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Abstract: Pregnancy at an advanced maternal age is considered a risk factor for adverse maternal,
fetal, and neonatal outcomes. Here we investigated whether maternal age could be associated with
differences in the blood levels of newborn screening (NBS) markers for inborn metabolic disorders
on the Recommended Universal Screening Panel (RUSP). Population-level NBS data from screen-
negative singleton infants were examined, which included blood metabolic markers and covariates
such as age at blood collection, birth weight, gestational age, infant sex, parent-reported ethnicity,
and maternal age at delivery. Marker levels were compared between maternal age groups (age
range: 1544 years) using effect size analyses, which controlled for differences in group sizes and
potential confounding from other covariates. We found that 13% of the markers had maternal age-
related differences, including newborn metabolites with either increased (Tetradecanoylcarnitine
[C14], Palmitoylcarnitine [C16], Stearoylcarnitine [C18], Oleoylcarnitine [C18:1], Malonylcarnitine
[C3DC]) or decreased (3-Hydroxyisovalerylcarnitine [C5OH]) levels at an advanced maternal age
(≥35 years, absolute Cohen’s d > 0.2). The increased C3DC levels in this group correlated with a
higher false-positive rate in newborn screening for malonic acidemia (p-value < 0.001), while no
significant difference in screening performance was seen for the other markers. Maternal age is
associated with inborn metabolic differences and should be considered together with other clinical
variables in genetic disease screening.

Keywords: maternal age; newborn metabolites; inborn errors of metabolism; public health; newborn
screening; precision medicine

1. Introduction

The age of first-time mothers has been increasing in the United States, with the
mean maternal age for the first childbirth increasing from 21.4 to 27.1 years from 1970
to 2020 [1,2]. In 2020, nearly 11% of women had their first child at the age of 35 and
older compared to 0.25% in 1970 [2,3]. Similar trends have been found worldwide with
demographic models predicting further increases in maternal age [4–7]. Observational
research suggests that pregnancy later in life is a risk factor for adverse maternal, fetal,
and neonatal outcomes [7,8]. For example, advanced maternal age has been associated
with complications such as placenta previa, gestational diabetes mellitus, hypertensive
disorders of pregnancy, and higher risk for intra-uterine growth restriction, prematurity,
and chromosomal abnormalities [9–11]. Maternal metabolism, lifestyle and dietary habits
during pregnancy, maternal medical conditions, complications during pregnancy, vaginal
delivery versus cesarean section, and environmental stressors such as fetal tobacco exposure
have also been found to influence neonatal metabolism and adaptation [12–18].

In this study, we investigated whether maternal age (MA) could be associated with
differences in the blood levels of newborn screening (NBS) markers for metabolic disor-
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ders on the Recommended Universal Screening Panel (RUSP) [19]. Accurate detection of
these disorders through newborn screening allows for rapid clinical diagnosis and man-
agement [20,21]. Importantly, as other covariates including gestational age, birth weight,
age at blood collection, infant sex, and parent-reported ethnicity status may concurrently
influence neonatal metabolism and development, we accounted for confounding by these
covariates and stratified analyses across different maternal age groups. The identified
maternal age-related differences in metabolite levels were correlated to false-positive cases
in metabolic disease screening. Based on these findings, maternal age is suggested as
an important covariate associated with metabolic differences in newborns that should be
considered in the interpretation of newborn metabolic screening data and to support the
development of algorithms for genetic disease screening.

2. Materials and Methods
2.1. Data Summary and Preprocessing

We analyzed NBS data for 503,935 screen-negative singleton infants born between 2013
and 2017 and reported by the California NBS program. The data included 41 metabolites
measured by MS/MS from newborn dried blood spots [22], 5 additional NBS markers
including Galactose-1-phosphate uridyl tansferase (TRA), Thyroid-stimulation hormone
(TSH), 17-hydroxyprogesterone (OHP), Immunoreactive trypsinogen (IRT), and T cell
receptor excision circles (TREC), and 8 covariates of gestational age (GA), birth weight
(BW), age at blood collection (AaBC), infant sex, parent-reported ethnicity, total parenteral
nutrition (TPN), transfusion status, and maternal age (MA). Infants reported under the
following criteria were removed from analysis: (1) BW less than 1000 g or larger than
5000 g; (2) GA smaller than 28 or larger than 42 weeks; (3) AaBC unknown or before
12 h or after 168 h; (4) total parenteral nutrition (TPN) as unknown or positive; (5) red
blood cell transfusion status as unknown or positive; and (6) MA under 15 years or older
than 44 years, which resulted in 476,718 infants for analysis (Table S1). Infants with
a GA less than or equal to 36 weeks were classified as preterm birth, and those with
a GA greater than 36 weeks were classified as term birth. For the ethnicity-stratified
analysis, infants with multiple parent-reported ethnicities (17.9%, n = 85,148) and those
with unknown ethnicity (2.0%, n = 9542) were removed, resulting in 382,028 (80.1%)
newborns classified to only one of 17 racial/ethnic groups (Asian East Indian, Black,
Cambodian, Chinese, Filipino, Guamanian, Hawaiian, Hispanic, Japanese, Korean, Laos,
Middle Eastern, Native American, Other Southeast Asian, Samoan, Vietnamese, White)
(Table S2). In addition, we analyzed data from first-tier NBS false-positive cases for 3 inborn
metabolic disorders reported by the California NBS program, which included malonic
acidemia (MAL, n = 439), carnitine palmitoyltransferase type II deficiency (CPT-II, n = 51),
and 3-Methylcrotonyl-CoA carboxylase deficiency (3MCC, n = 239). The diseases were
selected based on 6 corresponding markers identified in the maternal age analysis, of which
3 markers had data available for false-positive screens in the California NBS program.
This study was overseen by the institutional review boards at Yale University (protocol
#1505015917) and the State of California Committee for the Protection of Human Subjects
(protocol #13-05-1236).

2.2. Analysis of Maternal Age

To account for the influence of different covariates on newborn metabolite levels,
we first studied the correlation between MA and infant sex, gestational age, and parent-
reported ethnicity. We then analyzed newborn metabolic profiles across six MA groups
with five years per age group. Blood levels of 46 markers in the first MA group (15–19 years)
were used as the baseline to explore the gradual changes in marker levels with increasing
MA. Effect size analysis using Cohen’s d [23] was performed for each of the 46 markers to
calculate marker level differences for the remaining five MA groups in comparison with the
baseline group. We used absolute Cohen’s d values larger than 0.2 as the threshold [23,24]
for significant differences between the comparison and the baseline groups. We also
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compared MA-related metabolic differences between the MA group of 35 years or older
and the baseline group (15–19 years) [7,16,25].

2.3. Analysis of Maternal Age in Relation to Other Variables

Two representative markers with increasing (Palmitoylcarnitine [C16], Malonylcar-
nitine [C3DC]) and one with decreasing (3-Hydroxyisovalerylcarnitine [C5OH]) levels
for MA between 20 and 44 years were selected to investigate the influence on metabolite
levels from other covariates. A full list of metabolite names and abbreviations is available
at: https://lhncbc.nlm.nih.gov/newbornscreeningcodes/nb/sc/download/analytes.csv
(6 June 2023). The three NBS markers were among the metabolites found with the largest
changes related to MA identified in the analysis in Section 2.2. Specifically, we compared
the changes in metabolite levels related to MA between (1) female and male infants; (2) term
and preterm infants; and (3) infants belonging to the four major ethnicity groups including
Asian, Black, Hispanic, and White.

2.4. Analysis of Maternal Age-Related Differences and False-Positive Results

The three metabolic disorders studied (MAL, CPT-II, and 3MCC) were detected in
NBS by elevated marker levels (C3DC, C16, and C5OH). Here we studied whether MA
could impact NBS performance in detecting these diseases. In addition to the filtering
criteria (1)–(6) described above, this analysis only included infants (n = 405,968) born
with a normal birth weight (2500–4000 g) and within the range of a term pregnancy (from
37 to 42 weeks) in order to mitigate the confounding from preterm births. The filtering
criteria were consistently applied to the false-positive data, except for the status of red
blood cell transfusion, which was not available. We conducted an effect size analysis for
all 46 metabolites to compare the MA ≥ 35-year group (n = 90,191 infants) to the baseline
group (15–19 years, n = 17,063 infants). For each of the three diseases, we compared the
proportion of false positive and screen-negative infants in the MA ≥ 35-year group using
the Chi-squared test.

2.5. Statistical Analyses and Software

All statistical analyses and visualizations were conducted in R software 4.1.2 with
the following packages: dplyr [26], effsize [27], ComplexHeatmap [28], ggplot2 [29], and
ggpubr [30]. Distribution of MA related to different clinical variables was visualized
in boxplots. The pattern of signature metabolites was visualized using smoothed lines
estimated from a generalized additive model [31]. Two sample t-tests were performed to
check the difference in the mean MA across groups. Comparisons of means in more than
two groups were conducted using ANOVA [32]. Effect size analyses were conducted using
Cohen’s d values [23]. Patterns of all metabolites with an increase in MA were visualized
using heatmaps. Hierarchical clustering was used to classify MA-related profiles across
metabolites. A Kolmogorov–Smirnov test [33] was performed to check the enrichment of
acylcarnitine (AC) metabolites in the hierarchical clustering results. Proportion tests [34]
were performed to check if the proportion of clinical variables in the MA groups was the
same.

3. Results
3.1. Identification of Metabolic Differences Related to Maternal Age

For MA and infant sex, no significant difference was found in the mean MA between
male and female infants (p-value = 0.98) (Figures S1 and S2). For MA and parent-reported
ethnicity, we found a significant difference between MA across the major ethnic groups
(Asian, Black, Hispanic, and White) as well as the 17 detailed parent-reported ethnicity
groups (p-values < 0.001) (Figures S3 and S4). We observed that the Asian and White
groups had higher MA compared with Hispanic and Black groups, with the Korean and
Japanese subgroups having the highest mean MA (33.9 years and 35.1 years) among all
17 groups. We also identified a significant difference in MA between term and preterm
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births (p-value < 0.001) (Figures S5 and S6). To further check the relationship between MA
and GA, we visualized the proportion of preterm births and found a significant difference
in the proportion across the six MA groups (p-value < 0.001; Figure S7). In addition, we
found a significant difference in the proportion of preterm births across MA groups in the
Asian, Black, and Hispanic newborn groupings (Figure S8).

The 46 NBS markers clustered into three major groups based on their changing blood
levels in relation to MA (Figure 1). The top cluster includes metabolites with increasing
levels compared with the baseline group (positive Cohen’s d values; e.g., C16); the bottom
cluster includes metabolites with decreasing levels compared with the baseline group (nega-
tive Cohen’s d values; e.g., C5OH); while metabolites in between showed relatively smaller
absolute Cohen’s d values (e.g., ARG). Several metabolites had non-monotonous patterns
such as C0 with initially decreasing and then increasing levels in relation to the increase in
MA. Overall, 7 of the 46 markers (Propionylcarnitine [C3], Tetradecanoylcarnitine [C14],
C16, Stearoylcarnitine [C18], Oleoylcarnitine [C18:1], C3DC, and C5OH) had significant
differences between the five MA groups and the baseline group (absolute Cohen’s d > 0.2).
Additionally, a significant enrichment of acylcarnitines was found among the top-ranking
metabolites in the hierarchical cluster analysis (p-value = 0.0088).
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Figure 1. Newborn metabolite levels and maternal age. To explore newborn metabolic differences in
relation to maternal age (MA), we selected six newborn groups based on MA at delivery with the first
group (1519 years, n = 19,528) being defined as a baseline for each metabolite. Effect size differences
for the 46 metabolites between each of the five MA groups (2044 years) and the baseline group were
calculated. Positive Cohen’s d (in red) indicates increased metabolite levels and negative Cohen’s d (in
blue) indicates decreased levels compared to the baseline. Using hierarchical clustering, metabolites
were grouped into two clusters of either increasing (at the top) or decreasing (at the bottom) levels
compared with the baseline MA group. Seven markers in bold had significant differences between
the five MA groups and the baseline group (absolute Cohen’s d > 0.2), including RUSP metabolic
disease markers [19] (* label). Acylcarnitines (AC) were enriched in the top cluster of markers with
increasing levels. (p-value = 0.0088). AA, Amino acid.
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From the seven markers identified with significant differences compared with the
baseline group in Figure 1 (absolute Cohen’s d > 0.2), we selected three markers (C16,
C3DC, C5OH) to show the metabolic changes associated with MA and other variables,
including infant sex, gestational age, and parent-reported ethnicity (Figure 2). The three
metabolites are NBS markers for the detection of three metabolic disorders (CPT-II, MAL,
and 3MCC) on the RUSP. For C16, mean blood levels initially increased for MA from 15
to 35 years and then plateaued. C16 levels were higher in males compared to females,
while term infants exhibited higher C16 levels than preterm infants. White infants had
higher C16 levels compared to other groups, while Asian infants showed a distinct trend
of initially increasing levels from 15 to 28 years followed by decreasing levels from 28 to
44 years. For C3DC, mean levels showed similar patterns to C16, with the exception of
higher C3DC levels in Black and White infants. For C5OH, mean levels monotonously
decreased with increasing MA. Infant sex, gestational age, and parent-reported ethnicity
all had an influence, with term Black male infants having the highest C5OH mean levels
compared to the other groups. Notably, for all three markers, term and male infants had
the highest mean levels compared to other groups.
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Figure 2. Maternal age and clinical variables. The association between maternal age at delivery
(1544 years) and three representative metabolites (C16, C3DC, C5OH) (a–c) and the association
between these metabolites, maternal age, and the covariates of infant sex (d–f), gestational age
(g–i), and parent-reported ethnicity (j–l) are shown. For each metabolite, the relationship between
different maternal ages is shown for male (n = 247,446) and female infants (n = 229,272) (d–f); preterm
(n = 23,541) and term (n = 453,177) (g–i); Asian (n = 52,642), Black (n = 23,902), Hispanic (n = 184,595),
and White infants (n = 120,362) (j–l). Solid smoothed lines are means estimated from generalized
additive models with the shading showing the 95% confidence interval of the mean estimation.

3.2. Correlation of Maternal Age-Related Differences to False-Positive Results

MA-related differences were identified for 13% (6 of 46, Cohen’s d > 0.2) of the
metabolites by comparing their levels between the MA group of ≥35 years and the baseline
group (Figure 3). These markers (C14, C16, C18, C18:1, C3DC, C5OH) were also identified
in our hierarchical clustering analysis (Figure 1) indicating consistency in results. Three
of the metabolites identified are RUSP metabolic disease markers (CPT-II, MAL, and
3MCC). Compared to the baseline group, the advanced MA group had elevated levels of
the MAL marker C3DC (Cohen’s d = 0.22) and the CPT-II marker C16 (Cohen’s d = 0.29)
and decreased level of the 3MCC marker C5OH (Cohen’s d = −0.43). We reasoned that
disease markers with an increased level in infants in the MA ≥ 35-year group could
also lead to a higher number of false positives, while markers with lower levels could
be associated with a lower false-positive rate in this group. To test this hypothesis, we
compared the proportion of healthy, screen-negative infants in the advanced MA group
(n = 90,191, 22.2%) to the proportion of false-positive cases in that group for each of the
three disorders. No significant difference was found in the number of expected versus the
number of identified false-positive cases for CPT-II (nine identified, nine expected) and
3MCC (31 identified, 33 expected). For malonic acidemia (MAL), a significantly higher
number of false-positive cases was found in the advanced MA group (54 found, 35 expected,
p-value < 0.001). Considering that early blood collection could influence metabolite levels
and NBS false-positive rates [24], MAL false-positives with AaBC < 24 h were removed
from this analysis, which confirmed the significantly higher number of false-positive cases
in the advanced MA group (52 found, 34 expected, p-value < 0.001).
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Figure 3. Newborn metabolic difference in relation to advanced maternal age (≥35 years). To
identify metabolic differences related to advanced maternal age, 405,968 screen-negative term infants
(3742 weeks) with birth weights from 2500 g to 4000 g were grouped into the advanced (≥35 years)
and the baseline (1519 years) maternal age groups. Effect size differences (Cohen’s d) for each of the
46 metabolites were calculated between the advanced and the baseline MA group. Positive Cohen’s
d values indicate elevated metabolite levels in the advanced MA group. Metabolites are ranked from
top to bottom based on Cohen’s d values.

4. Discussion

Advanced maternal age is associated with adverse pregnancy outcomes and yet
little is known about the influences of maternal age on newborn metabolism. Here we
used population-level newborn screening data to study the relationship between maternal
age at delivery and newborn metabolite levels and whether maternal age could impact
the performance of newborn screening for metabolic disorders [19]. Previous studies
have explored the influence of a number of covariates such as gestational age, infant
sex, birth weight, age at blood collection, parent-reported ethnicity, season of birth, and
nutritional therapy on newborn metabolic profiles [35–41]. A neonatal metabolome study
of dried blood spots retrieved from the Danish Neonatal Screening Biobank found that
approximately 16% of the metabolites correlated with gestational age [42]. A study by
Australian investigators found that delivery mode, sex, gestational age, and birth weight
were associated with specific metabolite levels in cord blood [43]. NBS programs are
increasingly using such information in order to reduce false-positive results and increase
screening accuracy [44–50]. Considering the known influence of gestational age, birth
weight, age at blood collection, and parent-reported ethnicity on newborn metabolism,
we followed a stringent study design and controlled for the influence of these important
covariates in the analysis of marker levels between maternal age groups.

A cluster analysis of 46 NBS markers reported for 476,718 screen-negative infants
(Table S1) in relation to maternal age showed two large groups of metabolites characterized
by either decreasing or increasing levels shortly after birth (Figure 1). We identified
significant differences for seven newborn metabolites (absolute Cohen’s d > 0.2) in an effect
size analysis of metabolite levels between five maternal age groups (range 20–44 years)
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in comparison to the baseline group (15–19 years). Six of the seven markers identified
were confirmed in a separate analysis comparing newborn metabolite levels between the
two groups of advanced maternal age (≥35 years) and teenage maternal age (15–19 years).
The six newborn metabolites identified included two short-chain (C3DC, C5OH) and four
long-chain (C14, C16, C18, C18:1) acylcarnitines. The enrichment of acylcarnitines in
relation to maternal age at delivery (p-value = 0.0088) sheds new light on early postnatal
metabolic differences. In previous work, ethnicity-related metabolic differences in infants
showed larger differences in blood levels of acylcarnitines than of amino acids [51]. In
addition to their use in NBS for inborn errors of fatty acid oxidation and energy metabolism,
acylcarnitines are increasingly being recognized as biomarkers for a range of diseases such
as diabetes, cardiovascular disorders, cancer, and as pharmaceutical agents [52].

To investigate these results, we performed covariate-stratified analyses of maternal
age in relation to newborn metabolic profiles. We first considered that metabolic profiles
could differ between male and female infants. Infant sex-stratified analyses showed similar
cluster patterns for female (Figure S9) and for male infants (Figure S10) and confirmed the
same seven acylcarnitine markers identified in the sex-combined analysis (Figure 1). We
then studied whether the inclusion of infants with an early AaBC between 12 and 24 h after
birth could have an impact on our results. Removing infants with early AaBC from this
analysis resulted in the same six (of the seven) metabolites identified for infants in the larger
AaBC range (Figure S11). Interestingly, the MA-related metabolites found in this study
are different from those identified previously with AaBC-related changes [24], suggesting
that MA and AaBC influence different sets of metabolic markers. We also considered that
metabolic profiles could differ between parent-reported ethnicity groupings. Ethnicity-
stratified analyses revealed distinct metabolic clusters for Asian, Black, Hispanic, and
White newborn groups (Figures S12–S15); however, each analysis identified six of the
seven markers found in the ethnicity-combined analysis (Figure 1), which supported the
robustness of the global analysis.

We then examined the influence on newborn metabolites for several clinical variables
(infant sex, gestational age, and ethnicity) in relation to maternal age. Figure 2 shows
results from a covariate-stratified analysis of selected metabolites with increasing (C16,
C3DC) and with decreasing (C5OH) levels in relation to maternal age (Figure 2). Term
infants and male infants had a tendency for higher levels for all three metabolites, while
the major ethnicity groups showed distinct metabolite patterns in relation to maternal
age. These examples illustrate the variable influences from the different covariates on
newborn metabolite levels. Additionally, our analysis identified an overall association
between maternal age and prematurity (Figure S5, p-value < 0.001), which was found to be
significant for the Asian, Black, and Hispanic but not for the White sub-groups (Figure S6).
Interestingly, the proportion of preterm births to term births in relation to maternal age
varied between different ethnicity groups (Figure S8). The lowest preterm birth rates for
Black and Hispanic infants were seen at maternal ages of 20–24 years, while it was shifted
to the right for the Asian and White groups (25–29 years). Our findings are consistent
with previous studies identifying metabolic differences in relation to parent-reported
ethnicity [40,41], suggesting a potential need for assessing ethnicity-related metabolite
ranges. These findings also highlight the complex relationship between maternal age,
gestational age, infant sex, and parent-reported ethnicity and motivate the development of
novel data mining algorithms that incorporate all screening metabolites and covariates in
the analysis of newborn screening data.

We hypothesized that the maternal age-related differences identified for 13% of the
metabolites (Figure 3) could lead to false-positive results. We selected three diseases
detectable using these markers and associated with frequent false-positive screens. Analysis
of false-positive cases for one of the diseases revealed maternal age-related differences,
which correlated with marker-level differences in the respective MA groups. Infants in the
advanced maternal age group (≥35 years) were more likely to be false positive for malonic
acidemia (MAL), which correlated with the increased C3DC levels in screen-negatives in
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this group. In contrast, we did not find higher false-positive rates for CPT-II (marker C16)
and 3MCC (marker C5OH) in this group, which was likely due to the smaller number of
false positives for these conditions.

Our study had several limitations. First, metabolite levels are influenced by a number
of factors such as gestational age (GA), birth weight (BW), and age at blood collection
(AaBC) [24,49]. Investigating the relationship between maternal age and newborn metabo-
lites requires a stringent approach that minimizes the influence of other covariates. While
residual confounding cannot be fully eliminated, such approaches inherently result in a
significant decrease in the sample size and statistical power. For example, after removing
infants outside of the defined ranges for GA, BW, and AaBC, only 35% of the MAL false-
positive cases (156 of 439) were available in this analysis. Thus, it could be possible that this
covariant-stratified analysis has led to an underestimate of the true maternal-age-related
effects on newborn metabolism. Second, significant differences in maternal age were
found in both the major (N = 4) and the detailed (N = 17) parent-reported ethnicity group-
ings (Figures S3 and S4). However, the analysis of maternal age and newborn metabolic
differences was limited to the four major ethnicity groupings due to the small sample
size in some of the detailed sub-groups. The significantly higher maternal age in some
Asian-ancestry sub-groups (Korean, Japanese [both p-values < 0.001]) could potentially
be associated with differences in newborn metabolic patterns. Importantly, GA, BW, and
AaBC could vary across different ethnic groups, and there could be combined effects of
these variables on metabolite levels. In this work, we performed separate analyses for the
influence of each variable in relation to maternal age. Notably, although parent-reported
ethnicity data could aid in the interpretation of metabolic screening data, it may not be
available to many NBS programs. Third, although infants reported with multiple ethnicity
categories were removed from the analysis (~18%, Table S1), this approach is highly limited
as the population admixture is often unknown. Additionally, many families do not iden-
tify themselves as belonging to predefined ethnicity categories and/or may affiliate with
other ancestries [51]. Future studies could explore metabolic differences in cohorts with
multiple parent-reported ethnicities to increase statistical power. Fourth, metabolite levels
could vary due to multiple factors not evaluated in this study such as seasonal changes
in temperature, sample shipping times, or manufacturer kit lot changes [53,54]. Previous
studies have shown that smoking during pregnancy could increase the risk of preterm
birth and low birth weight [55,56], while breastfeeding and variability in neonatal protein
catabolism could influence blood metabolite levels [57]. Newborn metabolism could also
be confounded by other risk factors in pregnancies of an advanced maternal age such
as placenta previa, hypertensive complications, gestational diabetes mellitus, and other
maternal medical history [12,13,15–17]. For example, Bass and Taylor found that combining
prenatal screening of maternal serum with maternal age could help with detecting fetal
disorder (trisomy 18) [58]. However, it may not be feasible to take into account all the fac-
tors that could potentially influence metabolite levels. Each NBS laboratory should identify
the factors impacting results in their own settings and whether they could contribute to
parental anxiety and additional costs for the health care system.

5. Conclusions

In conclusion, using population-level newborn screening data, we found that blood
markers for newborn metabolic disease were associated with maternal age at delivery.
In accordance with previous findings for other covariates [24,41], maternal age did not
have a linear correlation with metabolite levels. The association between maternal age and
metabolite levels was also dependent on other covariates such as age at blood collection and
parent-reported ethnicity. The development of novel data mining models that incorporate
newborn metabolic profiles, maternal age, and other clinical variables could further our
understanding of metabolite-covariate relationships for improved genetic disease screening
and diagnostics.
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