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Abstract: Emerging technologies now allow for mass spectrometry-based profiling of thousands
of small molecule metabolites (‘metabolomics’) in an increasing number of biosamples. While
offering great promise for insight into the pathogenesis of human disease, standard approaches have
not yet been established for statistically analyzing increasingly complex, high-dimensional human
metabolomics data in relation to clinical phenotypes, including disease outcomes. To determine
optimal approaches for analysis, we formally compare traditional and newer statistical learning
methods across a range of metabolomics dataset types. In simulated and experimental metabolomics
data derived from large population-based human cohorts, we observe that with an increasing number
of study subjects, univariate compared to multivariate methods result in an apparently higher false
discovery rate as represented by substantial correlation between metabolites directly associated with
the outcome and metabolites not associated with the outcome. Although the higher frequency of
such associations would not be considered false in the strict statistical sense, it may be considered
biologically less informative. In scenarios wherein the number of assayed metabolites increases, as in
measures of nontargeted versus targeted metabolomics, multivariate methods performed especially
favorably across a range of statistical operating characteristics. In nontargeted metabolomics datasets
that included thousands of metabolite measures, sparse multivariate models demonstrated greater
selectivity and lower potential for spurious relationships. When the number of metabolites was
similar to or exceeded the number of study subjects, as is common with nontargeted metabolomics
analysis of relatively small cohorts, sparse multivariate models exhibited the most-robust statistical
power with more consistent results. These findings have important implications for metabolomics
analysis in human disease.
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1. Introduction

Mass spectrometry-based measurements of small molecule metabolites, also known
as metabolomics, has emerged as a powerful tool for phenotyping biochemical variation
in health and disease across organisms. Accordingly, there has been a rapidly growing
interest in applying metabolomics to clinical studies of human disease traits [1,2]. Robust
statistical methods are particularly needed to examine associations between metabolites
detected in peripheral blood circulation with disease traits in humans; in this context, false
discovery remains a key concern for clinical biomarker studies [3–5]. The statistical analysis
challenges posed by human metabolomics data arise from multiple sources. For instance,
metabolomics data collected from a given biospecimen represents metabolite variation at
a particular point in time and in a particular context: whereas a portion of the variability
reflects the relatively stable components of the organismal metabolome, another component
reflects the dynamic portion of the metabolome that varies substantially over time and in
response to a number of exposures. Such mixed structures can lead to a high degree of
variation for a given metabolite level across individuals. Additionally, due to common
pathways of enzymatic production or exposures of origin, metabolites can demonstrate a
high degree of intercorrelation, and this intercorrelation may vary between individuals or
subgroups depending on disease state, exposures, or other factors.

Initial clinical studies involving targeted metabolomics approaches have used rela-
tively conservative statistical approaches to analyze up to 200 variables, such as Bonferroni
correction of multiple t-tests or the false discovery rate (FDR) [6]. Additionally, meth-
ods of accounting for multiple hypothesis testing have similarly assigned more or less
conservative thresholds for defining statistical significance. In the absence of considering in-
tercorrelations between individual metabolites at the outset, data analyses will tend to favor
identifying metabolites from a singular biological pathway, with secondary or tertiary asso-
ciations (potentially representing important orthogonal pathways) being forced to reach
lower levels of statistical significance based on rank ordering alone. For this reason, tradi-
tional statistical approaches are believed to offer limited sensitivity for high-dimensional
metabolomics analyses. Thus, several alternative methods have been proposed to more
effectively select metabolites associated with a given outcome [7–11]. These methods
have begun to surface from analyses of other molecular phenomics datasets [9,10,12,13],
although they may differ in structure relative to metabolomics datasets. Each statistical
method has intrinsic strengths and weaknesses, and the extent to which they may be more
or less suited for a given metabolomics analysis is not known, but is likely to depend on
number of metabolites assayed, sample size, and frequency or type of clinical outcome.
Therefore, we sought to formally test currently available statistical methods across a range
of dataset types. By simulating clinical studies to test different outcome-based hypotheses
and validating findings using real metabolomics data, we aimed to assess the suitability of
statistical methods for the analysis of metabolomics data across a range of clinical data set-
tings. Our investigation primarily focused on studies of moderate to large sample size that
are predominantly observational in design, wherein the primary exposures are expected to
have modest to moderate associations with a given outcome, rather than large magnitudes
of effect as might be seen in interventional studies.

2. Results
2.1. Statistical Analyses of Simulated Metabolomics Data

Metabolomics studies of human samples can vary substantially by sample size, the
number of metabolites assayed, and the type and frequency of a clinical outcome of interest,
with each of these factors potentially influencing statistical analysis results. To evaluate
statistical methods for handling a variety of datasets, metabolomics data were simulated
for clinical studies of a varying number of study subjects, number of metabolites, and
outcome type (continuous vs. binary). A total of six traditional statistical (Bonferroni,
FDR, and principal component regression (PCR)), and statistical learning (least absolute
shrinkage and selection operator (LASSO), sparse partial least squares (SPLS), and random
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forest) methods were used to analyze 1000 simulated metabolomics datasets (Figures 1
and 2), with each evaluated for the likelihood of a metabolite being correctly identified
as one of the top 10 most important metabolites with respect to a given outcome. For a
simulated continuous outcome (Figure 1), all approaches performed similarly well, with
the exception of scenarios with a large number of metabolites (M = 2000) or a small number
of subjects (N = 200). At these extremes, multivariate approaches based on sparsity, LASSO,
and SPLS outperformed univariate approaches. In the case of a binary outcome (Figure 2),
optimal statistical methods were less apparent. Univariate approaches based on the linear
model performed slightly better than multivariate approaches with small sample sizes.
As the sample size increased, results approximated those observed in the continuous
case, where sparse multivariate methods such as sparse partial least squares discriminant
analysis (SPLSDA) outperformed the other approaches (Figure 2). In secondary analyses,
we repeated the simulation experiments to include smaller sample sizes (i.e., N = 50 and
N = 100) that may be used for some studies despite acknowledged limitations in statistical
power. In these analyses, we observed the expected trend of generally reduced sensitivity
for smaller sample sizes, while specificity was generally preserved, corresponding to
a greater positive predictive value (PPV) in smaller sample sizes. The exception was
SPLS models, for which false positive rates increased in the smallest samples sizes along,
corresponding to reduced PPV (Figure S1).
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Figure 1. Results for a continuous outcome. The sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), and false positive rate are displayed (as percent color fill of
each bar) for each statistical method, reflecting their ability to correctly identify the top ten simulated
metabolite associations across varying numbers of total metabolite measures (M = 200 or M = 2000)
in study samples collected from varying numbers of study subjects (N = 200, N = 1000, or N = 5000).
PCR, principal components regression; BON, Bonferroni; FDR, false discovery rate; LASSO, least
absolute shrinkage and selection operator; SPLS, sparse partial least squares; RF, random forest.
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Figure 2. Results for a binary outcome. The sensitivity, specificity, positive predictive value (PPV),
negative predictive value (PPV), and false positive rate are displayed (as percent color fill of each
bar) for each statistical method, reflecting their ability to correctly identify the top ten simulated
metabolite associations across varying numbers of total metabolite measures (M = 200 or M = 2000)
in study samples collected from varying numbers of subjects (N = 200, N = 1000, or N = 5000). PCR,
principal components regression; BON, Bonferroni; FDR, false discovery rate; LASSO, lease absolute
shrinkage and selection operator; SPLS, sparse partial least squares; RF, random forests.

An equally important aspect of a statistical procedure is the identification of important
metabolites via variable selection or significance testing. Variable selection is not generally
possible with PCR and random forest analyses, precluding assessment of these approaches
for prioritizing individual metabolites. In either the continuous or binary settings, univari-
ate approaches performed worse as the number of study participants increased (Figures 1
and 2). While counterintuitive given that statistical performance in general is enhanced
with sample size, due to the frequently correlated nature of metabolomics data, false posi-
tives (i.e., variables identified as significantly associated but not pre-specified as directly
associated with the clinical outcome) increased substantially with univariate methods as a
result of these variables being selected due to their correlation with ‘true positive’ metabo-
lites (i.e., variables prespecified as directly associated with the clinical outcome) (Figures 1
and 2). This contributed to poor positive predictive value and reduced specificity for all of
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these approaches, both of which are important concerns for clinically relevant biomarker
discovery. Multivariate approaches, by contrast, do not suffer this same drawback, as
their performance improves as the sample size increases (Figures 1 and 2). In the case
of a continuous outcome, both LASSO and SPLS methods performed remarkably well,
with SPLS slightly outperforming LASSO in terms of positive predictive value, negative
predictive value, and number of false positives. An exception to this trend was seen in the
smallest-sizes samples (i.e., N = 50 or N = 100), wherein the false positive rate was higher
for SPLS than for LASSO models. Binary outcomes differed from statistical analysis of
continuous outcomes due to different performance for the respective estimators at different
sample sizes. In small sample sizes, univariate procedures with multiplicity correction
had the best positive predictive value among all estimators (Figure 3). As the sample
size increased to 1000 or 5000, multivariate approaches again outperformed univariate
procedures, as both LASSO and SPLSDA obtained the highest positive predictive value
and negative predictive value and the fewest false positives. Interestingly, for SPLSDA,
the positive predictive value decreased from N = 1000 to N = 5000 as the number of false
positives increased, although this was likely due to sensitivity of tuning parameter selection,
which is required for the application of sparse methods.
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Figure 3. Analysis of actual, experimentally derived metabolomics data. The number of metabolites
found in association with age (continuous outcome) and sex (binary outcome) from experimentally
derived metabolomics studies (see text) for different statistical methods: false discovery rate (FDR),
sparse partial least squares (SPLS), and least absolute shrinkage and selection operator (LASSO).
The number of metabolite correlates found in common by the different methods is relatively small
compared to the total number of apparently significantly associated metabolites.

Although we aggregated over all 10 significant metabolites to calculate measures of
method performance, differences in operating characteristics such as power likely cor-
respond with smaller effect sizes. While most methods identify associations with large
magnitudes of effect, potentially important discrepancies can become apparent for associa-
tions with smaller effect sizes. Thus, we also examined variation in power across a range
of effect sizes for different statistical approaches, and these results were concordant with
those of aggregated data (Figures S2 and S3).

We also simulated scenarios that included negative as well as positive between-
metabolite correlations in addition to pairs of highly intercorrelated metabolites repre-
senting molecular markers putatively derived from the same biological pathway. We
observed that the results of these additional simulations were very similar to those pro-
duced by the primary simulations and reported herein (Figures S4–S7), suggesting that
our overall findings from the simulated data are relatively consistent across variations in
simulated data structure. Collectively, these findings suggest the value of multivariate
approaches for identifying metabolite markers that are associated with clinical traits.

2.2. Statistical Analyses of Experimentally Derived Metabolomics Data

Although the results reported above put forth a statistical framework for consider-
ing analysis of clinical metabolomics based on analyses of simulated data, we sought
to compare our findings with those using actual “real world” experimentally derived
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metabolomics data. For these analyses, we used a nontargeted metabolomics-based panel
of 1933 metabolites measured across 2895 individuals (see Methods). We restricted attention
to the methods that would easily allow for individual variable (i.e., metabolite) importance
selection in the dataset, which precluded random forest and PCR from entering into the
analysis. Analyses using the three main statistical approaches (FDR, LASSO, and SPLS)
revealed overlap (Figure 3) for only a minority of the total detected associations between
metabolites and either a continuous variable (age) or a binary variable (sex).

We excluded from the Venn diagram the results from the Bonferroni correction, given it
produces a subset of the same metabolites chosen using the less conservative FDR correction.
We applied a false discovery rate of 0.1, which suggests that 10% of the metabolites on
average should be false discoveries. For both outcomes, use of FDR resulted in a large
number of statistically significant results, with >50% of all assayed metabolites (1281/1933
for age, 1312/1933 for sex) reaching the threshold, suggesting that an FDR correction of 0.1
was in fact detecting nearly all of the signals. The approaches rooted in sparsity, however,
obtained solutions with far fewer metabolite “hits”. In both cases, LASSO analysis resulted
in far fewer metabolites than FDR correction (206 for sex and 378 for age). By contrast, SPLS
provided far fewer metabolite hits than either LASSO or FDR correction (93 for sex and 37
for age). In the case of both age and sex, SPLS did not identify any new metabolites beyond
those found in the LASSO or FDR subsets. We found in this study that when implementing
cross-validation to estimate tuning parameters of SPLS and SPLSDA, the cross-validation
curve is relatively flat, an issue that has been previously encountered [8]. This suggests
that different levels of sparsity were equally supported by the data, and we chose to use
the sparsest option to identify the most important metabolites. SPLS is a relatively new
approach, for which these issues have not been well addressed; this differs for the LASSO
approach, wherein estimating the tuning parameter is straightforward using glmnet in
R [14]. We repeated all analyses in the Framingham Heart Study dataset, while including
an indicator variable for specimen batch in all models. As shown in Figure S8, results of
these analyses were similar to those in the original analyses.

To provide further context for these results, we used a basic network analysis to visual-
ize correlations between metabolite measures in the Framingham cohort and compared the
relative location of metabolites identified in association with age or sex by the univariate
and multivariate methods evaluated (Figure 4). We observed that univariate approaches
tend to identify highly intercorrelated metabolites, whereas multivariate approaches exhibit
a more parsimonious as well as broader selection of metabolites.

2.3. Results from Both Simulated and Experimentally Derived Data

The multiple statistical analysis approaches, when applied to both the simulated and
the experimentally derived data, produced relatively comparable results with respect to
very large numbers of metabolite markers identified by univariate compared to multivariate
methods. Of the multivariate methods evaluated, LASSO appeared to perform slightly
better than SPLS across the different types of simulated data structures, and especially those
involving larger numbers of metabolites (Figures 1 and 2). In comparison, SPLS appeared
to be more selective when applied to the experimentally derived dataset (Figure 3). Given
that selectivity alone is not necessarily a measure of true association, these results together
suggest that results of either SPLS or LASSO would be reasonable to consider in a clinical
study, particularly given that the metabolites SPLS identified as associated with either
the continuous or binary outcomes overlapped with those identified by the univariate or
alternate multivariate methods.
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Figure 4. Putative network distribution of metabolites identified by different methods used to
analyze cohort-based metabolomics data. The number of metabolites found in association with age
(continuous outcome) and sex (binary outcome) from experimentally derived metabolomics studies
(see text) for the different statistical methods applied was greater for traditional than for statistical
learning models. Notably, the former identified metabolites that tended to be highly correlated with
each other (Spearman rho ≥ 0.65), whereas the latter identified a more parsimonious number of
metabolites distributed across the putative network of all highly intercorrelated metabolites. BON,
Bonferroni; FDR, false discovery rate; LASSO, least absolute shrinkage and selection operator; SPLS,
sparse partial least squares.

3. Discussion

Through extensive simulation, we investigated the relative merits of traditional statis-
tical and statistical learning approaches for the analysis of human metabolite data. Using a
data structure based on real-world metabolite data with varying sample size, metabolite
number, and outcome measures, our results offer a framework for considering optimal
statistical approaches for a given study. We found that penalized approaches favoring
sparsity led to substantially improved inference for a wide range of scenarios. Both LASSO
and SPLS (SPLSDA for binary outcomes) provided reasonable results in all simulation
scenarios studied, identifying important metabolites without suffering from large numbers
of false positives. The only scenario wherein univariate procedures were most reliable
was when the sample size was small and the outcome was binary. With a binary outcome,
there is relatively little information available to identify associations among a very large
number of metabolites; thus, approaches that attempt to model all metabolites at once do
not perform as well with smaller sample sizes. Interestingly, we observed the counterin-
tuitive phenomenon that univariate procedures perform worse at identifying significant
metabolites as the sample size grows. This appeared to be due to the correlation structure
present in the data, which leads to a large number of false positives, and presents a finding
with important implications for future analyses of nontargeted metabolomics data.

Human metabolomics studies have historically relied on univariate approaches with
an FDR procedure, and less frequently a Bonferroni correction procedure, PCA, or PLSDA
without penalization, in the absence of any formal evaluation of optimal statistical methods.
While such approaches have proved useful in some respects for analyzing metabolite
data, our findings indicate that these approaches may suffer major drawbacks in certain
situations. Univariate approaches, as discussed above, can lead to misleading results when
the data are intercorrelated, as is nearly always the case in metabolomics studies given
common biochemical and biological origins. Other approaches such as PCA or PCR do not
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directly provide measures of statistical significance, although P values can be generated by
permutation testing to completement additional ad hoc measures of variable importance.
While metabolomics data may offer some unique challenges, including scale in metabolite
levels and missingness across a population, as well as biologically driven intercorrela-
tions, related molecular phenomics fields have similarly suggested that newer statistical
approaches may be of great value in identifying statistical significance and prioritization of
variables for biological follow up [13,15–19]. Our results suggest that approaches relying
on sparsity to perform variable selection lead to quite good performance with respect to all
the metrics examined and represent a path forward for future analyses. In particular, when
the number of metabolites was similar to or exceeded the number of study subjects, sparse
multivariate models exhibited robust statistical power with consistent results, as expected
given the design of methods that prioritize sparsity. Thus, nontargeted metabolomics
analyses of relatively small cohorts are most likely to benefit from using sparse multivariate
models in attempts to identify metabolites associated with a given outcome.

There is, in metabolomics, a strong interest in pathway analyses that might offer some
insight regarding the biological mechanisms underlying statistical associations observed
between metabolites and a given outcome. These approaches have been established for
the vast majority of standard metabolites; for novel metabolites, efforts made towards
compound identification can also benefit from pathway mapping, which can offer clues
regarding the likely identity of a given unknown molecule [20]. Thus, we elected to use
a relatively basic network analysis to visualize inter-metabolite associations and further
examine our main findings in this context. We found that univariate approaches tend
to identify highly intercorrelated metabolites, whereas multivariate approaches exhibit a
more parsimonious as well as broader selection of metabolites. In effect, these findings
also support the notion that multivariate compared to univariate approaches tend to select
metabolites representing putatively distinct and likely more-orthogonal biological path-
ways of potential importance and interest in relation to a given outcome. It is important to
note, however, that intercorrelated metabolites should not be interpreted as presumably re-
dundant in their potential representation of inter-related biology; in particular, a metabolite
in a pathway showing the strongest relationship with a given outcome may be perturbed
due to a distinct regulatory enzyme and may be downstream from an original event or
upstream from a mechanism causing the greatest clinical effect.

In our study, we found that multivariate approaches that assume some level of sparsity
by design (i.e., some metabolites have a very small effect on the outcome) perform with
the greatest efficiency for identifying important metabolites. Importantly, this conclusion
is based on settings in which the relationship between a metabolite and outcome is linear.
In the setting of nonlinearity, it is likely that random forest or other machine learning-
based approaches that allow for highly nonlinear relationships may be preferable, although
this would require more formal evaluation than provided herein. The value of sparse
multivariate analysis may be due to several potential reasons, including the large amount
of correlation between metabolites, which requires approaches to examine a metabolite
that are conditional to other metabolites. In addition, the fact that many metabolites indeed
have little to no association with an outcome of interest favors approaches that enforce
sparsity. With these results in mind, we can provide recommendations for future analysis
of high dimensional metabolite data. For larger (>1000) samples, multivariate approaches
based on sparsity provide a very reasonable strategy to identify important metabolites. In
small samples (<200), particularly for binary outcomes, there is no clear-cut ‘best’ method,
and the merits of each method depend heavily on the structure of the data. In these cases,
utilizing more than one analysis tool in conjunction could help identify key covariates.
Importantly, the goal of the study should be taken into account before selecting a statistical
approach. If false positives are very undesirable, then we recommend approaches such
as LASSO or SPLS that impose sparsity into the model and tend to eliminate presumably
less-relevant metabolites.
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Our findings can be used to guide the design of future studies, particularly those
for which investigators may be interested in estimating a minimum amount of statistical
power to detect an association of interest. If pre-existing knowledge of the distribution of
metabolite values and their correlation structure is available, either through preliminary
or previously analyzed data, then simulation studies similar to those described in this
manuscript could be performed. Investigators can use an observed correlation structure
to simulate a dataset of metabolite measures and then simulate outcomes given a known
range of effect sizes, from which power to detect these effects can be estimated for different
statistical approaches.

There are several limitations of the study that merit consideration. The primary find-
ings were based on simulated data, albeit data constructed based on the known structure
of an existing high-dimensional dataset derived from actual values in a human cohort. As
such, our results may have been influenced by the nature of the underlying artificially cre-
ated data structure. For this reason, we conducted parallel analyses in a de novo real-world
dataset of metabolomics performed in a community-based cohort, and observed results that
were largely consistent with those of the simulated data analyses. The observed substantial
difference in performance between traditional statistical and statistical learning methods
may well have emerged from the difference between univariate and multivariate methods.
Accordingly, investigators have suggested that in situations where intercorrelations among
predictor variables are expected, a permutation-based FDR approach to univariate analyses
should be considered [21]. The extent to which FDR with permutation, or similar variants
of univariate analyses, could effectively accommodate correlations and produce different
results remains unclear and a subject of ongoing research [6]. The Benjamini–Yekutieli
procedure can accommodate varying levels of intercorrelations, and further investigations
are needed to evaluate its performance in different data settings [22]. It also should be
emphasized that validity of results produced by any statistical model depends not only on
model characteristics but also on data quality, which relies on mass spectrometry methods
for correctly and consistently identifying metabolites from typical background artefacts [23].
Thus, all statistical analyses are at risk for results of association analyses to be biased to the
null due to technical misinterpretations of noise for signal. We did not directly assess po-
tential effects of confounders, including variable batch effects, given that ongoing efforts to
develop robust methods are still underway [24]. Importantly, we assigned the assumptions
of randomly distributed correlations and non-missingness as fixed attributes of the dataset
in order to focus on assessing results from variation in other dataset attributes; given that
neither of these assumptions can be made for real data, additional complementary inves-
tigations are needed to further understand how various strategies for handling different
patterns of intercorrelations and for handling different types of missingness may impact
performance for a given modeling method. It is also important to note that this manuscript
is focused on evaluating statistical approaches aimed at identifying metabolites associated
with a given outcome, wherein such associations could be based not only on mechanisms
directly involved in the relative increase or decrease in production of a given metabolite but
also on mechanisms that lie upstream to metabolite production (e.g., proximal enzymatic
regulators in a system that governs downstream metabolite production). In addition to
ascertaining putative mechanistic pathways, another goal in clinical metabolomics research
is to identify metabolites most important for predicting a given outcome; to this end, uni-
variate approaches may be equivalent or superior to multivariate approaches, and this is
an area that warrants future investigation.

In summary, our findings further indicate that statistical learning approaches aimed
at modeling a high-dimensional set of metabolites and their associations with a given
outcome warrant more attention in the literature. Taken together, our results suggest that
metabolomic analyses should shift towards use of multivariate approaches for identifying
distinct markers associated with clinical traits. Univariate approaches, while simple to use,
will identify large numbers of false positives when the metabolites are highly correlated
with each other—a problem ubiquitous in metabolomics research. If interest lies solely
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in finding large biologic pathways instead of causal markers (i.e., hypothesis-generating
analyses), then univariate approaches may still be useful.

When compared to traditional and frequently employed univariate approaches, sta-
tistical learning methods (such as LASSO or SPLS) offer effective and easy to implement
options for handling high-dimensional, correlated data of the nature that is commonly seen
in metabolomics. In fact, these approaches may well outperform many of the convention-
ally used methods across a wide variety of scenarios encountered in human metabolomics
studies.

4. Materials and Methods
4.1. Development of Simulated Metabolomics Dataset

We developed a series of simulated metabolomics datasets based on characteristic
data features seen in both experimental and human studies (small, case-controlled as well
as large cohort) using both targeted and nontargeted mass spectrometry. In particular, we
designed the datasets to include the range of structural characteristics typically observed
in human plasma metabolomics datasets.

Structural features with respect to outcomes included: (i) binary outcomes in small
studies of up to 200 individuals with an outcome frequency of 50%, representing case-
control studies with a 1:1 case/control ratio; (ii) binary outcomes in large studies with an
outcome frequency of 20% in cohorts with >200 individuals, representing larger observa-
tional cohort studies; (iii) continuous outcomes measured in all patients. Structural features
with respect to exposures included: (i) number of metabolites ranging from 200 (as is typical
of a targeted method) to 2000 (representative of an nontargeted method); (ii) metabolite
values following a normal distribution, which is similar to what is commonly observed
after a logarithmic or other transformation of the data; (iii) general positive correlation
between metabolites, with pairwise correlations randomly distributed around a mean of
+0.40 (with random distribution of correlations set as a fixed dataset attribute to allow for
a assessing variation in other attributes); (iv) clustering within the data such that large
groups of metabolites are highly correlated; and (v) the number of assigned ‘true’ positive
metabolites independently associated with the clinical outcome set to 10, with varying
effect sizes. The data structures are summarized in Table 1, and an example correlation
matrix induced by our simulation design is shown in Figure 5.

Table 1. Data structures used for analyses.

Dataset Outcome
Characteristics No. of Metabolites No. of Observations

(i.e., No. of Persons)

1 Continuous 200 200
2 Continuous 200 1000
3 Continuous 200 5000
4 Continuous 2000 200
5 Continuous 2000 1000
6 Continuous 2000 5000

7 Binary: 20%
frequency 200 200

8 Binary: 50%
frequency 200 1000

9 Binary: 50%
frequency 200 5000

10 Binary: 20%
frequency 2000 200

11 Binary: 50%
frequency 2000 1000

12 Binary: 50%
frequency 2000 5000
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Figure 5. Structure of the simulated dataset. To perform statistical analyses within a controlled
environment with pre-specified metabolite–outcome associations, we created a simulated dataset
based generally on data features observed in multiple real-world datasets. One such simulated dataset
demonstrates a scenario with multiple clusters of metabolites that have within-cluster correlation
but little cross-cluster, mimicking the inter-relationships observed in actual experimentally derived
human metabolomics studies [25–27].

4.2. Statistical Approaches for Analyzing Metabolomics Data

For comparison of analyses, we applied the following statistical methods to the sim-
ulated metabolomics datasets: (1) univariate analyses with multiple testing correction
using Bonferroni or false discovery rate (FDR) [28]; (2) principal component regression
(PCR) [29,30]; (3) sparse partial least squares (SPLS) [8,10]; (4) sparse partial least squares
discriminant analysis (SPLSDA) [8,9]; (5) random forest [7]; and (6) least absolute shrinkage
and selection operator (LASSO) [11]. Univariate analyses with multiple testing correction,
including Bonferroni correction or Benjamini–Hochberg correction for FDR, have been
applied in a variety of, predominantly targeted, metabolomics studies [31–33]. Of note, we
selected PCR instead of PCA given that PCR has also been applied in prior metabolomics
studies and reduces the dimension of the total number of metabolite variables while al-
lowing for feature selection. PCR first reduces the dimensionality of the metabolite data,
then uses the selected principal components in a regression model to predict the clinical
outcome variable. Importantly, the dimension-reduction step can allow the use of a regres-
sion model that otherwise could not be appropriately fit due to the number of metabolite
variables exceeding the number of study subjects. Finally, variable importance measures
were derived by reallocating the estimated regression coefficients to the metabolites that
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contributed to each of the chosen principal components. The PLS (partial least squares)
regression method maximizes the covariance between a matrix of metabolite variables and
the outcome variable, where the outcome is typically a continuous variable; for categorical
outcome variables, a variant called PLS discriminant analysis (PLSDA) [34] may be applied.
Either PLS or PLSDA serve to decompose metabolite and outcome data into latent struc-
tures and aim to maximize the covariance between these latent structures. The random
forest method employs a non-parametric ensemble approach to predicting an outcome from
metabolomics data by identifying presumably non-linear patterns that may account for
metabolite variation in relation to a particular outcome [7]. PCR, PLS, PLSDA, and random
forest all suffer from a similar problem when trying to identify important metabolites:
While they can rank-order the metabolites in terms of importance, there is no obviously
principled way to select a cutoff for which metabolites are ‘significantly’ associated with the
outcome. There exist ad hoc approaches to performing variable selection in some of these
contexts [35,36]; however, there is no consensus on the appropriate manner for selecting
important metabolites. Naïve approaches, such as simply taking the top K covariates
to be significant, can be applied, but their properties are not well-understood, and their
performance will vary greatly across datasets depending on the true number of significant
metabolites present. One way to overcome this issue is to use models that induce sparsity
in their respective coefficients. Sparsity refers to the assumption that, adjusting for all mea-
sured metabolites, the number of metabolites that are associated with the clinical outcome
(‘true’ positives) is far smaller than the overall number of metabolites. These methods differ
from dimensionality reduction techniques such as PCA in that the former models include
the association with the clinical outcome in the variable-selection process. Accordingly,
sparse procedures for PCA and similar models were originally developed to interpret high-
dimension data. The most popular of such approaches in the field of statistics is LASSO [11],
a method that regresses a given outcome on all metabolite variables simultaneously and
achieves parsimonious variable selection by applying a penalty to the magnitude of the
regression coefficients. Sparse methods provide automatic variable selection, which solves
the aforementioned issue that these methods only allow for variable-importance ranking.
Notably, sparse extensions of approaches such as PLS and PLSDA exist [7–10] and are
useful in metabolomics. FDR was implemented using the Benjamini–Hochberg procedure
with a false discovery rate of 0.1. Parameters of multivariate approaches such as LASSO,
SPLS, and SPLS-DA were selected using cross-validation. Variables were ranked based on
the magnitude of the absolute value of the relevant regression coefficients for LASSO, SPLS,
and PCR, while variable importance measures were used for random forest. Of note, while
univariate and multivariate approaches are often used in combination, we evaluated these
methods separately to clarify their distinct potential contributions to what can often exist
as a multi-stage data analysis workflow.

It is also important to clarify the distinction between variable selection and significance
testing. Methods such as LASSO or other sparse models do not perform significance testing
in the traditional sense of controlling type I error or testing hypotheses. Rather, they simply
identify a set of metabolites that are relatively important for predicting a given outcome.
Thus, herein, we will compare approaches aimed at identifying metabolites of greatest
interest in relation to a given outcome, wherein some approaches involve traditional
hypothesis testing, and others simply involve variable selection.

To compare the performance between statistical methods in this regard, we evaluated
the following metrics: (i) probability of identifying an assigned ‘true’ positive metabolite
through variable selection/significance testing as a function of the true effect size (among
those methods which allow for such identification); (ii) probability of identifying an as-
signed ‘true’ positive metabolite as a “top 10” metabolite based on effect size; (iii) average
number of false positive metabolites identified by variable selection/significance testing;
(iv) positive predictive value (PPV), the probability that a metabolite identified through
variable selection/significance testing is truly related to the clinical outcome; (v) negative
predictive value (NPV), the probability that a metabolite not identified is truly unrelated to
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the clinical outcome. These metrics were evaluated separately for continuous and binary
outcomes, with all analyses performed using Rv3.2.3 (R Development Core Team, Vienna,
Austria). To visualize the relatedness of metabolites, Spearman correlation coefficients were
estimated for all pairs of metabolites, and correlations above +0.75 were isolated, with
clusters of these correlations visualized using a D3 visualization framework [37]; within
this visualization, metabolites associated with sex and age via Bonferroni, FDR, SPLS, and
LASSO were highlighted.

4.3. Experimental Human Metabolomics Data

As part of the community-based Framingham Heart Study, the offspring cohort partic-
ipants underwent a standardized evaluation that included fasting blood sample collection
at their eighth examination in 2002–2005, as previously described [38]. All participants
provided informed consent and all protocols were approved by the institutional review
boards at Boston University Medical Center, Brigham and Women’s Hospital, and the
University of California, San Diego. Liquid chromatography–mass spectrometry (LC–MS)-
based metabolomics analysis was performed on all available (N = 2895) plasma samples
according to previously described protocols [39]. In brief, plasma samples were prepared
and analyzed using a Thermo Vanquish ultra-performance liquid chromatographer (UPLC)
coupled to a high-resolution Thermo QExactive orbitrap mass spectrometer. Metabolites
were isolated from plasma using protein precipitation with organic solvent followed by
solid phase extraction. Extracted metabolites underwent chromatographic separation using
reverse phase chromatography, whereby samples were loaded onto a Phenomenex Kinetex
C18 (1.7 µm, 2.1 × 100 mm) column and eluted using a 7 min linear gradient starting with
water:acetonitrile:acetic acid (70:30:0.1) and ending with acetonitrile:isopropanol:acetic acid
(50:50:0.02). LC was coupled to a high-resolution Orbitrap mass analyzer with electrospray
ionization operating in negative ion mode, with full scan data acquisition across a mass
range of 225 to 650 m/z. Thermo .raw data files were converted to 32-bit centroid .mzXML
using Msconvert (Proteowizard software suite), and resulting .mzXML files were analyzed
using Mzmine 2.21, as described in [39]. To eliminate redundant and non-metabolic chro-
matographic features, we applied the following filters: naturally occurring 13C isotopes
were consolidated under the monoisotopic peak; common adducts (i.e., H+, Na+, NH4

+,
and K+ for positive mode and H−, Cl−, and acetate for negative mode) were consolidated,
with the most-abundant species being reported; multiple charge states were consolidated
with the singly charged state, with the most-abundant being reported; and, common ESI
in-source fragments (e.g., loss of water) were removed. In addition, all chromatographic
features present in a sample blank subjected to the entire sample preparation protocol (with
the exception of water being used instead of plasma) were removed. Finally, all remaining
chromatographic features were manually inspected for quality in peak shape, retention
time consistency, and signal-to-noise ratio, with features exhibiting subpar characteristics
subsequently removed. Known compounds that are typically observed in human plasma
when applying this method are listed in Table S1.

From plasma collected from N = 2895 participants, a total of 1933 distinct metabo-
lites were measured with a non-missing value recorded for every participant. We log-
transformed and standardized all metabolites to have mean of 0 and standard deviation
of 1 due to the expectedly right-skewed nature of the data. Using the same statistical
analytical methods described above, we conducted analyses to identify distinct metabolites
demonstrating significant associations with age and sex. These phenotypes were specifi-
cally selected given both are basic factors available in almost all biomarker analyses, and
they allow for analysis of a continuous and binary outcome, respectively.

5. Conclusions

We examined the results of both traditional statistical and statistical learning methods
across a range of metabolomics datasets. We observed that when the number of metabolites
was similar to or exceeded the number of study subjects, as is common with nontargeted
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metabolomics performed in small cohorts, sparse multivariate models demonstrated the
most consistent results and the most statistical power. These findings have important
implications for the analysis of metabolomic studies of human disease.
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