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Abstract: To investigate the effects of rumen-protected choline (RPC) and rumen-protected nicoti-
namide (RPM) on liver metabolic function based on transcriptome in periparturient dairy cows,
10 healthy Holstein dairy cows with similar parity were allocated to RPC and RPM groups (n = 5).
The cows were fed experimental diets between 14 days before and 21 days after parturition. The RPC
diet contained 60 g RPC per day, and the RPM diet contained 18.7 g RPM per day. Liver biopsies were
taken 21 days after calving for the transcriptome analysis. A model of fat deposition hepatocytes was
constructed using the LO2 cell line with the addition of NEFA (1.6 mmol/L), and the expression level
of genes closely related to liver metabolism was validated and divided into a CHO group (75 µmol/L)
and a NAM group (2 mmol/L). The results showed that the expression of a total of 11,023 genes was
detected and clustered obviously between the RPC and RPM groups. These genes were assigned
to 852 Gene Ontology terms, the majority of which were associated with biological process and
molecular function. A total of 1123 differentially expressed genes (DEGs), 640 up-regulated and
483 down-regulated, were identified between the RPC and RPM groups. These DEGs were mainly
correlated with fat metabolism, oxidative stress and some inflammatory pathways. In addition,
compared with the NAM group, the gene expression level of FGF21, CYP26A1, SLC13A5, SLCO1B3,
FBP2, MARS1 and CDH11 in the CHO group increased significantly (p < 0.05). We proposed that
that RPC could play a prominent role in the liver metabolism of periparturient dairy cows by reg-
ulating metabolic processes such as fatty acid synthesis and metabolism and glucose metabolism;
yet, RPM was more involved in biological processes such as the TCA cycle, ATP generation and
inflammatory signaling.

Keywords: perinatal cows; rumen-protected choline; rumen-protected nicotinamide; transcriptomics;
metabolic syndrome

1. Introduction

The peripartum period, lasting from 3 weeks before and 3 weeks after parturition,
induces remarkable physiological and metabolic adaptations in mammals which are cru-
cial for a good reproductive performance and to ensure the suitable development of the
fetus and to provide adequate substrates that are needed in utero and following birth [1].
Simultaneously, cows may face immune system dysfunction and increased inflammatory
status, which are important factors limiting their ability to achieve optimal production per-
formance and immune metabolic status and may have a negative impact on the successful
transition of offspring from intrauterine to extrauterine [2]. Perinatal cows are subject to
the imbalance between energy demand and dietary energy intake, resulting in stimulation
of fat mobilization [3] and an elevated level of non-esterified fatty acids (NEFA) in the body.
When the elevated NEFA excesses the clearance limit of the body, there will be excessive
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accumulation of fat and its metabolites in the liver, such as ketone bodies, leading to fatty
liver and ketosis [4]. In addition, the excessive NEFA will also lead to oxidative stress [5],
rumen acidosis, protein metabolism imbalance and other metabolic syndromes [6]. These
metabolic disorders can increase the incidence of other diseases, such as placental retention
and endometritis, which will impair the immune system of cows, reduce the milk yield
and reproductive efficiency of cows, and cause serious economic losses [7–9]. To counteract
these negative effects, rumen-protected products are frequently added to the diet of dairy
cows during the periparturient period to maintain the physical condition of dairy cows,
enhance productivity performance and reduce economic losses.

Choline (2-hydroxyethyl trimethyl ammonium salt) is an essential nutrient for hu-
mans and animals which needs to be obtained from the diet in addition to endogenous
synthesis. Choline plays a significant role in cell maintenance and growth at various
stages of life, including neurotransmission [10], membrane synthesis, lipid transport and
one-carbon metabolism [11]. In the liver, choline can be used to synthesize phosphatidyl-
choline through the cytidine diphosphate–choline pathway and can also be oxidized to
betaine, which, through the phosphatidylethanolamine N-methyl transfer pathway, is used
to synthesize very-low-density lipoprotein (VLDL) to participate in lipid transport. It
has been found that the imbalance between the proportion of phosphatidylcholine and
phosphatidylethanolamine in the liver will affect the integrity of the cell membrane, leading
to cell damage and inflammatory reactions such as steatohepatitis [12]. In recent years,
accumulating evidence suggests that choline can regulate the metabolism and transport of
glucose and lipid, as well as the occurrence of oxidative stress in the body by regulating
the expression of related genes and activating signal pathways such as AMPK [13–15].
Moreover, a large number of animal experiments have shown that adding choline to the
diet of periparturient dairy cows could increase the level of VLDL [16,17], regulate fat
metabolism [18], relieve metabolic diseases such as fatty liver and ketosis [19,20], increase
milk yield [21,22], improve milk quality [23,24], maintain an animal’s physical condi-
tion [25,26], boost immune system [27,28], and also promote the growth performance of
offspring [29].

Nicotinamide is a member of water-soluble B vitamins, which can be served as a pre-
cursor to synthesize nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine
dinucleotide phosphate [30,31]. In the liver, nicotinamide can be converted and synthesized
from nicotinic acid. In addition, nicotinamide can also be produced through the hydrolysis
of nicotinamide adenine dinucleotide (NADH) and NAD+ by coenzyme β—Nicotinamide
adenine dinucleotide (NAD+). These metabolites can be directly used for ATP generation,
DNA synthesis and repair, as well as other metabolic pathways and cell signal transduc-
tions. Moreover, nicotinamide also plays an important role in the regulation of lipid and
energy metabolism, oxidative stress, mitochondrial dysfunction and other processes [32,33].
Plenty of studies indicate that the addition of nicotinamide and niacin can reduce the
levels of total cholesterol, triglyceride, high-density lipoprotein (HDL) cholesterol, LDL
cholesterol and VLDL cholesterol as well as improve dyslipidemia, alleviate adipose tissue
inflammation [34–36], and increase milk yield and the milk protein content of lactating
dairy cows [37,38].

However, the difference between choline and nicotinamide in liver metabolism and its
mechanism in periparturient dairy cows is still unclear. Therefore, in this study, we added
rumen-protected choline (RPC) and rumen-protected nicotinamide (RPM) to the diet of
periparturient dairy cows. We then performed a liver biopsy and explored the effects of
choline and nicotinamide on the liver metabolism of periparturient dairy cows and the
differences in their mechanisms based on transcriptome.

2. Materials and Methods
2.1. Animals and Sample Acquisition

Ten healthy Chinese Holstein pregnant cows with similar parity were selected and
randomly divided into 2 groups: the rumen-protected choline group (60 g/d RPC, active
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ingredient 15 g/d, purity 65%, the rumen bypass rate 80.3%) and the rumen-protected
nicotinamide group (18.7 g/d RPM, active ingredient 9.6 g/d, purity 60%, the rumen bypass
rate 85.6%). The experimental period lasted for 35 days, from 14 days before parturition
to 21 days after calving. During the monitoring period, the cows in health status and
1–2 parity delivered healthy, viable full-term calves.

The feeding and management of cattle were carried out in accordance with the pasture
management system. During the experimental period, two diets were prepared, namely,
the pre-partum diet and the post-partum diet. The diets were prepared in the form of
total mixed rations (TMR) and offered twice a day, at 07:00 and 16:00, respectively. All
experimental animals had free access to food and water. Liver biopsy was performed on
the 21st day after delivery (collected at 13:00 each time) by using a biopsy needle, and the
liver samples collected were quickly stored at −80 ◦C. All the experimental procedures in
the present study were conducted according to the Animal Protection Law based on the
Guide for the Care and Use of Laboratory Animals approved by the Ethics Committee of
Northwest A&F University.

2.2. Culture of Human Hepatocyte Line LO2

LO2 cells were cultured in Roswell Park Memorial Institute (RPMI) 1640 medium
(HyClone, Logan, UT, USA) containing 10% fetal bovine serum (Gibco BRL, Grand Island,
NY, USA), and the culture was performed at 37 ◦C under 5% CO2. To establish a cell
model of fatty liver in periparturient dairy cows, LO2 cells were plated into 6-well culture
plates to which was added 1.6 mmol/L NEFA subject to two treatments: CHO and NAM.
The CHO group contained 75 µmol/L choline in choline-free RPMI 1640 medium, and
the NAM group contained 2 mmol/L nicotinamide in nicotinamide-free medium. Before
treatment, cells were starved using choline-free RPMI 1640 medium (Gibco BRL, Grand
Island, NY, USA) and nicotinamide-free medium (Coolaber, Beijing, China), respectively,
without adding fetal bovine serum for 6 h. After starving, LO2 cells with experimental
treatment were incubated for 24 h. NEFA was formulated from palmitic acid (3.19 mmol),
palmitoleic acid (0.53 mmol), stearic acid (1.44 mmol), linoleic acid (0.49 mmol) and oleic
acid (4.35 mmol). All reagents without instructions were purchased from Sigma-Aldrich.

2.3. RNA Isolation and Quantitative Real-Time Polymerase Chain Reaction

Total RNA in cells was isolated with Trizol (Invitrogen). An amount of 1–2 µg of
total RNA was treated with DNAse (Invitrogen) and reverse transcribed into cDNA using
M-MLV Reverse Transcriptase (Accubate Biology, Changsha, China). Quantitative Real-
Time PCR (RT-PCR) was performed using SYBR® Select Master Mix (Accubate Biology,
Changsha, China) and the Roche LightCycler® 480 Real-Time PCR System. The 2−∆∆Ct

method was used to determine the relative quantitative gene expression levels, normalized
by β-actin (Tables 1 and 2) [39].

Table 1. Sequences of primers.

Target Gene Forward (5′-3′) Reverse (5′-3′)

FBP2 GTCACGTTAACGCTTCCTGC CTGCACTGCTGGCGTTTTAG
SLCO1B3 CACACTTGGGTGAATGCCCA ATGTGGTACCTCCTGTTGCAG
MARS1 GGGCTTCCAGCTGATGCTAT TGGACTCTCTGTAGCCACCA
FGF21 ATCGCTCCACTTTGACCCTG GGGCTTCGGACTGGTAAACA

CYP26A1 CCCTATGCTGTGGCTGCAAT CCAAGGGCTGACAAACTGGA
CDH11 GGGCTTCCAGCTGATGCTAT TGGACTCTCTGTAGCCACCA

SLC13A5 TGATGACGTAGGCACACCTG TTGACAATCCATGCCAGCCG
β-actin GCACTCTTCCAGCCTTCCTT AATGCCAGGGTACATGGTGG
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Table 2. The reaction system and condition of RT-PCR.

Reagent Name Volume (µL)

2× SYBR® Green Pro Taq HS Premix 5.0
Forward primer (10 µM) 0.5
Reverse primer (10 µM) 0.5

cDNA 4.0

Reaction conditions: 95 ◦C 30 s; 2 95 ◦C 5 s, 60 ◦C 30 s (40 cycles) (two-step algorithm)
Dissociation stage: 95 ◦C 10 s, 65 ◦C 60 s, 97 ◦C 1 s

2.4. RNA Isolation and cDNA Library Construction

Total RNA in liver biopsies was extracted, and the RNA concentration and purity
were determined using a Nanodrop2000 (Thermo Fisher Scientific, US). Agarose gel elec-
trophoresis was used to detect the integrity of RNA. An Agilent 2100 bioanalyzer was used
to measure the RNA value. The enriched mRNA was segmented then reverse synthesized
to cDNA, which completed the construction of the library to be sequenced. The following
conditions must be met for the creation of a single library to be sequenced: the total amount
of RNA ≤ 1 µg, the concentration ≥ 35 ng/µL, OD260/280 ≥ 1.8, OD260/230 ≥ 1.0. After
passing the quality inspection, the library was sequenced on the IlluminaNovaseq6000
platform, and the database was established by Shanghai Meiji Biomedical Technology Co.

2.5. Analysis of Differential Expression of Genes

The software DESeq2 based on negative binomial distribution was used to analyze the
differential expression of genes (DEGs). According to p-value and |log2 FC| as screening
conditions, log2 FC > 0 indicates gene expression is up-regulated and log2FC < 0 indicates
gene expression is down-regulated.

2.6. Analysis of DEG Enrichment

The software Goatools was used for GO (Gene Ontology) enrichment analysis of
genes/transcripts, and R script was used for KEGG (Kyoto encyclopedia of genes and
genomes) pathway enrichment analysis of genes/transcripts. Fisher’s Exact Test and the
Benjamin–Hochberg method was used to correct the p-value. Significance of GO enrichment
and KEGG enrichment was considered as a p-value < 0.05.

2.7. Statistical Analysis

MetaboAnalyst 5.0 (Wishart Research Group, Edmonton, AB, Canada) software was
used to perform orthogonal partial least squares-discriminant analysis (OPLS-DA) on
the samples from the RPC group and RPM group. A volcano plot was used to analyze
DEGs and their changes in each group, and a cluster heatmap was used to analyze the
gene expression patterns in each sample. Statistical significance was determined with IBM
SPSS Statistics 26.0. Data were represented as an average ± SD and treated with normal
distribution test. Student’s t-test was used for two-group comparisons. ** indicates p < 0.01,
*** indicates p < 0.001.

3. Results
3.1. Sequencing Data Quality Control

After sequencing data generation, the original sequencing data for each sample was
subjected to a quality assessment such as the base group’s error rate and content distribu-
tion, and quality control was carried out to obtain high-quality control data (clean data).
The Q20 and Q30 quality values were 97.51% and 93.02%, respectively. The GC content
ratio was within an acceptable range, which indicated that the sequencing results were
reliable and could be used for subsequent results analysis (Supplementary Table S1).



Metabolites 2023, 13, 594 5 of 16

3.2. Analysis of DEGs

Transcripts with an absolute value of |log2 FC| ≥ 1 and adjusted p-value < 0.05 were
defined as significant DEGs. A total of 11,023 genes were expressed in all 10 samples, while
828 genes were specifically expressed in the RPC group and 481 were specifically expressed
in the RPM group (Supplementary Figure S1). From the comparisons between these two
groups, 1123 DEGs were identified, 640 up-regulated and 483 down-regulated (Figure 1;
Supplementary Table S2). The cluster heatmap analysis was performed on the identified
DEGs, as shown in Figure 2, which shows that the samples from the RPC and RPM groups
had obvious clustering. OPLS-DA analysis showed that the samples from the RPC and
RPM groups were significantly separated (Figure 3).
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Figure 1. Volcano plot of DEGs. The corrected p-value is p−adjust. Each dot represents a gene in
which red represents significant up-regulation of gene expression and green represents significant
down-regulation of gene expression. The closer the point is to the two sides and the upper side, the
more significant the difference is.

Table 3 listed the top 30 DEGs, including FARS2, NOTUM, CYP2C19, KCNN2, CYP26A1,
SLCO1B3, HRG, CES1, CD1D, FBP2, SEC14L3, PLEK, TKT, BIRC5, FGF21, FUT1, CDH11,
DTX1, ATP6V1C2, SLC13A5, LRRC73, HOPX, MICAL2, GPC3, ADCY2, GLI1, MARS1, IN-
HBE, CARS1, CITED4, etc. The genes with up-regulated expression levels included FARS2,
NOTUM, CYP2C19, KCNN2, CYP26A1, SLCO1B3, HRG, CES1, CD1D, FBP2, SEC14L3,
PLEK, TKT, BIRC5. The genes with down-regulated expression levels included FGF21,
FUT1, CDH11, DTX1, ATP6V1C2, SLC13A5, LRRC73, HOPX, MICAL2, GPC3, ADCY2, GLI1,
MARS1, INHBE, CARS1, and CITED4.
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Table 3. Top 30 DEGs identified in RPC and RPM groups.

Gene Name Gene Description Log2FC
(RPC/RPM) * p-Value

FARS2 phenylalanyl-tRNA synthetase 2, mitochondrial 1.757 1.31 × 1013

FGF21 fibroblast growth factor 21 −4.535 5.77 × 1013

NOTUM notum, palmitoleoyl-protein carboxylesterase 2.310 1.13 × 1012

CYP2C19 cytochrome P450, family 2, subfamily C, polypeptide 19 2.894 2.58 × 1012

KCNN2 potassium calcium-activated channel subfamily N
member 2 2.163 5.49 × 1012

FUT1 fucosyltransferase 1 −5.524 2.32 × 1012

CYP26A1 cytochrome P450, family 26, subfamily A, polypeptide 1 3.315 7.46 × 1011

CDH11 cadherin 11 −3.201 2.64 × 1010

DTX1 deltex E3 ubiquitin ligase 1 −2.872 4.29 × 1010

ATP6V1C2 ATPase H+ transporting V1 subunit C2 −4.079 5.57 × 1010

SLC13A5 solute carrier family 13 member 5 −2.369 1.53 × 109

LRRC73 leucine-rich repeat-containing 73 −3.907 4.41 × 109

HOPX HOP homeobox −3.070 4.68 × 109

SLCO1B3 solute carrier organic anion transporter family
member 1B3 1.089 5.55 × 109

MICAL2 microtubule-associated monooxygenase, calponin and
LIM domain-containing 2 −2.959 1.36 × 108

GPC3 glypican 3 -1.830 3.69 × 108

ADCY2 adenylate cyclase 2 −3.537 7.04 × 107

HRG histidine-rich glycoprotein 1.666 1.02 × 107

GLI1 GLI family zinc finger 1 −3.446 1.10 × 107

CES1 carboxylesterase 1 (monocyte/macrophage serine
esterase 1) 2.000 2.08 × 107

CD1D CD1D antigen, d polypeptide 1.810 4.24 × 107

FBP2 fructose-bisphosphatase 2 3.167 4.36 × 107

MARS1 methionyl-tRNA synthetase 1 −2.070 4.71 × 107

SEC14L3 SEC14-like lipid binding 3 4.21 5.31 × 107

INHBE inhibin subunit beta E −2.277 8.08 × 107

CARS1 cysteinyl-tRNA synthetase 1 −1.218 1.71 × 106

PLEK pleckstrin 1.545 1.72 × 106

TKT transketolase 1.009 1.75 × 106

CITED4 Cbp/p300-interacting transactivator with Glu/Asp-rich
carboxy-terminal domain 4 −2.026 2.22 × 106

BIRC5 baculoviral IAP-repeat-containing 5 2.703 2.34 × 106

* RPC = rumen-protected choline; RPM = rumen-protected nicotinamide.

3.3. Analysis of Differential Gene Enrichment

The GO analysis was performed to detect the function of the identified DEGs. The
268 DEGs were enriched in 44 GO terms, including 20 terms in biological process (BP),
13 terms in cellular component (CC), and 10 terms in molecular function (MF) (Figure 4).
Table 4 shows the top 20 items under GO enrichment which are mainly involved with
terms relating to fat anabolic processes, including lipid metabolic process, small molecule
metabolic process, cellular hormone metabolic process, xenobiotic metabolic process, extra-
cellular space, monooxygenase activity, organic acid metabolic process, oxoacid metabolic
process, hormone metabolic process, carboxylic acid metabolic process, monocarboxylic
acid metabolic process, oxidoreductase activity, tetrapyrrole binding, chemokine activity,
steroid metabolic process, detoxification, fatty acid omega-hydroxylase activity, steroid
hydroxylase activity, etc.
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that secondary classification on the alignment. BP = biological process; CC = cellular component;
MF = molecular function.

Table 4. Top 20 enriched GO terms among DEGs. BP = biological process; CC = cellular component;
MF = molecular function.

GO ID Category Description p-Value Counts

GO:0006629 BP lipid metabolic process 1.18 × 106 29
GO:0044281 BP small molecule metabolic process 1.56 × 106 40
GO:0034754 BP cellular hormone metabolic process 3.39 × 106 8
GO:0006805 BP xenobiotic metabolic process 4.33 × 106 7
GO:0005615 CC extracellular space 2.60 × 106 33
GO:0004497 MF monooxygenase activity 3.61 × 106 10
GO:0005737 CC cytoplasm 5.73 × 106 88
GO:0006082 BP organic acid metabolic process 7.52 × 106 23
GO:0043436 BP oxoacid metabolic process 1.41 × 105 22
GO:0042445 BP hormone metabolic process 1.64 × 105 9
GO:0019752 BP carboxylic acid metabolic process 1.78 × 105 21
GO:0110165 CC cellular anatomical entity 2.00 × 105 236

GO:0032787 BP monocarboxylic acid
metabolic process 3.31 × 105 15

GO:0016712 MF

oxidoreductase activity, acting on
paired donors, with incorporation
or reduction in molecular oxygen,
reduced flavin or flavoprotein as
one donor, and incorporation of

one atom of oxygen

2.96 × 105 5

GO:0046906 MF tetrapyrrole binding 3.25 × 105 10
GO:0008009 MF chemokine activity 4.86 × 105 5
GO:0008202 BP steroid metabolic process 8.63 × 105 9
GO:0098754 BP detoxification 9.17 × 105 7

GO:0102033 MF fatty acid omega-hydroxylase
activity 9.08 × 105 2

GO:0008395 MF steroid hydroxylase activity 9.33 × 105 5
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Pathway-based analysis was conducted via KEGG to ulteriorly investigate the bi-
ological functions of these DEGs. A total of 27 pathways significantly enriched in two
groups were identified, which are mainly related to fat metabolism and oxidative stress
(Table 5), including retinol metabolism, metabolism of xenobiotics by cytochrome P450,
steroid hormone biosynthesis, pyrimidine metabolism, bile secretion, drug metabolism -
cytochrome P450, viral protein interaction with cytokine and cytokine receptor, linoleic acid
metabolism, arachidonic acid metabolism, chemokine signaling pathway, aminoacyl-tRNA
biosynthesis, longevity regulating pathway - worm, inflammatory mediator regulation
of TRP channels, pentose phosphate pathway, chemical carcinogenesis - reactive oxygen
species, purine metabolism, glutathione metabolism, GnRH secretion, cortisol synthesis
and secretion, ovarian steroidogenesis, ascorbate and aldarate metabolism, complement
and coagulation cascades, etc. (Figure 5).
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Table 5. Top 20 enriched KEGG pathways of DEGs.

Pathway ID KEGG Pathways p-Value Counts

map00830 Retinol metabolism 5.95 × 108 9
map05204 Chemical carcinogenesis - DNA adducts 3.54 × 108 9
map00980 Metabolism of xenobiotics by cytochrome P450 9.19 × 106 7
map00140 Steroid hormone biosynthesis 3.57 × 105 7
map05207 Chemical carcinogenesis - receptor activation 3.44 × 105 11
map00983 Drug metabolism - other enzymes 3.07 × 105 7
map00240 Pyrimidine metabolism 5.39 × 105 6
map04976 Bile secretion 0.00018 7
map00982 Drug metabolism - cytochrome P450 0.00058 5

map04061 Viral protein interaction with cytokine and
cytokine receptor 0.00076 6

map00591 Linoleic acid metabolism 0.00165 4
map00590 Arachidonic acid metabolism 0.00563 5
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Table 5. Cont.

Pathway ID KEGG Pathways p-Value Counts

map04062 Chemokine signaling pathway 0.01122 7
map00970 Aminoacyl-tRNA biosynthesis 0.01591 3
map04212 Longevity regulating pathway - worm 0.02022 5
map04060 Cytokine-cytokine receptor interaction 0.02835 8

map04750 Inflammatory mediator regulation of TRP
channels 0.03684 4

map00030 Pentose phosphate pathway 0.03520 2
map05208 Chemical carcinogenesis - reactive oxygen species 0.02709 8
map00230 Purine metabolism 0.03055 5

3.4. Effects of Choline and Nicotinamide on Gene Expression Related to Liver Metabolism

Based on the above analysis results, in order to further verify the effect of choline and
nicotinamide on liver metabolic function, the mRNA expression of some DEGs (FGF21,
CYP26A1, SLC13A5, SLCO1B3, FBP2, MARS1, CDH11) associated with liver metabolic
function was tested. As shown in Figure 6, compared with the NAM group, the gene
expression of FGF21, CYP26A1, SLC13A5, SLCO1B3, FBP2, MARS1, CDH11 in the CHO
group increased significantly (p < 0.05).
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expression of FBP2. (F) mRNA expression of MARS1. (G) mRNA expression of CDH11. ** indicates
p < 0.01, *** indicates p < 0.001.

4. Discussion

The severe negative energy balance in periparturient dairy cows stimulates a large
amount of body fat mobilized to support the energy demand of animals, resulting in the
disorder of fat metabolism, particularly in the liver. Numerous studies have found that
dietary choline and dietary nicotinamide supplementation can effectively alleviate the oc-
currence of metabolic diseases such as fatty liver, oxidative stress and inflammation [40–42].
This study compared the transcriptomic differences in liver metabolism in periparturient
dairy cows with the addition of RPC and RPM, identified differential genes and pathways,
and discussed the differences between choline and nicotinamide on liver metabolism at the
transcriptome level.
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In the present study, 640 genes up-regulated by the addition of RPC or RPM and
483 genes down-regulated by the addition of RPC or RPM were identified; the top 20 GO
items were mainly involved in fat anabolic processes. The top two DEGs were phenylalanyl-
tRNA synthetase 2 and fibroblast growth factor 21. Fibroblast growth factor 21 (FGF21),
a member of the fibroblast 19 subfamily, is synthesized by the liver and regulated by
peroxisome proliferators-activated receptors-α, carbohydrate response element binding
protein and other reaction elements. It can act directly on liver cells as a paracrine or
autocrine hormone and can also enter the systemic circulation and act on other tissues
and organs to regulate glucose, lipid and energy metabolism [43,44]. Some researchers fed
FGF21 knockout mice with a ketogenic diet and found that fat levels in the plasma of the
mice were increased, obvious steatosis occurred, and the regulatory function of ketogenesis
and sugar metabolism was impaired [45,46]. The chronic accumulation of triglycerides in
the liver improves the β-oxidation rate of fatty acids in liver cells. When the energy supply
from fatty acid oxidation exceeds the energy demand, it leads to the formation of reactive
oxygen species, which, in turn, cause oxidative stress, thus inducing an increase in the
synthesis of FGF21 [47,48]. It is worth noting that FGF21 can respond to low protein levels
in the body to increase its own circulation and increase energy consumption to cope with
the increase in calorie intake [44,49]. The results of the gene expression levels of FGF21
between two treatment groups showed that choline probably produces an effect on liver
fat metabolism and reduces body energy consumption by up-regulating the level of FGF21.
However, the reason for the reverse change of FGF21 expression under the influence of
choline and nicotinamide needs to be further explored.

The top KEGG pathway of the DEGs in response to the RPC and RPM addition was
for retinol metabolism in this study. Vitamin A can be stored in hepatic stellate cells in the
form of retinol and provide vitamin A for various tissues of the body. All-trans-retinoic
acid is an important active metabolite of vitamin A, and excessive retinoic acid levels in
the body will cause changes in physiological functions of the body [50,51]. Retinoic acid
hydroxylase CYP26A1 is very important for decomposing exogenous retinoic acid [52].
The results of the cell experiment show that the gene level of Cyp26a1 in the CHO group
was significantly higher than that in the NAM group, indicating that choline can regulate
retinoic acid hydroxylase to regulate liver retinol metabolism and maintain its level balance.

Subsequently, the genes closely related to liver metabolism among the DEGs to clarify
the differences in the regulation of liver metabolism by choline and nicotinamide were
further discussed. The solute carrier family 13 member 5 (SLC13A5) used to mediate citrate
transport is mainly expressed in the liver of mammals. As a key intermediate of the tricar-
boxylic acid (TCA) cycle, citrate plays a key role in the cell metabolism of carbohydrates
and fatty acids, as well as energy generation in mitochondria, and can also be served for
the biosynthesis of triglycerides, fatty acids, cholesterol and low-density lipoprotein [53,54].
Brachs et al. (2016) found that in the Slc13a5 knockout of mice fed with a high-fat diet, toler-
ance to insulin resistance and fat deposition induced by the high-fat diet was increased [55].
The expression of Slc13a5 was also increased in the model of type-2-diabetes rats [56].
In addition, some researchers found that the level of intracellular citrate and phospho-
lipid was significantly reduced after silencing the Slc13a5 in HepG2 and Huh7 cells [57].
Solid carrier organic animion transporter family member 1B3 (SLCO1B3, also known as
OATP1B3) is a member of the solute transporter superfamily, which is mainly expressed
in the basolateral membrane of hepatocytes. It can transport a variety of endogenous and
xenobiotic compounds (such as prostaglandins, steroid hormone conjugates, bilirubin, bile
acid, and thyroid hormone) to liver cells for metabolism [58,59]. It has been found that the
new splice of OATP1B3, cancer-type OATP1B3, can up-regulate the expression of carnitine
palmitoyl transfer and NADH: ubiquinone oxidoreductase subunit A2 through interaction
with insulin-like growth factor 2 mRNA-binding protein 2, thereby promoting fatty acid
β-oxidative and mitochondrial oxidative phosphorylation activities and increasing ATP
production. This results in the formation of plate-like pseudopodia and migration and the
invasion of high-grade serous ovarian cancer cells [60]. Sec14-like proteins belong to typical
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class III phosphatidylinositol transfer proteins, which can transfer phosphatidylinositol
and PC between different biological membranes, exchange phosphatidylinositol to PC, and
vice versa, so as to maintain membrane–lipid balance [61,62]. This study found that the
expression levels of SLC13A5 and SLCO1B3 in the CHO group were significantly higher
than that in the NAM group, showing that choline may regulate energy metabolism and
material transport of the liver by up-regulation of SLCO1B3, thereby improving fat metabo-
lite accumulation and energy imbalance. Nicotinamide may reduce the accumulation of
citrate by promoting the TCA cycle, allowing the metabolites of citrate, acetyl coenzyme A
and oxaloacetate to flow towards ATP synthesis rather than fatty acid synthesis, resulting
in the lower gene expression of SLC13A5.

Analysis of DEGs revealed a significant increase in the expression levels of FBP and
transaminase in the RPC group. Fructose diphosphatase (FBP) can not only regulate
the glucose/glycogen synthesis of carbohydrate precursors but can also interact with
proteins (such as ATP synthase, HIF1-α and NF-κB) to influence cell-cycle-dependent
events, mitochondrial biogenesis and membrane polarization, expression of glycolytic
enzymes, induction of synaptic plasticity, and even cancer progression [63]. Transketolase,
a key enzyme of the pentose phosphate pathway that is ubiquitous in all organisms,
provides a special connection between glycolysis and the non-oxidation period of the
pentose phosphate pathway [64]. The study of LO2 cells suggests that the expression level
of FBP significantly increased under the regulation of choline, indicating that choline may
regulate the process of liver glucose metabolism through FBP and transketolase.

Methyl tRNA synthetase 1 (MARS1) and glycyl tRNA synthetase 1 (GARS1) belong to
aminoacyl tRNA synthetases (ARSs). Aminoacyl tRNA synthetases, one of the potential
markers of pneumonia, are generally used for protein synthesis and can interact with
proteins in the signal pathway of the mammalian target of rapamycin 1, cyclin-dependent
kinases 4 and the vascular endothelial growth factor receptor [65–67]. Several studies have
found that inhibitors of aminoacyl tRNA synthetases have been used in the treatment of
many diseases [68–70]. Fibroblasts will lose the function of matrix remodeling under patho-
logical conditions, leading to tissue destruction and fibrosis [71,72]. Cadherin (cadherin-11,
CDH11) is a mesenchymal cadherin that can be expressed in fibroblasts of various tissues
and is also a marker and functional regulator of fibroblasts and can mediate homotypic
cell adhesion that is important in histomorphogenesis and structure [73,74]. In CDH11-
knocked diet-induced obese mice, inflammation was reduced and blood glucose levels
were controlled [75]. The result of cell assays found that, compared with the CHO group,
the levels of formyl tRNA synthetase 1 and CDH11 genes in the NAM group decreased
significantly. Thus, it can be concluded that nicotinamide may affect liver inflammation
by regulating the gene expression of MARS1, CDH11 and their related signal pathways,
thereby preventing the occurrence of liver diseases.

The GO pathway enrichment analysis of the differential genes between RPC and RPM
showed that the enriched pathways were mainly associated with the metabolic processes
of lipid, cytokine, carboxylic acid, organic acid, oxoacid, and the activity of fatty acid
omega-hydroxylase, steroid hydroxylase, oxidoreductase, chemokine, etc. The different
metabolic pathways enriched by the KEGG pathway indicated that the differences between
choline and nicotinamide in the regulation of liver metabolism were mainly manifested
in fat metabolism, biosynthesis, drug metabolism, etc. This may be due to the fact that
choline can also regulate the metabolism process of fat and energy in the liver as well as
related signals of oxidative stress and inflammation as a signal, in addition to catabolizing
into other substances and then participating in membrane biosynthesis, fat metabolism
and transportation, and other substance synthesis [14,75]. Nicotinamide is mostly used to
synthesize NAD for energy supply after entering the liver, to maintain the level of reduced
glutathione and thioredoxin in the antioxidant system, and to participate in cell energy
metabolism and other processes.
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5. Conclusions

In this study, the effects of RPC and RPM on the liver transcriptome of perinatal cows
were investigated, and 1123 DEGs and 27 different KEGG pathways were identified, mainly
including retinol metabolism, metabolism of xenobiotics by cytochrome P450, steroid
hormone biosynthesis, pyrimidine metabolism, bile secretion, linoleic acid metabolism,
arachidonic acid metabolism, chemokine signaling pathway, aminoacyl-tRNA biosynthesis,
purine metabolism, glutathione metabolism, etc. The expression levels of genes related to
liver metabolism were identified, and it was found that, compared with the niacinamide
group, the choline group could up-regulate the expression levels of FGF21, CYP26A1,
SLC13A5, SLCO1B3, FBP2, MARS1, and CDH11. Overall, this study shows that RPC plays
a prominent role in liver metabolism by regulating metabolic processes such as fatty acid
synthesis and metabolism and glucose metabolism. Yet, RPM is more involved in biological
processes such as the TCA cycle, ATP generation and inflammatory signaling.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo13050594/s1, Supplementary Figure S1: Venn analysis
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