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Abstract: Prolonged inactivity and disuse conditions, such as those experienced during spaceflight
and prolonged bedrest, are frequently accompanied by detrimental effects on the motor system,
including skeletal muscle atrophy and bone loss, which greatly increase the risk of osteoporosis and
fractures. Moreover, the decrease in glucose and lipid utilization in skeletal muscles, a consequence
of muscle atrophy, also contributes to the development of metabolic syndrome. Clarifying the
mechanisms involved in disuse-induced musculoskeletal deterioration is important, providing
therapeutic targets and a scientific foundation for the treatment of musculoskeletal disorders under
disuse conditions. Skeletal muscle, as a powerful endocrine organ, participates in the regulation
of physiological and biochemical functions of local or distal tissues and organs, including itself,
in endocrine, autocrine, or paracrine manners. As a motor organ adjacent to muscle, bone tissue
exhibits a relative lag in degenerative changes compared to skeletal muscle under disuse conditions.
Based on this phenomenon, roles and mechanisms involved in the communication between skeletal
muscle and bone, especially from muscle to bone, under disuse conditions have attracted widespread
attention. In this review, we summarize the roles and regulatory mechanisms of muscle-derived
myokines and extracellular vesicles (EVs) in the occurrence of muscle atrophy and bone loss under
disuse conditions, as well as discuss future perspectives based on existing research.

Keywords: disuse; extracellular vesicles; muscle–bone communication; musculoskeletal deterioration;
myokines

1. Introduction

Space flight, prolonged bed rest, and a sedentary lifestyle typically lead to reductions
in muscle mass, fiber cross-sectional area, and contractile force. Moreover, decreased
glycolipid metabolism in skeletal muscle under disuse conditions can result in a series of
metabolic syndromes, including obesity. Existing muscle atrophy can also significantly
exacerbate bone loss, thereby increasing the risk of fracture, disability, and death. Therefore,
understanding the mechanisms involved in disuse-induced musculoskeletal dysfunction
can not only provide a scientific basis for effectively preventing muscle atrophy and bone
loss, but can also prevent the development of metabolic syndromes.

Given the common origin of skeletal muscle and bone, as well as their structurally
adjacent and functionally dependent characteristics, emerging studies have focused on
concurrent muscle–bone research based on individual investigations of muscle and bone.
Notably, previous studies have reported that skeletal muscle atrophy in mice can occur
after one week of hindlimb unloading, while bone microstructure deterioration and bone
mechanical weakening can occur after two weeks of hindlimb unloading [1]. Research on
rats has shown a decrease in muscle mass after two weeks of hindlimb unloading, with a
decline in bone mineral density and mechanical properties after four weeks of hindlimb
unloading [2]. This evidence suggests that skeletal muscle changes occur earlier than bone
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alterations under disuse conditions [3], implying that skeletal muscle atrophy may be
involved in mediating the occurrence of bone loss under disuse conditions.

Myokines represent a group of soluble molecules secreted by skeletal muscles, includ-
ing irisin, myostatin, and others. Corresponding changes in myokines, especially their
circulating and muscle concentrations, under mechanical unloading are closely related
to disuse-induced skeletal muscle atrophy and bone deterioration [4,5]. In addition to
myokines, other molecules, especially microRNAs (miRNAs), are encapsulated in lipid
bilayers and secreted into the extracellular space, which are then recognized by recip-
ient cells and participate in the regulation of biological functions [6]. Considering the
protective effect of the lipid bilayer on its contents, extracellular vesicles (EVs) are also
recognized as another highly regarded signal carrier [7]. Emerging evidence has reported
corresponding changes in serum and muscle concentrations of muscle-derived EVs under
disuse conditions [8]. Moreover, muscle-derived EVs are also involved in the disturbance
of bone metabolism under disuse conditions [9]. In the present review, we update and
summarize the regulatory roles and mechanisms of myokines and muscle-derived EVs in
the development of musculoskeletal deterioration under disuse conditions. Our aim is to
provide a comprehensive reference for the prevention of muscle atrophy and bone loss
from the perspective of skeletal muscle-derived biochemical signals.

2. Roles of Myokines on Musculoskeletal Metabolism and Homeostasis under Normal
and Disuse Conditions

Myokines are soluble molecules expressed and released by muscle fibers to regulate
biological and pathological activities in local and distant organs, such as the skeletal muscle,
bone, fat, and heart [10]. Approximately 672 myokines have been identified to date [11].
In this section, we focus on myokines essential for the maintenance of musculoskeletal
health, such as irisin, myostatin, β-aminoisobutyric acid (BAIBA), lumican, and interleukin
6 (IL-6), detailing their changes and roles in the context of musculoskeletal deterioration
under disuse conditions (Table 1).

Table 1. Regulation of muscle and bone by myokines.

Myokine Target Cell/Tissue Effect and Mechanism References

Irisin

C2C12 myoblasts

Activates satellite cells
Enhances protein synthesis through activating Akt/mTOR pathway and
down-regulates protein degradation through suppressing protein
expression of Atrogin-1 and MuRF-1

[12]

C2C12 myoblasts
Enhances myoblast proliferation and fusion through up-regulating
mRNA expression of ERK-dependent chemokine (C-C motif)
ligand 7 (CCL-7)

[13]

Human skeletal muscle cell Stimulates muscle growth through up-regulating mRNA expression of
IGF-1 and down-regulating mRNA expression of myostatin [14]

C2C12 myoblast Preserves muscle cell from senescence through inhibiting mRNA
expression of senescence marker, p53 [15]

Hind muscle of female SD rats
Promotes mitochondrial fusion
Increases mRNA expression of main regulatory genes for mitochondrial
fusion, DPL1, and Mfn

[16]

C2C12 myotubes

Increases mitochondrial content and oxygen consumption through
up-regulating mRNA and protein expression of several genes including
peroxisome proliferator-activated receptor gamma
coactivator-1alpha (PGC-1α)

[17]

BMSCs Enhances osteoblast differentiation via increasing mRNA expression of
Alp and Col-1 [18]

BMSCs

Promotes osteogenesis through up-regulating mRNA expression of
osteogenic markers, including Runx-2, bone sialoprotein (Bsp), Col-1,
and Alp
Promotes BMSCs mineralization
Inhibits osteoclastogenesis through decreasing mRNA expression of
osteoclastogenesis markers, including tartrate-resistant acid
phosphatase (Trap), matrix metalloproteinase 9 (Mmp-9), and NFATc1

[19]

Murine osteoblastic MC3T3-E1 cells Promotes osteoblast proliferation and differentiation through activating
P38/ERK MAPK signaling pathway [20]
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Table 1. Cont.

Myokine Target Cell/Tissue Effect and Mechanism References

MC3T3-E1 osteoblasts Enhances osteogenic differentiation via increasing mRNA expression of
osteogenic genes, Alp, Col-1, Runx-2, osterix, Opn, Ocn, Opg, and ERα [21]

MC3T3-E1 osteoblast precursor cells
RAW264.7 osteoclast precursor cells

Increases osteoblastogenesis and mineralization through activating
β-catenin signaling
Inhibits RANKL-induced osteoclastogenesis through decreasing mRNA
expression of nuclear factor of activated T-Cells, cytoplasmic 1 (NFATc1)

[22]

Tibia of young male mice

Stimulates bone formation through up-regulating mRNA expression of
Atf-4, Runx-2, Osx, low density lipoprotein receptor-related protein 5
(Lrp-5), β-catenin, Alp, and Col-1a1
Inhibits osteoclastogenesis and reduces osteoclast numbers

[23]

MC3T3-E1 cells Enhances M2 polarization of osteoblasts through activating AMPK
signaling pathway [24]

Mouse bone marrow monocytes
RAW264.7 cells

Promotes osteoclast precursor cell proliferation through activating p38
and JNK signaling pathway
Inhibits differentiation of osteoclast cells through suppressing
NF-κB pathway

[25]

Osteocyte-like cells (MLO-Y4) Prevents apoptosis of osteocyte-like cells (MLO-Y4) [26]

Myostatin

Deletion

Luxi yellow cattle muscle Promotes myogenic differentiation through activating PI3K/Akt/mTOR
signaling pathway [27]

Longissimus dorsi of Liang Guang Small
Spotted pigs

Promotes proliferation and myogenic differentiation of skeletal muscle
cells through elevating protein expression of myogenic regulatory
factors, MyoD, MyoG, and Myf-5

[28]

Bovine skeletal muscle satellite
cells (BSMSCs)

Promotes proliferation and myogenic differentiation of BSMSCs
through increasing mRNA and protein expression of extracellular
matrix and ribosome-related proteins, COL-1A1, activating focal
adhesion, PI3K-Akt, and ribosomal pathways

[29]

C2C12 myoblasts Promotes C2C12 proliferation and differentiation through inhibiting
myostatin canonical signaling pathway [30]

Bovine muscle Enhances antioxidant capacity through activating SMAD-AMPK-G6PD
signaling pathway [31]

Administration

C2C12 myoblasts Inhibits protein synthesis through suppressing eukaryotic elongation
factor 2 (eEF-2) through AMPK signaling pathway [32]

C2C12 myoblasts Inhibits myoblast differentiation [33]

Primary mouse
osteoblasts osteoclasts

Inhibits osteoblastic differentiation and mineralization through
decreasing ALP activity, mRNA expression of osteoblast transcription
factors osterix and Runx-2, as well as OCN secretion
Promotes RANKL-induced osteoclastogenesis through increasing
number of TRAP+ multinucleated giant cells, TRAP activity, and mRNA
expression of NFATc1

[34]

RANKL-induced osteoclasts
Cultured osteocytic (Ocy454) cells

Inhibits osteoblastic differentiation through suppressing
osteocyte-derived exosomal miR-218
Weakens osteocyte function via promoting mRNA expression of several
bone regulators such as sclerostin (SOST), dickkopf-related protein 1
(DKK-1), and RANKL

[35]

Bone marrow-derived macrophages (BMMs) Promotes osteoclastogenesis through activating MAPK pathways and
SMAD2 signaling [36]

BAIBA

C2C12 cells Attenuates insulin resistance and suppresses inflammation through
activating AMPK–PPARδ signaling pathway [37]

MC3T3-E1 cells Promotes proliferation and differentiation of osteoprogenitor cells
through activating NAD(P)H oxidase/ROS signaling pathway [38]

Osteocytes Increases osteocyte viability through blocking mitochondrial fission and
preserving mitochondrial integrity [39]

Osteocytes Prevents ROS induced mitochondria breakdown through activating
Mas-related G protein-coupled receptor type D (MRGPRD) [40]

Lumican

C2C12 myoblasts Promotes myogenesis through activating p38 MAPK-mediated
myoblast differentiation [41]

C2C12 myoblasts Maintains positive protein balance through up-regulating protein
synthesis and down-regulating protein degradation [41]

Murine preosteoblast MC3T3-E1 cells Stimulates bone formation via integrin α2β1 and the downstream
ERK signal [42]

Primary bone marrow cells Inhibits osteoclastogenesis and bone resorption through suppressing
Akt activity [43]
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Table 1. Cont.

Myokine Target Cell/Tissue Effect and Mechanism References

IL-6

TA and EDL muscles of rats
Decreases total protein and myofibrillar protein content through
decreasing phosphorylation of ribosomal S6 kinase and signal
transducers and activators of transduction 5 (STAT-5)

[44]

Skeletal muscle of mice Inhibits basal protein synthesis through suppressing mTORC1 signaling [45]

Primary osteoblasts and osteoclasts of mice Decreases osteoblast and increases osteoclast number and activity [46]

MC3T3-E1 osteoblastic cells

Negatively regulates osteoblast differentiation through activating
Src-homology domain 2 containing protein-tyrosine phosphatase
(SHP-2)/mitogen-activated protein kinase-extracellular
signal–regulated kinase kinase (MEK-2)/ERK and SHP-2/PI3K/Akt-2
pathways, as well as reducing mRNA expression of osteoblastic
differentiation related genes, including Alp, Runx-2, and Ocn

[47]

2.1. Irisin

Irisin, derived from the proteolytic processing of fibronectin type III domain-containing
5 (FNDC-5), acts as an exercise-induced myokine to promote thermogenesis by browning
white fat [48]. In addition to its indispensable roles in fat, emerging evidence has suggested
that irisin plays a pleiotropic positive role in muscles throughout most developmental
phases. In detail, irisin promotes satellite cell activation [12], enhances myoblast prolif-
eration and fusion [13], maintains muscle protein balance by down-regulating protein
degradation and up-regulating protein synthesis [12], stimulates muscle growth by up-
regulating the mRNA expression of myokines that play positive roles in skeletal muscles,
such as insulin-like growth factor 1 (IGF-1), while down-regulating the mRNA expression
of myokines that play negative roles in skeletal muscles like myostatin [14], preserves
muscle cells from senescence [15], promotes mitochondrial fusion, and increases mitochon-
drial content in skeletal muscles [16,17]. The positive regulatory effects of irisin on skeletal
muscle are consistent with the occurrence of significantly enhanced grip strength following
irisin administration [49].

Growing evidence has also demonstrated varying positive roles of irisin on bone
health. Research has shown that irisin administration can enhance osteoblast proliferation
and differentiation by promoting the mRNA expression of osteogenic markers, including
alkaline phosphatase protein (ALP), collagen I (COL-1), runt-related transcription factor
2 (RUNX-2), osterix, osteopontin (OPN), osteocalcin (OCN), osteoprotegerin (OPG), and
estrogen receptor alpha (ERα), which are likely induced by activating the P38/extracellular
signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) signaling path-
way [18–23]. Irisin also promotes osteogenesis by promoting macrophage M2 polarization
and mediating anti-inflammatory effects by activating the AMP-activated protein kinase
(AMPK) signaling pathway [24], and it is reported to enhance the mineralization of os-
teoblasts [19,22]. Irisin also regulates bone resorption and promotes osteoclast precursor
cell proliferation via the P38 and c-Jun N-terminal kinase (JNK) signaling pathway but
inhibits the differentiation of osteoclast cells by down-regulating the receptor activator of
nuclear factor-κ-gene binding (RANK) and inhibiting the nuclear factor kappa-B (NF-κB)
pathway [19,22,23,25]. Therefore, maintaining bone remodeling homeostasis may be a
crucial mechanism by which irisin acts on bone health. Irisin is also involved in preventing
osteocyte-like cell (MLO-Y4) apoptosis [26], underscoring its essential regulatory roles in
bone maintenance. Overall, the above evidence highlights the global regulatory effects of
irisin on bone homeostasis, consistent with the increases in cortical bone mass and strength
after irisin administration [23]. Furthermore, the observed positive correlation between
irisin concentration and bone mineral density in humans further emphasizes its beneficial
role in bone health [50–52].

Given the positive impact of irisin on the musculoskeletal system, its changes and
influences under mechanical unloading conditions have attracted considerable attention.
Recent research revealed a reduction in serum levels of irisin in mice following four weeks
of hindlimb unloading [15], accompanied by a decline in FNDC5 mRNA expression in
hindlimb skeletal muscles after 3–4 weeks of hindlimb unloading [15,53], potentially linked
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to the down-regulation of the bone morphogenetic protein (BMP) and phosphatidylinositol
3-kinase (PI3K) signaling pathways [53]. In addition, a similar decline in irisin serum level
has also been observed in young human males on the second day of recovery after 10 days
of bed rest [54]. These findings suggest that irisin level could serve as a potential prognos-
tic marker for disuse-induced musculoskeletal deterioration. Subsequent investigations
have shown that irisin administration can counteract impairments in the musculoskeletal
system induced by disuse. For instance, Colaianni et al. demonstrated that irisin mitigates
muscle atrophy induced by hindlimb unloading and effectively prevents the reduction
in myosin heavy chain (MHC) isoforms [15,55]. In addition, irisin treatment has been
shown to alleviate bone loss induced by disuse by up-regulating the mRNA expression of
osteogenic markers such as Alp, Col-1, and Opg, increasing calcium deposition to prevent
primary osteoblast deterioration [55–57], and increasing osteocyte differentiation to protect
against apoptosis [15,58]. Collectively, these findings provide compelling evidence of the
beneficial roles of irisin in preserving musculoskeletal health under disuse conditions, sug-
gesting irisin-based therapy as a potential approach against prolonged inactivity-induced
musculoskeletal deterioration.

2.2. Myostatin

Myostatin, the first identified myokine expressed in developing and mature muscles,
exerts a negative regulatory role in muscle development [59]. Evidence has suggested that
mice deficient in myostatin [60–63], mice treated with the myostatin inhibitor MID-35 [64],
mice treated with myostatin monoclonal antibodies [65], cynomolgus monkeys treated with
myostatin antibody GYM329 [66], and myostatin knockout cattle [67–69], dogs [70], and
pigs [71,72] all exhibit higher muscle mass, implying that reducing myostatin expression
in varying mammalian species markedly promotes muscle growth. Further research on
the underlying mechanisms has indicated that myostatin depletion promotes myoblast
proliferation and differentiation and increases muscle mass by elevating the expression of
myogenic regulatory factors, including myogenic differentiation antigen (MyoD), myogenin
(MyoG), and myogenic factor-5 (Myf-5) [27,28], activating the PI3K/protein kinase B (PKB,
Akt)/mammalian target of rapamycin (mTOR) signaling pathway [27–29] while inhibiting
the SMAD 2/3 pathway (the canonical pathway of myostatin) [30]. These findings are in
contrast to those observed upon myostatin overexpression, which are accompanied by the
inhibition of protein synthesis [32] and myoblast differentiation [33]. These contrasting
outcomes, viewed from different perspectives, further underscore the significant negative
influence of myostatin in protein metabolism. In addition, evidence has demonstrated
that reduced myostatin expression inhibits the SMAD 2/3 signaling pathway, promotes
AMPK expression, enhances glucose-6-phosphate dehydrogenase (G6PD) enzyme activity,
and increases skeletal muscle antioxidant capacity, suggesting negative regulatory roles
regarding antioxidant capacity [31]. Thus, targeting myostatin may serve as an effective
strategy to preserve muscle mass.

Myostatin exerts various negative regulatory effects on bone health. Research has
shown an association between elevated blood concentrations of myostatin and reduced
cortical bone thickness [73]. Conversely, myostatin deficiency in mice has been shown
to lead to an increase in bone mineral content [60,61,63,74]. Mechanistic research has
also indicated that the detrimental effects of myostatin on bone are closely related to the
inhibition of osteoblast formation [34], disruption of osteoblast differentiation, weakened
osteocyte function [35], and promotion of osteoclastogenesis [34,36], emphasizing the
negative impacts of myostatin on bone via disturbance of the bone turnover process. Thus,
myostatin may be an important therapeutic target in musculoskeletal disorders.

Elevated myostatin levels may also be involved in the occurrence of disuse-induced
muscle atrophy. Evidence has shown that serum levels of myostatin in young human
males are elevated on the second day of recovery after 10 days of bed rest [54]. Hindlimb
unloading [75], immobilization [76], and spaceflight [77] are all associated with elevated
myostatin mRNA expression in skeletal muscles. These findings demonstrate that myo-
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statin levels are elevated in both the circulatory system and local muscle under conditions
of disuse. In addition, the suppression of myostatin expression has been shown to rescue
the deterioration of skeletal muscle structure and function under disuse conditions [78]. As
such, targeting myostatin through genetic and pharmacological interventions may be an
effective approach to preserve musculoskeletal quality during spaceflight [79]. However,
research has indicated that a loss of myostatin function does not protect against a loss of
iliopsoas mass in mice subjected to unloading [80], suggesting that the protective effects of
myostatin knockout may not extend to all skeletal muscle types under disuse conditions,
potentially due to the variations in location and function among these muscles.

2.3. Other Myokines

BAIBA is a relatively novel small molecule identified in the supernatant of cultured
myocytes [81], which preserves skeletal muscle via the amelioration of insulin resistance
and inflammation, playing a strong regulatory role in the metabolic and immune home-
ostasis of muscle cells [37]. BAIBA administration has also been shown to promote
bone metabolism balance by stimulating osteoblast differentiation [38,82] and increase
osteocyte viability by suppressing mitochondrial fission and preserving mitochondrial
fusion [39,40]. The positive effects of BAIBA have also been verified under disuse condi-
tions, with BAIBA supplementation found to alleviate muscle fiber type transition from
type I to type II in soleus muscle by promoting peroxisome proliferator-activated receptor
δ (PPARδ) expression, preserving skeletal muscle function, and maintaining proximal
tibiae trabecular bone mass by attenuating osteocyte apoptosis in hindlimb-unloaded
mice [39,40]. As such, BAIBA represents a promising molecular therapy for disuse-induced
musculoskeletal deterioration.

Lumican is a small interstitial proteoglycan secreted by skeletal muscle cells [83], which
promotes myogenesis by activating the P38 signaling pathway and maintains protein bal-
ance by up-regulating protein synthesis and down-regulating protein degradation [41].
The protective roles of lumican on bone have also been well established in both in vitro
and in vivo studies. Lee et al. reported that lumican plays crucial roles in maintaining mus-
culoskeletal metabolism, not only promoting bone anabolism by interacting with integrin
α2β1 and activating the ERK signaling pathway [42], but also inhibiting osteoclastogenesis
by suppressing Akt signals [43]. Further studies have shown a decrease in plasma lumican
concentrations after 10 days of bed rest [84], while the administration of lumican partially
prevents the reduction in muscle mass and muscle fiber cross-sectional area observed
in muscles after two weeks of unloading [41], highlighting its role in protecting skeletal
muscles. Notably, a recent proteomics analysis of astronauts observed that lumican protein
expression in the soleus muscle is elevated after 11 days of spaceflight [85]. However, fur-
ther verification experiments are needed to confirm the correlation between the elevation
of lumican in muscle tissue and its decline in plasma under disuse conditions.

Initially identified as a myokine in 2003 [10], subsequent research has shown that the
direct administration of IL-6 can result in lower muscle mass as well as total protein and
myofibrillar protein content in skeletal muscle [44], which is closely linked to weakened
myoblast differentiation, fusion, and muscle protein turnover, as evidenced by the sup-
pression of protein synthesis and enhancement of protein degradation [45,86]. In addition
to its negative regulatory effects on skeletal muscle, IL-6-transgenic mice exhibit a deteri-
oration in skeletal structure [46], associated with a decrease in osteoblast differentiation
and an increase in osteoclast activity [47,87]. Studies focusing on changes in IL-6 levels
under disuse conditions have reported that circulating IL-6 levels are elevated in astronauts
following short-duration spaceflight (10–15 days) [88], in healthy males after 14 days of
bed rest [89], and in mice after two weeks of hindlimb unloading [90]. Moreover, IL-6
mRNA expression is increased in the skeletal muscles of humans after seven days of bed
rest [91], in the gastrocnemius muscle of rats after seven days of hindlimb unloading [92],
and in the gastrocnemius muscle of mice after 10 [93] or 14 days of immobilization [94].
The detrimental effects of IL-6 on the musculoskeletal system and its increase under dis-
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use conditions suggested that elevated levels may be associated with musculoskeletal
deterioration. Accordingly, subsequent studies have shown that IL-6 receptor inhibition
can suppress muscle RING finger 1 (MuRF-1) expression, thereby preventing mechanical
unloading-induced muscle atrophy [90]. However, whether such inhibition is also of benefit
for bone preservation under disuse conditions requires further evaluation.

Collectively, myokines, such as irisin, BAIBA, and lumican, which play positive regu-
latory roles in skeletal muscles, also show beneficial roles in bone. The positive regulatory
roles of these myokines on skeletal muscles are achieved by promoting muscle cell prolif-
eration and differentiation, maintaining muscle protein metabolism balance, preserving
mitochondrial function, and enhancing antioxidant and anti-inflammation capacity. More-
over, these myokines regulate bone metabolism by promoting bone formation, suppressing
bone resorption, preserving osteocyte mitochondria, and inhibiting osteocyte apoptosis.
Conversely, negative myokines, such as myostatin and IL-6, adversely regulate skeletal
muscle maintenance, primarily by inhibiting muscle cell proliferation and differentiation,
and disrupt skeletal muscle protein metabolism balance, primarily by suppressing bone
formation and promoting bone resorption. Furthermore, the down-regulation of myokines
that play a positive role in muscle and bone and the up-regulation of myokines that play
a negative role in muscle and bone likely contribute to skeletal muscle atrophy and bone
loss under disuse conditions. Regarding additional myokines like MOTS-c, a novel and
bioactive mitochondrial-derived peptide [95], research has identified their protective role in
the musculoskeletal system, including defense against metabolic stress in muscle [96] and
involvement in the regulation of bone metabolism [97]. However, the literature detailing
changes and regulatory mechanisms of MOTS-c under conditions of disuse remains scarce,
indicating a gap that warrants further investigation.

3. Roles of Muscle-Derived EVs on Musculoskeletal Metabolism and Homeostasis
under Normal and Disuse Conditions

EVs are nanovesicles packaged by a single membrane and can be broadly catego-
rized into exosomes and microvesicles according to their biogenesis patterns [98,99]. Ex-
osomes are generated within the endosomal system as intraluminal vesicles (ILVs) and
are secreted upon the fusion of multivesicular endosomes (MVEs) with the cell surface,
whereas microvesicles are formed by outward budding at the plasma membrane [100].
Although initially described as cellular waste carriers [101,102], these nanovesicles have
since been discovered to contain a diverse array of components, including proteins, lipids,
carbohydrates, mRNAs, and non-coding RNAs [103,104], which play significant roles in
intercellular communication between donor and recipient cells in paracrine, autocrine, and
endocrine manners [105–110].

Skeletal muscles, acting as important endocrine organs, are adept at secreting EVs,
commonly referred to as muscle-derived EVs. Evidence suggests that these muscle-derived
EVs not only facilitate intramuscular communication among similar cells within the mus-
cle tissue [111,112] but also inter-organ communication, notably between muscle and
bone [113–116]. Additionally, the contents of muscle-derived EVs play a crucial role in me-
diating interactions within muscle tissue and between muscle and bone. To date, however,
research in this area remains somewhat limited, with existing studies primarily focusing on
miRNAs [117–120]. In the following section, we discuss the roles of muscle-derived EVs,
particularly communication mediated by miRNAs within skeletal muscle cells and between
skeletal muscle and bone, and their impact on musculoskeletal deterioration under disuse
conditions (Table 2).
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Table 2. Regulation of muscle and bone by muscle-derived EVs.

Muscle-Derived EVs
Containing miRNAs Target Cell/Tissue Effect and Mechanism References

C2C12 myotube-derived
exosomal miR-133a C2C12 myoblasts

Inhibits myoblast proliferation and promotes
myoblast differentiation into myotube through
silencing Sirt-1

[118]

C2C12 myotube-derived
exosomal proteins C2C12 myoblasts

Inhibits myoblast proliferation through
down-regulating mRNA expression of cyclin-D1
Promotes myoblast differentiation into myotubes
through up-regulating mRNA expression of MyoG

[121]

Exosomes released from
differentiating human
skeletal myoblasts

Human adipose-derived
stem cells
Hindlimb muscles of mice

Promotes myogenesis through increasing
expression of myogenic proteins (myosin heavy
chain and desmin)
Alleviates skeletal muscle fibrosis through
reducing collagen deposition

[111]

Muscle interstitium-derived
exosomal miR-1, -206, -431,
and -486

C2C12 myoblasts
Promotes muscle differentiation through inhibiting
mRNA expression of Pax-7 and promotes mRNA
expression of MHC

[112]

Myogenic progenitor
cell-derived exosomal miR-206 Extracellular matrix

Inhibits excessive extracellular matrix generation
through suppressing protein expression of Rrbp-1
and down-regulates mRNA expression of collagen
proteins involved in biosynthesis

[122]

miR-206-3p, miR-378a-3p,
miR-30d-5p, and miR-21a-5p in
myotube-derived EVs

Mouse bone
marrow-derived
macrophages

Exhibits anti-inflammatory effects in macrophages
through activating PI3K-Akt and
JAK-STAT pathways

[123]

Myoblast-derived exosomal
miR-27a-3p MC3T3-E1 pre-osteoblasts

Promotes MC3T3-E1 pre-osteoblast differentiation
and bone mineralization through activating
Wnt/β-catenin signaling pathway

[117]

Differentiating C2C12
cell-derived exosomal Prrx-2 BMSCs

Promotes osteogenesis differentiation through
alleviating inhibitory effects of miR-128 on YAP-1
via up-regulating lncRNA MIR22HG

[124]

Skeletal muscle-derived EVs
Primary BMSCs and
osteoclasts of
C57BL/6J mice

Promotes osteogenesis differentiation of BMSCs
through inhibiting osteoclast formation [9]

C2C12 myoblast- and
myotube-derived EV
miR-196a-5p

Raw264.7 cells Suppresses osteoclast formation through
weakening mitochondrial function of osteoclasts [120,125]

3.1. Effects of Muscle-Derived EVs on Muscle

Following the initial discovery of EV secretion by C2C12 myoblasts [126], subsequent
studies have revealed that muscle cells at various developmental stages, including my-
otubes and muscle progenitors, also possess this capability. These studies have validated
the role of EVs and their molecular contents in mediating cell–cell communication and
maintaining tissue homeostasis within skeletal muscles. Evidence has shown that EVs
from myotubes contain 182 miRNAs, with miR-133a specifically playing a role in inhibiting
myoblast proliferation and promoting their differentiation into myotubes by targeting and
silencing Sirt1 expression [118]. Furthermore, upon absorption by myoblasts, EVs from
myotubes, containing various proteins related to skeletal muscle contraction, can inhibit
myoblastic proliferation by down-regulating the expression of cyclin-D1 and promote
myogenic differentiation into myotubes by up-regulating myogenin [121]. In addition,
exosomes from differentiated muscle cells enriched in multiple myogenic growth factors
can stimulate MHC and desmin expression, thereby facilitating myogenesis [111]. Recent
studies have found that EVs derived from skeletal muscle are predominantly distributed
in the interstitial space [8,127], playing a crucial role in mediating homologous cell–cell
communication within skeletal muscle tissue [119]. Research has reported that exosomal
miR-1, -206, -431, and -486, derived from the muscle interstitium, can promote muscle
differentiation by inhibiting the mRNA expression of paired box 7 (Pax-7) and promoting
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MHC expression [127]. These findings underscore the potential of EVs and their contents
from differentiating muscle cells or tissues in driving cell differentiation and myogenesis.
In addition, differentiated muscle-cell-derived EVs can also reduce collagen deposition
and decrease fibrosis in skeletal muscle [111]. Fry et al. observed that exosomal miR-206
derived from muscle progenitors can also down-regulate collagen expression by inhibiting
ribosome-binding protein 1 (Rrbp-1) expression [122], further demonstrating the impor-
tant role of muscle-derived EVs in suppressing muscle fibrosis. Recent research has also
highlighted the anti-inflammatory effects of myotube-derived EVs containing miR-206-3p,
miR-378a-3p, miR-30d-5p, and miR-21a-5p, emphasizing the importance of muscle-derived
EV miRNAs in maintaining the immune microenvironment [123]. Thus, muscle-derived
EVs and their molecular contents, especially miRNAs, play essential positive roles in
maintaining tissue homeostasis by promoting muscle cell differentiation, inhibiting muscle
fibrosis, and combating inflammation.

3.2. Effects of Muscle-Derived EVs on Bone

Accumulating evidence has revealed the critical roles of muscle-derived EVs in regu-
lating bone remodeling. Notably, myoblast-derived exosomal miR-27a-3p has been shown
to promote MC3T3-E1 pre-osteoblast differentiation and bone mineralization by activat-
ing the Wnt/β-catenin signaling pathway [117]. Moreover, in differentiating C2C12 cells,
exosomal paired-related homeobox 2 (Prrx2) promotes osteogenesis by alleviating the
inhibitory effects of miR-128 on yes-associated protein 1 (YAP-1) via the up-regulation
of long non-coding RNA (lncRNA)-MIR22HG expression [124]. Muscle-derived EVs can
also promote osteogenic differentiation [9]. In addition to their positive effects on bone
formation, EVs also play inhibitory roles in bone resorption. For example, miR-196a-5p par-
ticipates in C2C12 myoblast- and myotube-derived EV suppression of osteoclast formation
by reducing mitochondrial function [120,125]. Muscle-derived EVs also exert inhibitory
effects on osteoclasts [9]. Thus, muscle-derived EVs play a positive role in bone metabolism
via the promotion of bone formation and inhibition of bone resorption.

3.3. Changes and Effects of Muscle-Derived EVs under Disuse Conditions

Recent research has reported no notable differences in serum EV concentrations be-
tween normal and hindlimb-unloaded rats [8]. Van et al. observed an increase over time in
the mRNA expression of transmembrane proteins related to EV formation, including CD63
and CD9, within the soleus and quadriceps muscle of rats subjected to tail suspension,
but a significant down-regulation in the gastrocnemius muscle [128,129]. This variation in
EV secretion patterns due to disuse may be associated with the specific characteristics of
different skeletal muscle tissues.

An analysis of molecules within muscle-derived EVs has revealed that the expression
levels of miRNAs associated with cellular senescence and muscle atrophy, such as miR-
let-7c, miR-let-7b, miR-181a, and miR-124, are increased in fibro-adipogenic progenitor
cell-derived EVs following 14 days of single-hindlimb immobilization in mice [130], which
may be a potential mechanism involved in disuse-induced muscle atrophy. In addition,
recent findings have indicated that skeletal muscle-derived EVs from mice treated with
botulinum toxin or sciatic neurotomy can inhibit the formation of bone marrow stromal
cells (BMSCs) and promote osteoclastogenesis [9], implying that muscle-derived EVs may
contain more molecules harmful to bone growth, meriting further investigation. The same
study also found that muscle-derived EVs from normal mice can significantly inhibit
osteoclast differentiation, further emphasizing the important role of muscle-derived EVs in
bone maintenance. Thus. screening key effector molecules and exploring their potential
underlying mechanisms remain urgent research directions [9].

4. Conclusions and Future Directions

Current research has thoroughly demonstrated the essential functions of skeletal
muscle-derived myokines and EVs in controlling the homeostasis of both skeletal muscle
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and bone (Figure 1). These myokines and EVs are crucial for preserving the overall balance
of the musculoskeletal system, influencing the proliferation and differentiation of muscle
and bone cells, regulating musculoskeletal metabolism, and maintaining mitochondrial sta-
bility. The decrease in myokines beneficial for muscle and bone, coupled with the increase
in myokines detrimental to these tissues, likely contributes to the degenerative changes
observed in muscle and bone by disrupting musculoskeletal balance under conditions of
disuse. Furthermore, evidence also suggests a close relationship between increased miR-
NAs in muscle-derived EVs, linked to cellular senescence and muscle atrophy, and muscle
atrophy induced by inactivity. Nevertheless, research regarding additional mechanisms by
which muscle-derived EVs may mediate bone loss under disuse conditions, particularly
in vivo studies, remains limited. Employing targeted labeling of muscle-derived EVs with
fluorescent probes and tracking their distribution in bone cells using techniques such as
small animal imaging systems could establish a theoretical basis for a more comprehensive
analysis of the mechanisms involved in muscle-derived EV-mediated bone loss during
disuse. Such studies may offer new strategies for addressing disuse-induced osteoporosis
by targeting specific effectors within muscle-derived EVs.
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BMSCs bone marrow stromal cells
Bsp bone sialoprotein
CCL-7 chemokine (C-C motif) ligand 7
COL-1 collagen I
DKK-1 dickkopf-related protein 1
eEF-2 eukaryotic elongation factor 2
Erα estrogen receptor alpha
ERK extracellular signal-regulated kinase
EVs extracellular vesicles
FNDC-5 fibronectin type III domain-containing 5
G6PD glucose-6-phosphate dehydrogenase
IGF-1 insulin-like growth factor 1
IL-6 interleukin 6
ILVs intraluminal vesicles
JNK c-Jun N-terminal kinase
Lrp-5 low density lipoprotein receptor-related protein 5
MAPK mitogen-activated protein kinase
MEK-2 mitogen-activated protein kinase-extracellular signal-regulated kinase
MHC myosin heavy chain
miRNAs microRNAs
Mmp-9 matrix metalloproteinase 9
MRGPRD mas-related G protein-coupled receptor type D
mTOR mammalian target of rapamycin
MuRF-1 muscle RING finger 1
MVEs multivesicular endosomes
Myf-5 myogenic factor-5
MyoD myogenic differentiation antigen
MyoG myogenin
NFATc1 nuclear factor of activated T-Cells, cytoplasmic 1
NF-κB nuclear factor kappa-B
OCN osteocalcin
OPG osteoprotegerin
OPN osteopontin
Pax-7 paired box 7
PGC-1α peroxisome proliferator-activated receptor gamma coactivator-1alpha
PI3K phosphatidylinositol 3-kinase
PKB, Akt protein kinase B
PPARδ peroxisome proliferator-activated receptor δ
RANK receptor activator of nuclear factor-κ-gene binding
Rrbp-1 Ribosomal binding protein 1
RUNX-2 runt-related transcription factor 2
SHP-2 Src-homology domain 2 containing protein-tyrosine phosphatase
SOST sclerostin
STAT-5 signal transducers and activators of transduction 5
Trap tartrate-resistant acid phosphatase
YAP-1 yes-associated protein 1
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