 Hz, Н-8), 3.90 (s, 3Н, OCH3).
13C-NMR (100 MHz, DMSO-d6): δ 166.7 (4-C-OH), 165.9 (C=О), 150.8, 143.4, 139.6, 138.8, 134.6, 120.6,
106.4 (C-3), 53.9 (OCH3). Mass spectrum (MS) (m/z, %): 381 [M]+ (2.5), 349 [M−CH3OH]+ (100). The
Anal. Calcd. was for C10H8INO5S: C, 31.51; H, 2.12; N, 3.67; S 8.41%. We found: C, 31.44; H, 2.06; N,
3.60; S 8.35%.

Methyl 4-Hydroxy-6-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate (4m). The yield was 2.50 g
(93%); colorless crystals; m.p. 200–202 ◦C (methanol); 1H-NMR (400 MHz, DMSO-d6): δ 12.30 (br. s,
2H, 4-OH + SO2NН), 7.72 (s, 1Н, Н-5), 7.47 (d, 1Н, J = 7.6 Hz, Н-7), 7.06 (d, 1Н, J = 8.0 Hz, Н-8), 3.94 (s,
3Н, OCH3), 2.34 (s, 3Н, 6-CH3). 13C-NMR (100 MHz, DMSO-d6): δ 168.1 (4-C-OH), 167.6 (C=О), 137.2,
136.5, 132.7, 126.3, 118.6, 115.7, 105.7 (C-3), 53.8 (OCH3), 20.9 (6-CH3). Mass spectrum (MS) (m/z, %):
269 [M]+ (36.6), 237 [M−CH3OH]+ (100), 133 (28.1). The Anal. Calcd. was for C11H11NO5S: C, 49.07;
H, 4.12; N, 5.20; S 11.91%. We found: C, 49.15; H, 4.20; N, 5.14; S 11.83%.
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Methyl 4-Hydroxy-6-methoxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate (4n). The yield was 2.59 g
(91%); colorless crystals; m.p. 207–209 ◦C (methanol); 1H-NMR (400 MHz, DMSO-d6): δ 12.03 (br.
s, 1H, NН), 7.36 (s, 1Н, Н-5), 7.31 (d, 1Н, J = 8.8 Hz, Н-7), 7.12 (d, 1Н, J = 8.8 Hz, Н-8), 3.94 (s, 3Н,
OCH3), 3.81 (s, 3Н, 6-OCH3). 13C-NMR (100 MHz, DMSO-d6): δ 167.6 (4-C-OH), 167.5 (C=О), 155.5,
133.1, 123.8, 120.7, 117.1, 108.7, 106.1 (C-3), 56.3 (6-OCH3), 53.8 (OCH3). Mass spectrum (MS) (m/z, %):
285 [M]+ (46.4), 253 [M−CH3OH]+ (76.0), 162 (32.6), 134 (100), 106 (37.5). The Anal. Calcd. was for
C11H11NO6S: C, 46.31; H, 3.89; N, 4.91; S 11.24%. We found: C, 46.24; H, 3.95; N, 4.98; S 11.15%.

Methyl 4-Hydroxy-7-methoxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate (4o). The yield was 2.56 g
(90%); colorless crystals; m.p. 215–217 ◦C (methanol); 1H-NMR (400 MHz, DMSO-d6): δ 12.44 (br. s,
1H, NН), 7.86 (d, 1Н, J = 9.1 Hz, Н-5), 6.86 (d, 1Н, J = 8.9 Hz, Н-6), 6.60 (s, 1Н, Н-8), 3.93 (s, 3Н, OCH3),
3.85 (s, 3Н, 7-OCH3). 13C-NMR (100 MHz, DMSO-d6): δ 168.4 (4-C-OH), 168.0 (C=О), 165.1, 141.7,
128.9, 111.6, 108.6, 103.1, 101.6 (C-3), 56.5 (7-OCH3), 53.7 (OCH3). Mass spectrum (MS) (m/z, %): 285
[M]+ (34.5), 253 [M−CH3OH]+ (100), 162 (10.8). The Anal. Calcd. was for C11H11NO6S: C, 46.31; H,
3.89; N, 4.91; S 11.24%. We found: C, 46.25; H, 3.87; N, 4.86; S 11.17%.

Methyl 6,7-Dimethoxy-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate (4p). The yield was 2.93 g
(93%); colorless crystals; m.p. 266–268 ◦C (methanol); 1H-NMR (400 MHz, DMSO-d6): δ 12.28 (br. s,
1H, NН), 7.27 (s, 1Н, Н-5), 6.63 (s, 1Н, Н-8), 3.90 (s, 3Н, OCH3), 3.85 (s, 3Н, OCH3), 3.79 (s, 3Н, OCH3).
13C-NMR (100 MHz, DMSO-d6): δ 168.5 (4-C-OH), 168.2 (C=О), 155.8, 145.8, 135.7, 107.7, 107.2, 103.1,
101.3 (C-3), 56.9 (OCH3), 56.7 (OCH3), 53.7 (OCH3). Mass spectrum (MS) (m/z, %): 315 [M]+ (51.1), 283
[M−CH3OH]+ (100), 164 (35.8). The Anal. Calcd. was for C12H13NO7S: C, 45.71; H, 4.16; N, 4.44; S
10.17%. We found: C, 45.63; H, 4.08; N, 4.50; S 10.11%.

2.4. General Procedure for the Synthesis of Mono-and Disubstituted Salts of Methyl 4-Hydroxy-2,2-
Dioxo-1H-2λ6,1-Benzothiazine-3-Carboxylates and Tris(hydroxymethyl)aminomethane (5–6)

In a 25 mL glass bottle, 0.002 mol (accurate weight) of the corresponding methyl
4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate (4a–p) and 0.2423 g (0.002 mol) (accurate
weight) of tris(hydroxymethyl)aminomethane are placed. Aqueous solutions of salts 5a–p, having a
yellow color, are prepared immediately before the pharmacological tests. To do this, 20 mL of sterile
water is added to each bottle and mixed thoroughly.

Disubstituted salts 6a–p are prepared in a similar way using a double amount of
tris(hydroxymethyl)aminomethane in relation to esters 4a–p.

Monosubstituted Salt of Methyl 4-Hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate and
Tris(hydroxymethyl)aminomethane monohydrate (5a). The aqueous solution of salt 5a (see the previous
example) is left at room temperature for slow evaporation of the solvent. Gradually, crystals of the
monohydrate of salt 5a are formed in the solution. They are filtered and used for X-ray diffraction
studies. Yellow crystals; m.p. 92–94 ◦C.

2.5. X-ray Structural Analysis of Methyl 4-Hydroxy-2,2-Dioxo-1H-2λ6,1-Benzothiazine-3-Carboxylate (4a)

The crystals of ester 4a (C10H9NO5S) were monoclinic, colorless. At 20 ◦C: a 9.733 (2), b 7.611 (2),
c 15.345 (3) Å; β 103.57 (2)◦; V 1104.9 (4) Å3, Z 4, space group P21/c, dcalc 1.534 g/cm3, µ(MoKα) 0.302
mm−1, F(000) 528. The unit cell parameters and intensities of 10,193 reflections (3203 independent
reflections, Rint = 0.113) were measured on an Xcalibur-3 diffractometer (Oxford Diffraction Limited,
Oxford, UK) using MoKα radiation, a charge coupled device (CCD) detector, graphite monochromator
and ω-scanning to 2θmax 60◦. The structure was solved by the direct method using the SHELXTL
program package (Institute of Inorganic Chemistry, Göttingen, Germany) [13]. The positions of the
hydrogen atoms were found from the electron density difference map and refined using isotropic
approximation. The structure was refined using F2 full-matrix least-squares analysis in the anisotropic
approximation for non-hydrogen atoms to wR2 0.125 for 3129 reflections (R1 0.047 for 1988 reflections
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with F > 4σ (F), S 0.955). The final atomic coordinates, and crystallographic data for molecule of ester
4a have been deposited to with the Cambridge Crystallographic Data Centre, 12 Union Road, CB2 1EZ,
UK (Fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk) and are available on request quoting the
deposition numbers CCDC 1981599 [14].

2.6. X-ray Structural Analysis of Mono-Substituted Salt of Methyl 4-Hydroxy-2,2-Dioxo-1H-2λ6,
1-Benzothiazine-3-Carboxylate and Tris(hydroxymethyl)aminomethane Monohydrate (5a)

The crystals of salt 5a (C10H8N-O5S · C4H12N+O3·H2O) were orthorhombic, yellow. At 20 ◦C:
a 23.2983 (8), b 6.8659 (2), c 21.3660 (7) Å; V 3417.8(2) Å3, Z 2, space group Pca21, dcalc 1.533 g/cm3,
µ(MoKα) 0.243 mm−1, F(000) 1664. The unit cell parameters and intensities of 58,839 reflections (6010
independent reflections, Rint = 0.96) were measured on an Xcalibur-3 diffractometer (Oxford Diffraction
Limited) using MoKα radiation, a CCD detector, graphite monochromator, andω-scanning to 2θmax

50◦. The structure was solved by the direct method using the SHELXTL program package (Institute of
Inorganic Chemistry) [13]. The positions of the hydrogen atoms were found from the electron density
difference map and refined using the “rider” model with Uiso = nUeq for the non-hydrogen atom
bonded to a given hydrogen atom (n = 1.5 for protonated amino groups, hydroxyl groups, methyl
groups, and n = 1.2 for the other hydrogen atoms). The structure was refined using F2 full-matrix
least-squares analysis in the anisotropic approximation for non-hydrogen atoms to wR2 0.276 for 5952
reflections (R1 0.111 for 4791 reflections with F > 4σ (F), S 1.140). The final atomic coordinates and
crystallographic data for molecule of salt 5a were deposited with the Cambridge Crystallographic Data
Centre, 12 Union Road, CB2 1EZ, UK (Fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk) and are
available on request quoting the deposition numbers CCDC 1981600 [15].

2.7. Pharmacology

Analgesic Test

All biological experiments were carried out in full accord with the European Convention on
the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes and the
Ukrainian Law No. 3447-IV “On protection of animals from severe treatment” [16] (project ID 3410U14,
approved 15 October 2015).

In this study, male Wistar rats (190–220 g) were obtained from vivarium of the Institute of
Pharmacology and Toxicology (Kyiv, Ukraine). All animals received standard food for rodents and
water. They were acclimatized within 10 days. One day before the experiments, the animals were
transferred to the scientific laboratory for adaptation. All the time they were maintained at 20–22 ◦C,
40–60% relative humidity and 12/12 h (light/dark) cycle.

The analgesic properties of esters 4 and salts 5, 6 were studied compared to Meloxicam (Boehringer
Ingelheim, Ingelheim am Rhein, Germany) and Xefocam (Takeda Austria GmbH, Linz, Austria), being
similar by the structure on the model of the thermal tail-flick procedure in white rats (Tail Immersion
Test) [17], allowing for judgement to be made about the central effect on the nociceptive system. For this
purpose, the rat’s tail tip was immersed in a water bath heated to 54 ◦C, and the latent period of the
tail withdrawal (immersion) expressed in seconds was determined. The analgesic effect (in %) was
assessed by the change of the latent period in 1 h after introduction of the test substances and reference
drugs compared to the baseline level taken as a control. Ten experimental animals were involved to
obtain statistically reliable results (the significance level of the confidence interval accepted in this
work was p ≤ 0.05) in testing each of esters 4, salts 5, 6 and reference drugs. Esters 4a–p and Meloxicam
were introduced orally in the form of fine aqueous suspensions stabilized with Tween-80 in the dose of
20 mg/kg. Salts 5a–p, 6a–p and Xefocam were introduced orally in the form of aqueous solutions in
the dose of 20 mg/kg (in terms of the active ingredient).
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3. Results and Discussion

3.1. Chemistry

Methyl 4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylates theoretically substituted in
the benzene moiety of the molecule can be obtained using two synthetic schemes. The fundamental
difference between them is at what stage the corresponding substituent is introduced—before the
formation of the benzothiazine bicycle or after it. At first glance, the chemical modification of
ready-made benzothiazine looks more attractive. However, upon closer analysis, it turns out that
the practical implementation of such a path is fraught with very serious difficulties. The presence
of several potential reaction centers in a single molecule at once significantly complicates all sorts
of chemical transformations with similar objects—whether it is alkylation, halogenation, nitration,
etc. As a rule, such reactions do not always take place unambiguously and in the right direction (see,
for example, alkylation of 4-hydroxy-2,2-dioxo-2,1-benzothiazine [18] or bromination of structurally
similar 4-hydroxy-2-oxo-quinolines [19–21]). As a result, mixtures of isomeric products are formed,
and they require not only labor-intensive separation, but also an unquestionable determination of the
structure of each of their components.

Taking these factors into account we decided to use a simpler and more reliable
scheme, that is, to make a synthesis of commercially available anthranilic acids (1) or methyl
anthranilates (2) with already known substituents and their exact location in the benzene core
(Scheme 1). Sulfonylation with methyl chlorosulfonyl acetate and the subsequent treatment
of intermediate anilides 3 with sodium methylate solution in anhydrous methanol (other
alcohols should not be used due to easy partial transesterification [8]) gives the target methyl
4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylates (4a–p) with high yields and purity.
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After crystallization from methanol, all esters 4a–p synthesized are colorless crystalline substances
with clear melting points (see Section 2). At room temperature, they are readily soluble in DMSO,
soluble in ethyl acetate, slightly soluble in alcohols and insoluble in hexane and water.

Complex application of NMR spectroscopy of NMR 1Нand 13C allows for confirming the structure
of the esters 4a–p obtained with a high level of confidence. At the same time, it should be taken into
account the fact that in all 1H-NMR spectra, without exception, aromatic protons are manifested by
well-resolved signals of multiplicity corresponding to the chemical surrounding and intensity of 1H
each in the following order: H-5, H-7, H-6 and H-8 (in the direction from a weak field to a strong
one). It is clear that, in the substituted esters 4b–p, one or two of these signals are missing, and the
remaining ones have slightly different values of chemical shifts and multiplicity, but their sequence
remains unchanged. Using this simple algorithm, the position of the substituent in the moiety of
the molecule can be easily determined and thus isomeric products can be confidently distinguished.
For example, 5-Cl-ester 4e and its 8-Cl-substituted isomer 4h in the aromatic region of NMR 1Нspectra
give a similar picture of one triplet and two doublets (Figure 2).Sci. Pharm. 2020, 88, x FOR PEER REVIEW 9 of 17 
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Theoretically, such a set of signals does not contradict any of the structures mentioned. However,
the order in which they follow each other: t → d → d and d → d → t, according to the above
algorithm, uniquely indicates the presence of a substituent in position 5 and 8, respectively. A similar
approach to the analysis of externally similar NMR 1Нspectra of 6- and 7-Cl-substituted esters 4f and
4g (Figure 2), their bromine-(4i,j) or methoxy-substituted (4n,o) analogs allows us to reliably identify
each of the isomers.

In general, NMR spectroscopy (1Нand 13C) gives excellent and unambiguous results
when determining the structure of fluoro-, methyl- and methoxy-substituted methyl
4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylates (4). In the case of chlorine-, bromine- and
iodine-substituted analogs, only the position of the substituents in the benzene moiety of the molecule
is reliably determined, but not their nature. The cause is quite simple—atoms of chlorine, bromine
and iodine do not have a magnetic moment, and do not affect the multiplicity of signals of carbon
atoms bound to them and neighboring protons at all. Therefore, conventional NMR spectroscopy is
not able to confidently distinguish between the same type of chlorine, bromine and iodine-substituted
derivatives (for example, esters 4f, 4i and 4l). Of course, one can try to apply special NMR techniques
(NOESY, HMQC, HMBC, etc.), but it is much easier and more reliable to solve such analytical problems
using mass spectrometry.

In fact, all esters 4a–p appeared to be rather stable substances capable of producing
medium-intensive peaks of molecular ions in the mass spectra registered during electron impact
ionization. In this way, another characteristic of each test sample—its molecular weight—is determined.
The information is certainly important and useful, especially for identification of structurally similar
chlorine-, bromine- and iodine-substituted esters 4f, 4i and 4l.

The mass spectrometric behavior of all methyl 4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylates
(4a–p) obtained by us was very similar regardless of the substituents in the benzene moiety of the
molecule. In all cases, the initially formed molecular ions undergo the primary ketene-type destruction,
which proceeds with the typical CO-OAlk bond break for lower alkyl esters of carboxylic acids
(Scheme 2).
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Unfortunately, the same behavior is not always favorable for solving structural problems.
In particular, the mass spectra of chlorine-substituted esters 4e–h (Scheme 2) are so similar even in
details (m/z values, multiplicity and intensity of peaks of molecular ions, primary fragment ketenes
7e–h, and other fragment cation radicals) that it is not possible to distinguish one isomer from another.
However, knowing that the substituent is a chlorine atom and comparing these data with NMR spectra
determination of the true structure of each isomers does not cause difficulties.

3.2. The Molecular and Crystal Structure Study

As we have shown repeatedly before, the spatial structure o of
4-R-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylic acids derivatives can significantly affect
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their biological properties [22–26]. On the other hand, it is well known that salt formation by
4-ОНgroup is accompanied by drastic changes of 4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazines crystal
molecular conformations [18,27]. Hence, it is interesting along with esters 4a–p to include their salts in
the range of the objects studied—both mono- and disubstituted ones since the salt formation by each
of the acid groups of esters 4a–p must make a specific contribution to changing their structure.

Highly water-soluble mono-substituted salts 5a–p were obtained by mixing equimolar amounts
of the corresponding esters 4a–p and tris(hydroxymethyl)aminomethane in water (Scheme 1). Initially
formed aqueous solutions of salts 5a–p of an intensely yellow color after sterilization were used
directly in biological experiments. However, as shown in the example of salt 5a, if necessary, they can
be isolated as light yellow crystals and characterized (see Section 2). Disubstituted salts 6a–p were
synthesized in a similar way, but using a double excess and tris(hydroxymethyl)-aminomethane. In
this case, the isolation of salts 6a–p in pure form is also possible although we unfortunately failed to
obtain crystals suitable for single-crystal X-ray diffraction studies.

According to our research, the partially saturated heterocycle in the bicyclic fragment of ester 4a is
located in the half-chair conformation (the puckering parameters [28] are: S = 0.55, Θ = 44.8◦, Ψ = 29.1◦).
Deviations of N(1) and S(1) atoms from the mean square plane of the remaining atoms of the cycle
are −0.22 and 0.39 Å, respectively (Figure 3). The nitrogen atom has a pyramidal configuration (the
sum of the valence angles centered on it is 345◦). The S(1)-O(4) bond is axial, and the S(1)-O(5) bond
is equatorial (torsion angles O(4)-S(1)-C(8)-C(7) 85.8(2)◦ and O(5)-S(1)-C(8)-C(7)-142.7(1)◦). The hydroxyl
group forms not only a strong intramolecular hydrogen bond with the carbonyl group of the ester
substituent (O(1)-H(1O) . . . O(2): H . . . O 1.61 Å, O-H . . . O 151◦), but also a weaker intermolecular
hydrogen bond O(1)-H(1O) . . . O(2)’: (1 − x, 2 − y, 1 − z; H . . . O 2.29 Å, O-H . . . O 116◦). The formation
of the hydrogen bifurcation bond leads to a shortening of the O(1)-C(7) bond to 1.328 (2) Å compared
to the mean value [29] of 1.362 Å and to an elongation of the C(7)-C(8) bond to 1.376 (2) Å (the mean
value is 1.326 Å), while the C(9)-О(2) 1.211 (2) Å bond is almost not deformed (the mean value is
1.210 Å). Probably, the participation of the hydroxyl group in the intermolecular hydrogen bond also
contributes to some reversal of the carbonyl group relative to the endocyclic double bond (torsion angle
C(7)-C(8)-C(9)-О(2) 12.3(3)◦). The methyl group of the ester substituent is in the aр-conformation with
respect to the C(8)-C(9) bond (torsion angle C(10)-О(3)-C(9)-C(8) 176.8(2)◦). A shortened intramolecular
contact Н(5) . . . О(1) 2.37 Å was also found in the molecule the ester 4a with the sum of the van der
Waals radii [30] of 2.46 Å.
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Figure 3. The molecular structure of ester 4a according to X-ray diffraction data. The atoms represented
by thermal vibration ellipsoids of 50% probability.

In the crystal the molecules of ester 4a form chains along the crystallographic direction [010]
(Figure 4, left) due to the formation of the intermolecular hydrogen bond N(1)-H(1N) . . . O(4)’: (1 − x,
y − 0.5, 1.5 − z; H . . . O 2.17 Å, N-H . . . O 171◦). The neighboring chains are connected by weaker
hydrogen bonds O(1)-H(1O) . . . O(2)’: (1 − x, 2 − y, 1 − z; H . . . O 2.29 Å, O-H . . . O 116◦), it leads to the
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formation of the layers parallel to the crystallographic plane (0 1 1) (Figure 4, on right). It should be
noted that only one oxygen atom of the sulfo group participates in the formation of an intermolecular
hydrogen bond as a proton acceptor.
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The X-ray diffraction study of compound 5a (Figure 5) showed that it is a salt of an organic anion
with protonated tris (hydroxymethyl) aminomethane and exists in the crystal as a monohydrate. In the
independent part of the unit cell there are two anion molecules (A and B), two cation molecules (A and
B), and two water molecules (A and B). It was clearly found that the negative charge of the anion is
localized on the deprotonated nitrogen atom of the sulfamide fragment, which is further indicated by the
participation of this nitrogen atom in the intermolecular hydrogen bond as a proton acceptor. It indicates
that the cyclic sulfamide group of methyl 4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylates
(4a–p) has higher acidic properties than the 4-hydroxyl group, and the salt formation takes place
exactly on it. The positive charge of the cation is localized on the nitrogen atom of the protonated
amino group of tris(hydroxymethyl)aminomethane (hydrogen atoms were identified objectively from
the difference synthesis of electron density).
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As expected, the salt formation introduced drastic conformational changes in the range of
compounds studied. Thus, in contrast to ester 4a described above the benzothiazine fragment of its
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salt 5a becomes flat with an accuracy of 0.03 Å in anion A and 0.02 Å in anion B. The ester substituent
in both anions is coplanar to the bicycle plane, it is facilitated by the formation of an intramolecular
hydrogen bond О(1)-Н . . . О(2): (Н . . . О1.76 Å, О-Н . . . О148◦) in anion A and (Н . . . О1.82 Å, О-Н . . .
О144◦) in anion B. The methyl group is in aр-conformation with respect to the C(8)-C(9) bond (torsion
angles C(7)-C(8)-C(9)-О(2) 2(1)◦ in anion A and −2(1)◦ in anion B; C(8)-C(9)-О(3)-C(10) −176.0(6)◦ in A and
173.7(6)◦ in B).

In addition, the salt formation leads to a significant increase in the number of the intermolecular
hydrogen bonds. In this case, hydrogen bonds, in which the proton acceptor is the nitrogen atom of
the benzothiazine fragment (N(1Sa)-H(3NS) . . . N(1b) and N(1Sb)-H(5NS) . . . N(1a)), can be considered as
charge-assisted hydrogen bonds. But the analysis of the geometric characteristics of the intermolecular
hydrogen bonds shows that all interactions selected are almost equal (Table 1).

Table 1. Intermolecular hydrogen bonds in the structure of salt 5a and their geometric characteristics.

Entry Hydrogen Bond The Symmetry
Operation

Geometric Characteristics

H . . . A, Å D . . . A, Å D–H . . . A, Degrees

1 N(1Sa)-H(1Ns) . . . O(2w) x, y, z 2.03 2.916 (8) 170

2 N(1Sa)-H(2NS) . . . O(5b)
−0.5 + x, 1 − y,

z 2.03 2.912 (7) 173

3 N(1Sa)-H(3NS) . . . N(1b)
−0.5 + x, 2 − y,

z 2.05 2.937 (8) 174

4 N(1Sb)-H(4NS) . . . O(5a) x, y, z 2.04 2.931 (7) 178
5 N(1Sb)-H(5NS) . . . N(1a) x, 1 + y, z 2.02 2.910 (8) 173

6 N(1Sb)-H(6NS) . . . O(1w)
−0.5 + x, 2 − y,

z 2.07 2.955 (8) 171

7 O(2Sa)-H(2OS) . . . O(1w)
−0.5 + x, 1 − y,

z 2.07 2.774 (7) 144

8 O(3Sa)-H(3OS) . . . O(5a)
−0.5 + x, 1 − y,

z 2.13 2.915 (7) 160

9 O(2Sb)-H(5OS) . . . O(2w) x, 1 + y, z 1.94 2.775 (8) 171
10 O(3Sb)-H(6OS) . . . O(5b) x, y, z 2.11 2.915 (7) 168
11 O(1w)-H(1wa) . . . O(4b) x, y, z 2.00 2.751 (8) 147
12 O(1w)-H(1wb) . . . O(1Sa) 0.5 + x, 2 − y, z 1.83 2.730 (8) 175
13 O(2w)-H(2wa) . . . O(1Sb) x, y, z 1.90 2.749 (8) 177
14 O(2w)-H(2wb) . . . O(4a) x, y, z 1.91 2.759 (8) 172

A more thorough analysis of the crystal structure of salt 5a allows us to separate the layers parallel
to the crystallographic plane (1 1 0), within which the molecules of organic cations and anions are
connected to each other and through the bridging water molecules by the intermolecular hydrogen
bonds mentioned (Figure 6). It is worth noting that in contrast to ester 4a in its salt 5a, both atoms of
the sulfo group are proton acceptors in the intermolecular hydrogen bonds, and it can contribute to the
benzothiazine fragment flattening.
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3.3. Evaluation of the Analgesic Activity

Our pharmacological tests convincingly showed that the chemical modification of the benzene
moiety of the molecule of methyl 4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate can be
considered as a very effective means of enhancing the analgesic activity of the base structure (Table 2).
Thus, if the unsubstituted ester 4a is not of any interest as an analgesic, then its analogs with fluorine
atoms in positions 6 or 7 (esters 4b or 4c) are almost as active as Meloxicam. At the same time,
the simultaneous presence of two fluorine atoms in the same positions in the benzene core (ester 4d)
completely deprives the molecule of analgesic properties. The same pattern is observed in the case of
methoxy derivatives 4n–p, with the only difference that here the 6-monosubstituted ester 4n belongs
to the medium-level analgesics, but not the high-level ones.
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Table 2. The analgesic activity of esters 4, their mono-(5) and di-(6) ammonium salts with
tris(hydroxymethyl)aminomethane on the “tail-flick” model in rats.

Entry Product R
Lengthening of the Latent Period Compared to the Initial Level (%)
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1 a H 3.7 101.2 4.1 
2 b 6-F 60.0 24.6 37.2 
3 c 7-F 61.5 49.8 47.6 
4 d 6,7-F2 5.4 4.2 3.7 
5 e 5-Cl 58.7 31.5 7.4 
6 f 6-Cl 8.4 64.1 88.8 
7 g 7-Cl 77.3 109.5 67.6 
8 h 8-Cl 19.4 29.7 10.4 
9 i 6-Br 8.6 106.3 2.9 

10 j 7-Br 88.8 25.6 3.2 
11 k 6,8-Br2 28.5 33.2 23.4 
12 l 6-I 3.4 4.8 1.9 
13 m 6-Me 1.3 7.5 5.3 
14 n 6-OMe 27.0 21.4 0.8 
15 o 7-OMe 63.8 19.6 2.9 
16 p 6,7-(OMe)2 8.3 11.7 14.3 
17 Meloxicam – 63.9 – – 
18 Xefocam – – 55.6 36.7 

The decrease in the analgesic effect of the same substance during the transition from its acid 
form to the salt form was noted by us earlier [27]. Moreover, it was already experimentally proven 
that such chemical modifications were accompanied by significant conformational rearrangements 
and eventually by a decrease in activity. Ester 4а and its salt with tris(hydroxymethyl)-aminomethane 
5а described in this article once again clearly confirm the assumptions made earlier. However, the 
activity has changed in the opposite direction—it is significantly increased. Nevertheless, in general, 
it is not the direction (growth or decline) of pharmacological effects that is important here, but the 
fact that they are caused by changes in molecular conformations. It is obvious that the other examples, 
although indirectly, also show in favor of the fact that the strength of the analgesic activity of a 
substance is determined not by solubility, but by its molecular conformation. Only an experiment can 
show which conformation is active and which is not. Therefore, it is not surprising that some of the 
substances presented—esters 4d,h,k,l,p and their salts—retain approximately the same level of 
activity regardless of what form they are in. Some initially highly effective analgesics—esters 
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8 h 8-Cl 19.4 29.7 10.4
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The group of mono-chlorine-substituted derivatives 4e–h should be particularly noted if only
because in this case it was possible to obtain and test all theoretically possible isomers. This revealed a
clear relationship between the level of activity and the position of the chlorine atom: 7-Cl > 5-Cl >>

8-Cl > 6-Cl. A similar structural and biological regularity when a 7-substituted isomer significantly
exceeds its 6-substituted analog in analgesic properties is demonstrated by all other derivatives.

Interesting and in some ways even unexpected results were obtained in pharmacological tests of
mono-and disubstituted salts 5 and 6. As it turned out, the statement, which is widely accepted in
scientific circles and often accepted as an axiom, that the biological activity of a substance is directly
proportional to its solubility is not always true. For example, the transition from ester 4a to its
water-soluble form 5a is indeed accompanied by a powerful increase in analgesic properties (Table 2).
However, the disubstituted salt 6a, which solubility in water is even higher, is completely untenable
as an analgesic. Similar “inconsistencies” are observed in the vast majority of examples. The only
exceptions are two samples: 6-and 7-chlorine substituted esters 4f and 4g. Only in these two cases, the
increase in water solubility due to the formation of mono-and disubstituted salts is accompanied by an
increase in analgesic properties or at least their preservation at a sufficiently high level. If we also take
into account the fact that one of these substances in the water-insoluble acid form 4f does not have
activity, then only methyl 7-chloro-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate (4g) can
be recommended as the leader structure of all substances studied.

The decrease in the analgesic effect of the same substance during the transition from its acid form
to the salt form was noted by us earlier [27]. Moreover, it was already experimentally proven that
such chemical modifications were accompanied by significant conformational rearrangements and
eventually by a decrease in activity. Ester 4a and its salt with tris(hydroxymethyl)-aminomethane 5a
described in this article once again clearly confirm the assumptions made earlier. However, the activity
has changed in the opposite direction—it is significantly increased. Nevertheless, in general, it is not
the direction (growth or decline) of pharmacological effects that is important here, but the fact that they
are caused by changes in molecular conformations. It is obvious that the other examples, although
indirectly, also show in favor of the fact that the strength of the analgesic activity of a substance is
determined not by solubility, but by its molecular conformation. Only an experiment can show which
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conformation is active and which is not. Therefore, it is not surprising that some of the substances
presented—esters 4d,h,k,l,p and their salts—retain approximately the same level of activity regardless
of what form they are in. Some initially highly effective analgesics—esters 4b,c,e,j,o—lose their activity
after conversion to water-soluble forms. The reverse, or mixed version, is also possible. For example,
esters 4a,i from virtually inactive substances turn into very powerful analgesics of mono-salts 5a,i. But
after salt formation by the second acid group—disubstituted salts 6a,i—and, as a result, after another
conformational change they again are completely inactivated.

4. Conclusions

An effective scheme of obtaining has been proposed for the synthesis of a new group of
potential analgesics methyl 4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate and its analogs
substituted in the benzene moiety of the molecule. To identify structural and biological regularities,
their water-soluble mono- and disubstituted salts with tris(hydroxymethyl)-aminomethane were
obtained on the basis of all esters. Elemental analysis, NMR spectroscopy (1Нand 13C) and mass
spectrometry were used to confirm the structure of the compounds synthesized. It was shown how
the spectral data obtained can uniquely determine the nature and position of the substituent in the
benzothiazine core. The X-ray diffraction study of one of the esters and its monoammonium salt
with tris(hydroxymethyl)-aminomethane was conducted. It was proven that salt formation passes
through the cyclic sulfamide group, this leads to a significant increase in the number of intermolecular
hydrogen bonds, changes in the crystal packaging and, ultimately, to a conformational rearrangement
of the molecule. Pharmacological tests of all compounds synthesized for the presence of analgesic
properties were performed. The studies were conducted on the model of the thermal tail-flick
procedure (Tail Immersion Test) in white rats using the oral dose of 20 mg/kg; the reference drugs were
Meloxicam and Xefocam. It was found that the introduction of substituents in the benzene moiety of
the molecule (especially in position 7) is an effective method of enhancing the analgesic activity of
2λ6,1-benzothiazine-3-carboxylic acids derivatives. It was experimentally determined that, contrary to
popular belief, increasing the solubility of a substance does not always have a positive effect on the
strength of its biological effect. Specific examples demonstrate that good solubility can not only enhance
the analgesic properties of the compounds studied, but also significantly reduce them, or even have no
effect at all. Since chemical modification aimed at changing the solubility is always accompanied by a
rearrangement of molecular conformations, there is every reason to consider this factor as the main cause
for determining the level of the analgesic activity. According to the results of the studies conducted only
one compound—methyl 7-chloro-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate—was
selected from the whole group for further research as a promising analgesic; it demonstrates powerful
analgesia in all forms regardless of their solubility.
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