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Abstract: Electron transfer plays a vital role in drug metabolism and underlying toxicity mechanisms.
Currently, pharmaceutical research relies on pharmacokinetics (PK) and absorption, distribution,
metabolism, elimination and toxicity (ADMET) measurements to understand and predict drug
reactions in the body. Metabolic stability (and toxicity) prediction in the early phases of the drug
discovery and development process is key in identifying a suitable lead compound for optimisation.
Voltammetric methods have the potential to overcome the significant barrier of new drug failure
rates, by giving insight into phase I metabolism events which can have a direct bearing on the
stability and toxicity of the parent drug being dosed. Herein, we report for the first time a
data-mining investigation into the voltammetric behaviour of reported drug molecules and their
correlation with metabolic stability (indirectly measured via t1/2), as a potential predictor of drug
stability/toxicity in vivo. We observed an inverse relationship between oxidation potential and drug
stability. Furthermore, we selected and prepared short- (<10 min) and longer-circulation (>2 h) drug
molecules to prospectively survey the relationship between oxidation potential and stability.

Keywords: voltammetry; metabolism; stability; toxicity; drug; electron transfer; half-life; propanidid;
drug discovery

1. Introduction

Electron transfer is an innate property of biological processes in the body [1]. When xenobiotics are
introduced to the body (e.g., drug molecules) they encounter a variety of potential redox modulations,
including cytochrome p450 (CYP450) enzymes. This metabolic redox biotransformation of the drug
facilitates the elimination of the xenobiotic as a more polar drug metabolite [2]. However, redox
biotransformations are not always a detoxification process [3]. Oxidation is the primary mechanism of
reactive electrophilic metabolite formation, and these in turn react with nucleophiles such as DNA or
proteins by forming irreversible covalent bonds, which leads to adverse reactions [4]. These redox
events can be measured by voltammetric techniques [5].

One barrier to bringing a new drug to market is the high failure rate. Current methods rely
on pharmacokinetics and ADMET measurements [2] in order to identify lead compounds and their
optimisation [6]. Electrochemistry (EC) is a relatively new and innovative approach to supporting drug
discovery [3]. EC is an alternative method to study drug metabolism and toxicities in early phases by
mimicking phase I metabolism [7–10]. Crucially, most marketed drugs (including pro-drugs) show
electroactivity at solid electrodes [4,11].
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Our interest in connecting the voltammetric behaviour of drug molecules to their biological
properties is derived from our research into the electrochemistry of small molecules [12–14] and
adverse drug reactions [15,16]. Recent disparate research has found connections between the redox
behaviour of a drug and its biological potency [17–19] and the oxidation potential and toxicity of
MDMA (Ecstasy) derivatives [20,21] and thiobenzamides [22], and voltammetric studies for assessing
electrogenerated drug metabolisms [23] as well as a study of xeniobiotics in the environment [24].

Inspired by these connections between the biological properties and voltammetric behaviours
of selected drug molecules, we report on our investigations into the emerging connectivity between
oxidation potential and drug stability, via:

1. Data mining the existing literature for the half-life and oxidation potential values of known drugs;
2. Correlating standardised redox measurements with stability measures;
3. Analysing examples of short and longer circulating drug molecules to determine their

voltammetric parameters.

We hypothesised that oxidation potential correlates with drug stability, as it is assumed lower
oxidation potential (OP) indicates an easier biotransformation. Thus, a drug compound with a shorter
half-life (t1/2) may have a lower OP.

2. Materials and Methods

2.1. Data Mining

A systematic approach to locating relevant literature sources was adopted using the search engines
and databases Sci-Finder, Reaxys and PubChem. Key operator descriptors and Boolean logic were used
{oxidation potential; voltammetry; drug; metabolism; half-life; redox} to generate the list of drugs (up
until July 2020) that had both a reported redox value and a surrogate biological measure of metabolic
stability, although not necessarily from the same source.

Reference electrode data was standardised (where provided) using http://www.consultrsr.net/
resources/ref/refpotls3.htm

2.2. General Points

All commercial reagents and solvents were used as received without further purification.
All novel voltammetry experiments were performed using an Autolab potentiostat (PGSTAT 100N,
The Netherlands). The progress of reactions was monitored by thin layer chromatography (TLC) using
Merck silica gel 60 F254 plates, which were visualized with UV light. Reactions were purified using
flash column chromatography (ethyl acetate: petroleum ether) using high-purity grade, pore size 60 Å,
200-400 mesh particle size silica gel (Sigma-Aldrich, Gillingham, UK).

1H and 13C-NMR spectra were recorded on a JEOL ECS 400 MHz NMR spectrometer. 1H and 13C
NMR chemical shifts (δ) are reported in parts per million relative to tetramethylsilane (TMS), with the
solvent resonance employed as the internal standard (CDCl3 at 7.26 ppm, CDCl3 at 77.2 ppm). Data
are reported as follows: chemical shift, multiplicity (s = singlet, br s = broad singlet, d = doublet,
t = triplet, q = quartet, qt = quintet, sext = sextet, m = multiplet and combinations thereof), coupling
constants (Hz) and integration. Low- and high-resolution mass spectrometry analysis was obtained
using an Agilent 6450 LC-MS/MS system in electrospray ionisation positive mode (ESI+).

2.3. General Procedures for Linear Sweep Voltammetry (LSV)

LSV experiments were performed using a glassy carbon electrode (GCE, geometric area = 0.071
cm2) as the working electrode (WE), a platinum wire was used as a counter electrode (CE) and Ag/AgCl
wire was used as a reference electrode (RE). Tetrabutylammonium perchlorate (TBAP) was used as
the supporting electrolyte in a MeCN:MeOH (10:1) solvent mixture. Prior to each experiment and
in-between scan rate studies, the GCE was polished manually, first with 1.0 µm diamond spray (Kemet,
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Maidstone, UK) on a smooth velvet polishing pad (BASi, West Lafayette, IN, USA). The GCE was
rinsed with distilled water and a second polishing was performed using 0.25 µm diamond spray
(Kemet) on a smooth velvet polishing pad (BASi, West Lafayette, IN, USA). Finally, the GCE was
rinsed with distilled water and then dried prior to the experiment. The linear regression equations
were calculated by the least squares method using Microsoft Excel® software.

2.4. Compound Characterisation

2.4.1. 3-Methoxy-4-hydroxyphenylacetic Acid Propyl Ester (2)

In a pressure tube equipped with magnetic stirrer, 4-hydroxy-3-methoxyphenethyl alcohol, 1,
(12.0 mmol) was dissolved in anhydrous propan-1-ol (0.27 M, 21.0 mL). To this solution, concentrated
sulfuric acid (1.0 mL) was added and the solution was heated at 100 ◦C for 5 h. Upon completion,
the solvent was removed under reduced pressure. The resulting oil was diluted with ethyl acetate
(40.0 mL), and washed with saturated sodium bicarbonate (20.0 mL), distilled water (20.0 mL) and
brine (20.0 mL). The organic layer was dried (MgSO4), filtered and concentrated in vacuo to afford
the title compound as a red oil (2.45 g, 86%) (Figures S1 and S2). 1H-NMR (400 MHz, CDCl3) δ: ppm
6.90–6.80 (m, 1H), 6.81 (d, J = 1.4 Hz, 1H), 6.80–6.70 (m, 1H), 5.60 (s, 1H), 4.05 (t, J = 6.6 Hz, 2H),
3.88 (s, 3H), 3.54 (s, 2H), 1.71–1.52 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H); 13C-NMR (101 MHz, CDCl3) δ: ppm
172.5, 146.9, 145.0, 125.8, 122.0, 114.8, 112.2, 66.5, 55.6, 40.9, 21.9, 10.3; LC-MS (ESI) m/z 225 [M + H]+;
Hi-Res LC-MS (ESI) m/z calcd. for C12H16O4 [M + H]+ 225.1121, found 225.1120.

2.4.2. [4-[(Diethylcarbamoyl) methoxy]-3-methoxyphenyl] Acetic Acid Propyl Ester (Propanidid)

3-Methoxy-4-hydroxyphenylacetic acid propyl ester (2) (3.4 mmol, 0.8 g) was dissolved in acetone
(0.27 M, 20 mL). Potassium carbonate (5.1 mmol, 705 mg) was added to the solution, followed by
2-chloro-N,N-diethylacetamide (4.0 mmol, 0.55 mL). Under vigorous stirring, the suspension was
warmed to reflux (60 ◦C) for 16 h. After cooling to room temperature, the reaction mixture was
filtered and the solvent removed under reduced pressure. The product was purified by silica column
chromatography (ethyl acetate:hexane) to afford the title compound as a pale yellow oil (0.64 g, 56%)
(Figures S3 and S4). 1H-NMR (400 MHz, CDCl3) δ: ppm 6.88 (d, J = 8.2 Hz, 1H), 6.82 (d, J =1.4 Hz
1H), 6.77 (d, J = 8.2 Hz, 1H), 4.7 (s, 2H) 4.04–3.99 (m, 2H), 3.84 (s, 3H), 3.52 (s, 2H), 3.32–3.42 (m, 4H),
1.57–1.64 (m, 2H), 1.18–1.14 (m, 3H), 1.12–1.08 (m, 3H), 0.87–0.91 (t, J = 7.3 Hz, 3H); 13C-NMR (101 MHz,
CDCl3) δ: ppm 170.7, 166.0, 148.4, 145.7, 127.0, 120.4, 113.2, 112.1, 67.4, 65.3, 54.7, 40.5, 39.8, 39.2, 21.0,
13.2, 11.8, 9.4; LC-MS (ESI) m/z 338 [M + H]+; Hi-Res LC-MS (ESI) m/z calcd. for C18H27NO5 [M + H]+

338.1962, found 338.1967.

2.4.3. Entacapone

Entacapone (purchased from Sigma-Aldrich, Figure S5). 1H-NMR (400 MHz, CDCl3) δ: ppm 10.87
(s, 1H), 8.06–8.05 (d, J = 2.0 Hz, 1H), 7.83–7.82 (d, J = 2.0 Hz, 1H), 7.51 (s, 1H), 7.19 (s, 1H), 6.10 (s, 1H),
3.44 (s, 2H), 1.52 (s, 2H), 1.25–1.17 (m, 3H).

2.4.4. Lidocaine

Lidocaine (purchased from Sigma-Aldrich, Figure S6). 1H-NMR (400 MHz, CDCl3) δ: ppm 8.93
(br s, 1H) 7.10–7.09 (m, 3H) 3.22 (s, 2H) 2.66–2.71 (q, J = 7.0 Hz, 4H) 2.23 (s, 6H) 1.15–1.12 (t, J = 7.0 Hz,
6H).

3. Results

3.1. Comparison of Drug Metabolite OP to Parent Drug OP

The selected drugs’ oxidation potentials (reported, mean, and standardised OP to Normal
Hydrogen Electrode (N.H.E.) where sufficient data are available) alongside the mean half-life
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measurements are shown in Table 1. It was found that drug metabolites tended to have lower
OP than the parent drug molecules, including Diclolfenac (700 mV) vs. 4′-OH-DCL (167 mV) and
5′-OH-DCL (236 mV), Clozapine (475 mV) vs. Norclozapine (390 mV), and Flupirtine (443 mV) vs.
D13223 (347 mV).

Table 1. Oxidation potential (OP) and half-life of identified compounds.

Drug/Compound OP (mV) Mean OP
(mV)

Std. OP
(mV) Mean t1/2 (h) Reference (s)

4′-OH-DCL
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Table 1. Cont.

Drug/Compound OP (mV) Mean OP
(mV)

Std. OP
(mV) Mean t1/2 (h) Reference (s)
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Table 1. Cont.

Drug/Compound OP (mV) Mean OP
(mV)

Std. OP
(mV) Mean t1/2 (h) Reference (s)

Additional drugs studied
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1150 - 1355 1.6 (97.5 min) t1/2 [67]

Compounds with sufficient data (e.g., concentration of electrolytes, reference electrode used) enabled the calculation
of the standardised (std.) OP to the normal hydrogen electrode (N.H.E.).

3.2. Relationship between Drug OP and Half-Life

The relationships between all drugs/metabolites’ OPs with half-life are shown in Figure 1a.
The relationships of only those molecules the OP of which could be standardised to N.H.E. against
mean half-life are shown in Figure 1b. In all cases, an inverse relationship between OP and half-life
was observed.

Sci. Pharm. 2020, 88, x FOR PEER REVIEW 6 of 15 

 

 
Entacapone 

 

1250 - 1455 0.4 (24 min) t1/2 [66] 

Lidocaine 

 

1150 - 1355 1.6 (97.5 min) t1/2 [67] 

Compounds with sufficient data (e.g., concentration of electrolytes, reference electrode used) enabled 
the calculation of the standardised (std.) OP to the normal hydrogen electrode (N.H.E.). 

3.2. Relationship between Drug OP and Half-Life 

The relationships between all drugs/metabolites’ OPs with half-life are shown in Figure 1a. The 
relationships of only those molecules the OP of which could be standardised to N.H.E. against mean 
half-life are shown in Figure 1b. In all cases, an inverse relationship between OP and half-life was 
observed. 

 
Figure 1. (a) Relationship between OP and half-life of all compounds; (b) Relationship between 
standardised OP (N.H.E.) and half-life. Key: * = additional drugs studied and number after the drug 
indicates which entries from Table 1 were standardized. 

Figure 1. (a) Relationship between OP and half-life of all compounds; (b) Relationship between
standardised OP (N.H.E.) and half-life. Key: * = additional drugs studied and number after the drug
indicates which entries from Table 1 were standardized.



Sci. Pharm. 2020, 88, 46 7 of 15

3.3. Synthesis of Propanidid

The synthetic pathway to the short acting anaesthetic propanidid is shown in Scheme 1. Propanidid
was synthesised using an adapted method (in two steps) [68]. Fischer esterification of the carboxylic
acid (1) with propan-1-ol in a pressure tube afforded the desired ester (2) in an excellent isolated yield
(86%). The reaction of the ester (2) with carbamoyl chloride afforded propanidid in a good isolated
yield (56%) after chromatography.
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3.4. Voltammetric Study of Propanidid, Entacapone and Lidocaine.

The additional short- and long-acting drugs propanidid, entacapone and lidocaine’s LSV
measurements are shown in Figure 2a–c. Two clear Ep

ox are observed at +1.15 V and +1.97 V
for lidocaine (υ = 25 mV s−1), indicating that an ECE (electrical–chemical–electrical) reaction occurred.
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Figure 2. The LSV of the compounds using glassy carbon electrode (GCE) as the working electrode
(WE), platinum as the counter electrode (CE) and Ag/AgCl as the reference electrode(RE). TBAP (0.5
M), MeCN: MeOH (10:1). (a) Propanidid, (b) entacapone, and (c) lidocaine.

The LSV of lidocaine indicates that an electrochemical oxidation process occurs through two
consecutive electron-transfer processes separated by a chemical deprotonation—first an electrochemical
oxidation and deprotonation to the amidyl radical and then a further oxidation to the corresponding
cation. Gieshoff [69] has observed a similar oxidation mechanism with anilides.

The LSVs of propanidid and entacapone indicate that multiple electron transfer reactions are
taking place. However, apart from the first Ep

ox values that are clearly visible, the other oxidation
peaks occur after 2.0 V, and are all broad and undefined.

Analysis of the LSV data in terms of log peak current (Ip) vs. log scan rate (mV s−1) for the three
drugs was performed, revealing in all three cases that the gradient is close to 0.5, indicating that the
electrochemical process is operating via a diffusional process (rather than adsorption) [70–73]. It is
readily observable that the peak potential shifts to more positive potentials due to the electrochemical
process being irreversible.
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4. Discussion

4.1. Comparing Parent Drugs to Drug Metabolites

All retrieved drugs and metabolites data are shown in Table 1. Metabolic oxidation of diclofenac
(DCL) gives the unsTable 4’-OH-DCL and 5-OH-DCL, which induce hepatoxicity and can be metabolised
further. This is in accordance with the finding that the drug metabolites have lower oxidation potentials
than diclofenac. 5-OH-DCL forms a GSH conjugate without NADPH, but 4′-OH-DCL relies on
NADPH, which demonstrates that 5-OH-DCL is liable to auto-oxidation [25].

Clozapine undergoes first pass metabolism in the liver, mainly catalysed by CYP1A2. Clozapine
increases interactions with other drugs, which induces severe adverse effects [74]. It is further
metabolised to give Norclozapine and Clozapine N-oxide. The redox activities of Clozapine and its
metabolite (Norclozapine) are similar [27].

Flupirtine metabolism gives glucuronides and mercapturic acid derivatives (via the carbamate),
which are unstable and toxic. A reactive diamine radical intermediate is formed which is toxic to cells
and genes [75]. Further metabolism affords D13223. D13223 is a major active metabolite of Flupirtine
and is further metabolised. Compared to Flupirtine, D13223 is easily oxidised, but the reduction is
more difficult [76].

It was found that drug metabolites had lower OP vlaues than the parent drug. For example,
4′-OH-DCL and 5-OH-DCL, Norclozapine and D13223 have lower OP values than their parent drugs
Diclofenac, Clozapine and Flupirtine, respectively (Table 1). Furthermore, these metabolites were
more toxic than the parent drug. Among the drug metabolites generated from the same parent drug,
metabolites with lower OP are highly toxic compared to others (i.e., 4′-OH-DCL is more toxic than
5-OH-DCL).

4.2. Drug Metabolism Pathways

Oxidation potential (OP) can inform the ability of the compounds to generate reactive oxygen
species (ROS), and therefore the oxidative stress induction [77]. More than one measurement of OP
value was collected for some compounds (i.e., Paracetamol, Diclofenac, Trimethoprim, Clozapine and
Flupirtine) where available. Secondly, the half-life is an important parameter to assess drug stability
alongside hepatic clearance. A less stable drug is intensively metabolised, and both half-life and
clearance rate are responsible for drug elimination [78]. A drug metabolite with a longer half-life is
the major (most stable) product, although it is not always safe, as it implies drugs will stay in the
body for an extended period before being removed. Hepatoxicity is induced because of the reactive
intermediate induced by the metabolism processes. In most cases, metabolites are responsible for
toxicity due to bioactivation [79].

Although the plot appeared to be random before standardising OP (Figure 1a), a stronger
correlation was seen for the standardised (std.) OP (Figure 1b). As shown in Figure 1a, the peak of
half-life was seen at 250–500 mV. This newly identified inverse correlation trend, whereby a lower OP
has a longer half-life and vice versa, implies that a compound with a lower OP is more biologically
stable, rather than reactive. However, increasing the biological stability of a drug implies metabolites
(with a lower OP) may stay in the body longer.

A multitude of factors affect a drug’s pharmacology, including stability and toxicity.
Clearly, predicting all the drug’s interactions in the body from one factor such as OP is not possible,
however a rapid screen of new drug entities’ (or during hit-to-lead development) OP values would
give insight into the much later biological behaviour of the compound under study, and provide new
knowledge to guide the intelligent design of improved drug molecules.

Due to the limited number of drugs that have both a reported OP and half-life in the literature,
a statistical analysis to determine if this inversely proportional trend between OP and half-life is valid
would not be relevant.
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We therefore looked at the respective drug metabolism pathways for further insight. Promazine is
a metabolite of Chlorpromazine [80]. More than 80% of Promethazine is absorbed in the body, and
metabolism is via first-pass (liver), glucuronidation and sulfation [81].

Acebutolol is metabolised in the liver to give hepatoxic (active) metabolites such as diacetolol,
hydroxylamine and ‘auto-oxidised’ metabolites, which are responsible for toxicity [82]. Hydrolysis
forms an arylamine, and the CYP450 oxidation of arylamine induces toxicity [82].

The organometallic 1,1′-ferrocene dimethanol is not actively metabolised.
Warfarin is metabolised by the liver in a regio- and stereo-selective manner. Oxidation gives

hydroxywarfarin which accounts for up to 85% of warfarin’s metabolites [83]. S- and R-warfarin
are metabolised by different CYP450 isoforms, including CYP2C19 and CYP2C8 (with CYP2C19),
respectively [83]. S-warfarin has a shorter half-life (mean 32 h) than R-warfarin (mean 58 h) [30].

The metabolism of Paracetamol is responsible for both its therapeutic effects and toxicity
(hepatoxicity) [84]. Reactive metabolites such as the quinone are rapidly formed. Biotransformation
is mainly a detoxification processes, but N-acetyl-p-benzoquinone imine (NAPQI) is responsible for
hepatocyte cell death due to GSH’ depletion’ [85].

Only 10–20% of Trimethoprim is metabolised in the liver [86]. Children have a rapid clearance
rate, three times greater than adults [87].

Amodiaquine is metabolised in the liver and neutrophils to give a metabolite (menaquinone) [88].
Accumulating metabolites increases free haem level-induced toxicity [89].

Caffeine is metabolised in the liver to give Theobromine, Paraxanthine (major) and
Theophylline [90]. The cardiovascular, respiratory, renal and nervous systems are affected by caffeine
intake [91].

The reaction mechanisms for Carisoprodol have not been entirely elucidated [49]. CYP2C19 is
responsible for hepatic biotransformation [92].

It can be seen that the available drugs in the literature that have both oxidation potential and
stability measurements (half-life) have a wide range of different metabolic pathways, thus permitting
confidence in the inverse relationship between measured OP and drug half-life.

4.3. New Drug OP Measurements and Stability Inference

Next, we applied the knowledge gained from the data-mining experiment to previously unreported
bioactive molecules to expand the data set and test the finding of an inverse relationship between OP
and half-life. An under-represented drug class in the original data set is the short half-life drugs.

Propanidid was selected as a short-acting phenylacetate general anaesthetic, which has
been withdrawn from the market due to its side effect of causing anaphylactic reactions.
The primary metabolite for Propanidid is (4-(2-[diethylamino]-2-oxoethoxy)-3-methoxy-benzeneacetic
acid (DOMA) [93]. To the best of our knowledge, no studies in the literature have reported any
electrochemical data for propanidid.

Entacapone is used in the treatment of Parkinson’s disease in combination with other drugs.
The primary metabolite is the glucuronide formed in the liver, and the remaining 5% is converted
to the Z-isomer [94]. Several electrochemical methods have been reported in the literature for the
detection of the metabolites [95–97].

Lidocaine is a local anaesthetic and is one of the most studied drugs for both the detection
and isolation of a drug metabolite using electrochemical methods [98–102]. The major metabolite of
lidocaine is the N-deethylated form.

We found that OP has an inverse relationship with the drug’s stability in the body (half-life),
with 1450 mV, 1250 mV and 1150 mV correlating to 5.9 min [65], 24 min [66] and 87–108 min [67],
for propanidid, entacapone and lidocaine, respectively.
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4.4. Study limitations

The limitations of the study include the following: the number of available drug molecules that
have robust voltammetry information combined with half-life measurements; a lack of standardisation
in the literature of electrodes (including working electrode surface area), electrolytes, solvents (including
concentration), and the pH of the cell, which could lead to subtle differences in the measured oxidation
potential via voltammetry (however, where reported, the reference electrode measurement could
be standardised to an N.H.E.); the half-life of drugs in the body depends on a number of patient
characteristics (age, sex, diet, underlying health conditions), thus a range of half-life measurements are
to be expected.

5. Conclusions

Using a combination of data mining of available oxidation potential (OP) and biological stability
measurements from the literature, a diverse range of drugs (and metabolites) were identified.
Standardising the OP to N.H.E. and the comparison of inter-species stability measurements identified
an unanticipated inverse relationship between lower OP and higher stability in vivo for the first time.

This result in part supports our original hypothesis that oxidation potential correlates with drug
stability, however it conflicts with our original assumption that lower oxidation potential compounds
would be more readily cleared.

A prospective survey of short-acting drug molecules, including their synthesis and characterisation,
and a detailed voltammetric study indicated an emerging inverse trend between standardised OP
and circulating half-life. These findings demonstrate that OP measurements hold promise as a new
tool for rapidly predicting the pharmacokinetic (PK) properties of a new chemical entity for drug
discovery campaigns.
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