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Metabolomics generates a vast amount of data and heavily relies on data science for
biological interpretation. By employing techniques from statistics, mathematics, computer
science, and information science, data science aids in extracting valuable insights from large-
scale metabolomics data. The Special Issue entitled ‘Data Science in Metabolomics’ focuses
on data science applications in metabolomics and provides research articles and reviews
that summarize major advancements and current challenges in this rapidly evolving
field [1].

Traditional data analysis is predominantly centered on comparing the intensity values
of features. However, intensity data can greatly vary due to factors such as different experi-
mental batches, instruments, and pre-processing techniques or parameters [2]. Two novel
approaches have been proposed to simplify intensity data using binary conversion [2,3].
Traquete et al. introduced binary simplification encoding for downstream analysis, in-
cluding metabolic marker discovery [2]. Their method only considers the occurrence of
spectral features by encoding feature presence and absence as binary. This approach per-
forms consistently well, if not better, than traditional intensity-based methods. Kim et al.
introduced the application of binary similarity measures in compound identification [3].
They illustrated the critical role of binary similarity measures in structure-based compound
identification, demonstrating that the Fager–McGowan measure is more robust than the
well-known Jaccard measure. Henglin et al. highlighted the importance of multivariate
models for nontargeted metabolomics, particularly given the relatively small cohorts with a
significant correlation between metabolites [4]. They demonstrated that sparse multivariate
models exhibit robust statistical power and yield more consistent results.

Data science has made significant contributions to metabolomics by not only pro-
ducing various open-source or commercial software packages but also by facilitating the
sharing of experimental data and metadata through public data repositories. Many tools in-
corporate hundreds of functions and parameters for optimal data pre-processing, providing
significant flexibility to experienced users but potentially overwhelming for inexperienced
users. To enhance usability, even for occasional users, Nicolotti et al. streamlined the
pre-processing of metabolomics mass spectrometry data and introduced an R workflow
package, MStractor [5]. Powell and Moseley released an open-source Python package,
‘mwtab’, to improve curation and fairness for the Metabolomics Workbench (MW) repos-
itory [6]. The ‘mwtab’ package supports MW’s JSON-formatted analysis files, includes
new validation functions for data deposition and meta-analyses, and offers extended
functionality for interacting with non-‘mwTab’ MW data. These tools demonstrate the
integration of data science techniques with metabolomics, enabling efficient data processing
and advanced data interpretation.

The interaction between metabolomics and data science has led to numerous applica-
tions within the field of metabolomics. Davic and Cascio developed a microfluidic-laser-
induced fluorescence system for detecting ultra-trace levels of primary fatty acid amines [7],
and Kim et al. presented a comparative study of methods for controlling the false discovery
rate in omics data analysis [8]. Sommariva et al. provided an in-depth review of the
construction and numerical optimization of compartmental models in tracer kinetics for
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positron emission tomography [9]. Krishnan and Soldati-Favre focused on recent advance-
ments in computational methods and high-throughput omics techniques used to study
metabolic functions in the context of intracellular parasitism, with specific attention paid to
human-infecting pathogens: Toxoplasma gondii and Plasmodium falciparum [10].

As the complexities of metabolomic data continue to increase, the role of advanced
data science methodologies in unlocking its full potential becomes ever more pivotal.

Funding: This work has been partially supported by the National Institute of Health (NIH) grant
R21GM140352, and the Biostatistics and Bioinformatics Core is supported, in part, by NIH Center
grant P30 CA022453 to the Karmanos Cancer Institute at Wayne State University.

Conflicts of Interest: The author declares no conflict of interest.

References
1. MDPI. Special Issue “Data Science for Metabolomics”. Metabolites. Available online: https://www.mdpi.com/journal/

metabolites/special_issues/Data_Science_Metabolomics (accessed on 16 July 2023).
2. Traquete, F.; Luz, J.; Cordeiro, C.; Sousa Silva, M.; Ferreira, A.E.N. Binary Simplification as an Effective Tool in Metabolomics

Data Analysis. Metabolites 2021, 11, 788. [CrossRef] [PubMed]
3. Kim, S.; Kato, I.; Zhang, X. Comparative Analysis of Binary Similarity Measures for Compound Identification in Mass

Spectrometry-Based Metabolomics. Metabolites 2022, 12, 694. [CrossRef] [PubMed]
4. Henglin, M.; Claggett, B.L.; Antonelli, J.; Alotaibi, M.; Magalang, G.A.; Watrous, J.D.; Lagerborg, K.A.; Ovsak, G.; Musso, G.;

Demler, O.V.; et al. Quantitative Comparison of Statistical Methods for Analyzing Human Metabolomics Data. Metabolites 2022,
12, 519. [CrossRef] [PubMed]

5. Nicolotti, L.; Hack, J.; Herderich, M.; Lloyd, N. MStractor: R Workflow Package for Enhancing Metabolomics Data Pre-Processing
and Visualization. Metabolites 2021, 11, 492. [CrossRef] [PubMed]

6. Powell, C.D.; Moseley, H.N.B. The mwtab Python Library for RESTful Access and Enhanced Quality Control, Deposition, and
Curation of the Metabolomics Workbench Data Repository. Metabolites 2021, 11, 163. [CrossRef] [PubMed]

7. Davic, A.; Cascio, M. Development of a Microfluidic Platform for Trace Lipid Analysis. Metabolites 2021, 11, 130. [CrossRef]
[PubMed]

8. Kim, S.J.; Oh, Y.; Jeong, J. Comprehensive Comparative Analysis of Local False Discovery Rate Control Methods. Metabolites 2021,
11, 53. [CrossRef] [PubMed]

9. Sommariva, S.; Caviglia, G.; Sambuceti, G.; Piana, M. Mathematical Models for FDG Kinetics in Cancer: A Review. Metabolites
2021, 11, 519. [CrossRef] [PubMed]

10. Krishnan, A.; Soldati-Favre, D. Amino Acid Metabolism in Apicomplexan Parasites. Metabolites 2021, 11, 61. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.mdpi.com/journal/metabolites/special_issues/Data_Science_Metabolomics
https://www.mdpi.com/journal/metabolites/special_issues/Data_Science_Metabolomics
https://doi.org/10.3390/metabo11110788
https://www.ncbi.nlm.nih.gov/pubmed/34822446
https://doi.org/10.3390/metabo12080694
https://www.ncbi.nlm.nih.gov/pubmed/35893261
https://doi.org/10.3390/metabo12060519
https://www.ncbi.nlm.nih.gov/pubmed/35736452
https://doi.org/10.3390/metabo11080492
https://www.ncbi.nlm.nih.gov/pubmed/34436433
https://doi.org/10.3390/metabo11030163
https://www.ncbi.nlm.nih.gov/pubmed/33808985
https://doi.org/10.3390/metabo11030130
https://www.ncbi.nlm.nih.gov/pubmed/33668377
https://doi.org/10.3390/metabo11010053
https://www.ncbi.nlm.nih.gov/pubmed/33466792
https://doi.org/10.3390/metabo11080519
https://www.ncbi.nlm.nih.gov/pubmed/34436460
https://doi.org/10.3390/metabo11020061
https://www.ncbi.nlm.nih.gov/pubmed/33498308

	References

