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Abstract: Phytohormones that trigger or repress flower meristem development in apple buds are
thought to be locally emitted from adjacent plant tissues, including leaves and fruitlets. The presence
of fruitlets is known to inhibit adjacent buds from forming flowers and thus fruits. The resulting
absence of fruitlets the following season restores flower-promoting signalling to the new buds. The
cycle can lead to a biennial bearing behaviour of alternating crop loads in a branch or tree. The
hormonal stimuli that elicit flowering is typically referred to as the floral induction (FI) phase in
bud meristem development. To determine the metabolic pathways activated in FI, young trees of
the cultivar ‘Ruby Matilda’ were subjected to zonal crop load treatments imposed to two leaders of
bi-axis trees in the 2020/2021 season. Buds were collected over the expected FI phase, which is within
60 DAFB. Metabolomics profiling was undertaken to determine the differentially expressed pathways
and key signalling molecules associated with FI in the leader and at tree level. Pronounced metabolic
differences were observed in trees and leaders with high return bloom with significant increases in
compounds belonging to the cytokinin, abscisic acid (ABA), phenylpropanoid and flavanol chemical
classes. The presence of cytokinins, namely adenosine, inosine and related derivatives, as well as
ABA phytohormones, provides further insight into the chemical intervention opportunities for future
crop load management strategies via plant growth regulators.

Keywords: Malus domestica Borkh; return bloom; metabolomics; leaders; apple bud; biennial bearing;
cytokinins; ABA; ‘Ruby Matilda’

1. Introduction

All newly formed apple buds contain leaf or shoot primordia and floral transforma-
tion of these buds only begins around the time when fruitlets emerge during late spring.
Flower organ development stages of the bud occur through the season, including floral
induction (FI), floral initiation and floral differentiation. Maturation of the bud is achieved
during winter before bud-break occurs the following spring, when the phenological cycle
begins again.

FI is when chemical signals are received by vegetative buds to induce floral meristem
development. The exact time point of the FI phase is unclear; however, it is hypothesised
to take place 60–70 days after full bloom (DAFB) in many apple cultivars, approximately
2 weeks prior to floral initiation [1,2] when the first structural changes occur in the bud.
Floral initiation is visible microscopically via histological sectioning. It is about 12 weeks
after bloom when the morphological changes are visible, marked by the appearance of the
dome-shaped apex in the bud known as the flower differentiation phase [3]. Flower buds
are most visibly distinct from vegetative buds during winter when they enter maturation.
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Previous reports have indicated that it is likely that chemicals emitted by fruitlet seeds
are responsible for floral repression, as adjacent buds are likely to remain vegetative and
develop into leaves or shoots [4–6]. The removal of fruitlets via thinning practices during
late spring, prior to the FI phase, have been shown to result in a more consistent return
bloom, thereby an even crop load for the following season. Thinning practices that occur
post-FI mostly improve the quality of the current season’s crop load, indicating that the
fruitlets have a significant role to play in the chemical signalling mechanism for flower
organ development. A high number of fruitlets on a tree during the FI phase results in
suppression of return bloom that in turn generates a low crop load for the following season.
The tree would then enter an alternating cropping cycle, known as biennial bearing. Trees
that bear high crop loads are often described as ‘ON’ trees and those with relatively lower
yields are described as ‘OFF’ trees [1,2].

While there are many studies that have investigated the physiological pathways
of biennial bearing, the triggers and source of FI and repression are still largely un-
known [1,2,4,7,8]. The negative correlation between fruitlet development and flower
bud formation in strongly biennial bearing cultivars is the most studied cause of flower
set variability. Fruitlet development over the flower bud initiation rate was believed to be
one of nutritional competition due to inhibition of flower formation with the concurrent
development of fruit [9]. The hypothesis was challenged by Chan and Cain [10], with
experiments demonstrating that fruit number in parthenocarpic cultivars with seedless
fruit had little effect on flower bud formation compared to seeded fruit, which had in-
hibitory effects unless removed after bloom. Thus, the study demonstrated that the rich and
diverse phytohormones present in seed may be a factor contributing to biennial bearing [2].
Milyaev et al. [2] investigated the hypothesis and suggested that compounds involved in
floral repression should be present in fruit flesh and in relatively higher abundance in trees
with high floral repression (i.e., ‘ON’ trees) compared to trees that would largely induce
flowering (i.e., ‘OFF’ trees). However, there were no correlations between compounds
present in seed and those in buds, and thus, it remains in question whether phytohormones
present in seed are in fact diffused into buds.

In vitro studies showed that flowering in the model plant Plumbago indica was induced
by sugars and a mix of certain plant hormones, including cytokinins, adenine and low levels
of auxin and inhibited by the vitamin riboflavin, the gibberellin class of plant hormones and
amino acids such as glutamine and asparagine [11,12]. Genetics [4] and gene expression
studies including transcripts [1,13] and multi-omics investigations [1] associated with
biennial bearing suggested the role of sugar metabolism (carbohydrates) and hormone-
related genes as likely candidates involved in biennial bearing. The multi-omics studies
also indicated that thiamine, chlorogenic acid and an adenine derivative are involved in
flower bud development in apple [1]. Increased levels of flavonoids such as kaempferol
derivatives were also identified in low-crop-load trees.

The exogenous application of metabolites can engineer new pathways within a plant
that mimic a response to stress conditions [14–16], further validating the involvement
of plant hormones as a trigger for FI. The use of the endogenous or synthetic hormonal
growth regulators to crop load in pome fruit is widespread. The synthetic cytokinin
6-benzyladenine (BA) is an effective post-bloom thinner for apple, as it reduces crop
load, improves fruit quality and increases the return bloom for the following season [17].
Although variable results were observed with abscisic acid (ABA) as a thinning agent, it
is naturally produced in plants as a growth regulator by ethylene biosynthesis and up-
regulation of corresponding genes and plays a significant role in responding to abiotic and
biotic stress [18,19]. In combination with BA, salicylic acid, a natural phytohormone, likely
associated with FI, improved the return bloom in the apple cultivar ‘Northern Spy’ [20].
Reddy et al. [21] explains that buds in the FI phase in the strongly biennial cultivar ‘Nicoter’
produce salicylates, and in the less biennial bearing cultivar ‘Rosy Glow’, there is additional
evidence of cytokinin involvement via the His-Asp pathway.
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Chemical signalling is further substantiated by the formation of zones within trees
that show biennial behaviour independent to the rest of the tree. Zones were generally
branches or areas (i.e., tree tops) that started with high flower numbers but became biennial,
while the rest of the tree showed relatively constant flower numbers. The fact that FI in
these zones is different from the rest of the tree indicates short-range signalling [22].

Expression of phytohormones and carbohydrates can be specific to rootstock [5] and
cultivar [1,21]. Chlorogenic acid—a key chemical associated with FI in apple—can differ
in abundance and structural diversity in regular bearers compared to biennial bearers.
Similarly, the same studies showed that tryptophan and metabolism of tryptophan, an
upstream precursor for auxin and indoleamine production, varied in cultivar and treat-
ments. Together, this suggests that the metabolic pathways activated in response to crop
load levels are distinct in different cultivars in apple.

It would be beneficial for the apple industry to identify zonal signalling metabolites
that could be artificially manipulated in trees or tree sections to balance flowering within
the whole tree. To determine the metabolic pathways involved in FI in a less susceptible
biennial bearing cultivar with a two-leader system, an untargeted metabolomics analysis of
buds was performed for this study. Buds were collected from young ‘Ruby Matilda’ apple
trees 60 DAFB, two weeks prior to the floral initiation period. Metabolites were analysed
from bud samples harvested from leaders with a range of crop load treatments using
high-resolution mass spectrometry. Here we describe the identification of key metabolites
associated with FI using MS2 fragmentation and structure elucidation.

2. Materials and Methods
2.1. Experimental Site and Crop Load Treatments

The experiment was conducted in a commercial ‘Ruby Matilda’ apple (marketed as
Pink Lady®) orchard (Plunkett Orchards, Ardmona, VIC, Australia). A randomised block
design with 3 blocks consisting of 10 trees each was used. Trees were trained to bi-axis with
two leaders labelled ‘primary’ (L1) and ‘secondary’ (L2) leader. Flower clusters on each
leader were manually counted at full bloom (70–80% open flowers).

The return bloom dataset was categorised for ‘Ruby Matilda’ treatments
denoted as RTHIGH (12.6–20.0 flower no. cm−2 leader cross-sectional area (LCSA);
4.0–10.1 fruit no. cm−2 LCSA; n = 12), RLHIGH (15.4–21.6 flower no. cm−2 LCSA of leader;
3.3–17.2 fruit no. cm−2 LCSA of leader; n = 12), RTLOW (2.93–4.48 flower no. cm−2 LCSA;
2.24–6.46 fruit no. cm−2 LCSA; n = 12), and RLLOW (2.09–3.95 flower/cm2 LCSA of leader;
5.0–7.5 fruit no. cm−2 LCSA of leader; n = 12).

The standard commercial thinning practice of 120 fruit/leader was used as reference
crop load treatment. In addition, the other crop load treatments imposed to L1 leaders were
20, 70, 170 and 220 fruit/leader. Crop load treatments were imposed within 5–6 weeks of
full bloom to alter the following year’s return bloom. L2 leaders were subjected to two crop
load levels—‘low’ (<50 fruit/leader) and high (>200 fruit/leader).

2.2. Apple Bud Preparation and Metabolomic Extraction

Buds were harvested post-thinning from apple trees in late spring and early summer
of the 2020/2021 growing season. Collection of three buds per leader occurred 60 DAFB.
Bud selection and preparation is as previously described [21]. Briefly, buds were harvested
from spurs and placed on ice before the scales were removed. Samples were stored at
−80 ◦C prior to metabolomics analysis.

The metabolite extraction protocol was performed as reported previously by Reddy
et al. [21]. Briefly, apple buds were lyophilised and ground using yttria zirconia beads on
24-well cryo-blocks on a Geno/Grinder 2010 [21]. The samples were extracted with 80%
methanol/water (v/v), with extraction volumes adjusted proportionally to the weight of
the lyophilised bud, and centrifuged. A 200 µL aliquot of the supernatant was transferred
into an HPLC tube and stored at −20 ◦C until ready for LCMS analysis [21].
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2.3. LCMS Methods for Untargeted and Targeted Analysis

The untargeted metabolite LCMS and LCMSMS profiling method is described in full
in Reddy et al. [21]. Briefly, a Vanquish ultra-high performance liquid chromatography
(UHPLC) system (Thermo Fisher Scientific, Bremen, Germany) coupled with a QExactive
(QE) Plus mass spectrometer (Thermo, Bremen, Germany) with electrospray (ESI) probe,
operating in both positive and negative modes, was used. Samples were randomised, and
blanks (80% methanol) injected every five samples. A pooled biological quality control
(PBQC) was run every 10 samples. For MS2, data were acquired in full-scan MS/data-
dependent MS2 (ddMS2) mode on positive and negative ionisation modes on selected
samples. Prior to data acquisition, the system was calibrated with Pierce LTQ Velos ESI Pos-
itive and Negative Ion Calibration Solution (Thermo Fisher Scientific). Mass spectrometry
data were acquired using Thermo Xcalibur V. 2.1 (Thermo Fisher Scientific Inc., Waltham,
MA, USA). Nitrogen was used as the sheath, auxiliary and sweep gases at flow rates of 28,
15 and 4 L/min, respectively. Spray voltage was set at 4000 V (positive and negative).

A Thermo Fisher Scientific Hypersil Gold 1.9 µm, 100 mm × 2.1 mm column was
used with a mobile phase consisting of 0.1% formic acid in H2O (A) and 0.1% formic acid
in acetonitrile (B). The mobile phase gradient is described in Reddy et al. [21]. In short, a
flow rate of 0.3 mL/min of 2% B, increasing to 100% B, followed by 2% equilibration over
20 min was used.

2.4. Data Processing and Statistical Analyses

The data files obtained following LCMS analyses were processed in the Refiner MS
module of Genedata Expressionist® 12.0 with parameters as previously described [21].

Statistical analyses were performed using the Analyst module of Genedata
Expressionist® 12.0. Principal component analyses (PCAs) were performed to identify
differences in leader and tree response. Overlay of the PBQC and samples allowed for
the validation of the high-quality dataset by ensuring RT variation, mass error and sen-
sitivity changes throughout. Identification of metabolites was performed by searching
experimental MS1 data through the following databases: Plant Metabolic Network (PMN)
(https://plantcyc.org) (accessed on 25 January 2023); Human Metabolome
DataBase (HMDB) (http://hmdb.ca) (accessed on 25 January 2022); ChemSpider
(http://chemspider.com) (accessed on 25 February 2023); and Lipid Maps® (http://www.
lipidmaps.org) (accessed on 20 June 2022). MS2 data were searched on MzCloud
(https://www.mzcloud.org) (accessed on 25 March 2023).

Previously described linear models and OPLSDA models was applied to each dataset
using MetaboAnalyst 3.053 [23] with missing value imputation on individual leaders of
the ‘Ruby Matilda’ cultivar, revealing significant metabolites, as indicated by a p-value
of <0.05 [21].

3. Results

To investigate zonal chemical signals associated with biennial bearing in apples, crop
load treatments were applied to individual leaders in the cultivar ‘Ruby Matilda’ and
apple buds collected 60 days post-crop load treatments and analysed using ultra-high
performance liquid chromatography–high resolution mass spectrometry (UHPLC-HRMS).

Principal component analysis (PCA) plots (Figure S1) on UHPLC-HRMS metabolite
dataset indicated reproducible pooled biological quality control (PBQC) data. Initially,
the dataset revealed no clear separation across treatments; however, high- and low-return
bloom data for individual leaders and at tree level indicated some separation between the
two treatment types (Figure S2).

An orthogonal projection to latent structure discriminant analysis (OPLS-DA) model
was utilised on only high- and low-return bloom data for positive and negative ionisation
mode whole datasets for individual leaders and tree level. The OPLS-DA score plot revealed
separation between treatment groups in both the positive and negative mode datasets.

https://plantcyc.org
http://hmdb.ca
http://chemspider.com
http://www.lipidmaps.org
http://www.lipidmaps.org
https://www.mzcloud.org
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To investigate short-range signalling pathways in ‘Ruby Matilda’, the dataset was
evaluated using metadata from individual leaders and at the tree level. For individual
leaders, model performance of the positive mode data was well-described with moderate
predictive performance with RLLOW and RLHIGH (Q2 = 0.40, R2Y = 0.59), as shown in
Figure 1A. Using 100 different model permutations (Q2 = 0.62, p < 0.01 and R2Y = 0.99)
indicated the model was significant. Negative mode for RLLOW and RLHIGH, shown in
Figure 1B, performed moderately (Q2 = 0.39, R2Y = 0.58). Using 100 different model
permutations (p-value < 0.01, Q2 = 0.59 and R2Y = 0.99) indicated the model was significant.
Variable importance in projection (VIP) was used to identify compounds mainly responsible
for the separation in OPLS-DA models. Metabolites that resulted in a VIP > 2.0 were used
as a threshold for variable selection. A total of 19 significant metabolites in the positive
mode and 15 metabolites in the negative mode were identified.
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mode with an associated 95% confidence ellipses (Q2 = 0.41, R2Y = 0.68). All models were significant, 
indicated by 100 different model permutations for (A) (p < 0.01, Q2 = 0.61 and R2Y = 0.99), (B) (p < 
0.01, Q2 = 0.59 and R2Y = 0.99), (C) (p < 0.01, Q2 = 0.62 and R2Y = 0.92) and (D) (p < 0.01, Q2 = 0.54 and 
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Figure 1. Orthogonal partial least squares discriminant analysis (OPLS-DA) of RLLOW and RLHIGH

extracts acquired in UHPLC-HRMS. RLLOW (+) and RLHIGH (∆) OPLS-DA score plot for (A) ESI+
mode with an associated 95% confidence ellipses (Q2 = 0.40, R2Y = 0.59) and (B) ESI− mode with
an associated 95% confidence ellipses (Q2 = 0.39, R2Y = 0.58). RTLOW (+) and RTHIGH (∆) OPLS-DA
score plot for (C) ESI+ mode with an associated 95% confidence ellipses (Q2 = 0.43, R2Y = 0.69)
(D) ESI− mode with an associated 95% confidence ellipses (Q2 = 0.41, R2Y = 0.68). All models were
significant, indicated by 100 different model permutations for (A) (p < 0.01, Q2 = 0.61 and R2Y = 0.99),
(B) (p < 0.01, Q2 = 0.59 and R2Y = 0.99), (C) (p < 0.01, Q2 = 0.62 and R2Y = 0.92) and (D) (p < 0.01,
Q2 = 0.54 and R2Y = 0.79).

Whole tree signalling pathways in ‘Ruby Matilda’ were also investigated. Model
performance for positive mode was well-described in RTLOW and RTHIGH (Q2 = 0.43,
R2Y = 0.69) data, as shown in Figure 1C. Using 100 different model permutations (p < 0.01,
Q2 = 0.62 and R2Y = 0.92), the model was found to be significant. Good predictive perfor-
mance (Q2 = 0.41, R2Y = 0.68) of negative mode data for RTLOW and RTHIGH treatments
is shown in Figure 1D. Using 100 different model permutations (p-value < 0.01, Q2 = 0.54
and R2Y = 0.79), the model was found to be significant. Variable selection of positive and
negative mode data revealed a total of 25 and 23 metabolites, respectively, using a threshold
of VIP > 2.0.
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A linear model (y (metabolite response) ~ flower cluster numbers per leader (LCSA))
was applied to the individual leaders in ‘Ruby Matilda’ for whole datasets in positive and
negative mode. The flower cluster data were treated as an independent continuous variable
for each cultivar. Metabolites in the apple spur buds were mostly elevated in RTHIGH

treatments compared to RTLOW (Tables 1 and 2), consistent with previous studies [21].
Library matching of MS or MSn fragmentation of parent ion confirmed the iden-

tification of differentially expressed metabolites for ‘Ruby Matilda’ in the whole tree
(Tables 1 and 2) and in leaders (Tables 3 and 4) representing zonal signalling. Level 3
identification or above is required for putative identification of compounds in accordance
with the Metabolomics Standards Initiative and Schrimpe-Rutledge et al. [21,22]. Most
metabolites in Tables 1–4 had level 2 identification, i.e., compounds that have matching frag-
mentation pattern with metabolite MS/MS libraries. Level 3 identification is ascribed when
tentative structures are elucidated from database searches and the compound likely be-
longs to a particular chemical class. Level 4 identification arises when a molecular formula
is only derived from the m/z molecular feature, rendering many structural possibilities.
A level 5 identification represents a deconvoluted m/z molecular feature.

Many phenylpropanoid derivatives were assigned level 3 identification, as
characteristic MS/MS ions, including m/z 265, 163 and 145, indicated the presence of
structural analogues.

The majority of metabolites were elevated in buds that were harvested from trees with
high return bloom. Figure 2 shows some selected examples of compounds representing
phenylpropanoid, cytokinin and flavanol chemical groups, associated with FI.
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Figure 2. Selected examples of compounds and key fragments representing chemical classes associated 
with development of floral meristem in ‘Ruby Matilda’. These include phenylpropanoids: sinapalde-
hyde, coumaric acid; cytokinins: inosine; ABA: abscisate glucoheptonic acid; flavanol: quercetin. 

 

Figure 2. Selected examples of compounds and key fragments representing chemical classes
associated with development of floral meristem in ‘Ruby Matilda’. These include phenyl-
propanoids: sinapaldehyde, coumaric acid; cytokinins: inosine; ABA: abscisate glucoheptonic acid;
flavanol: quercetin.
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Table 1. Negative mode LC-MSMS data that were significant (VIP > 2.0) in the OPLSDA model (RTHIGH vs RTLOW) with associated effect size. P values indicate
significance of linear model (y (metabolite response) ~ flower clusters) in ‘Ruby Matilda’.

Identity Compound Class Retention
Time (min)

Mass (m/z)
[M − H]−

Molecular
Formula

Mass Error
(ppm) VIP Score Effect Size * p-Value MS2 Ions Metabolite

Level

coumaric acid derivative phenylpropanoid 3.85 429.1407 C19H26O11 −3.7 2.78 2.36 ↑ 6.7 × 10−7

361.1503,
265.0700,
163.0391,
145.0281,
117.0335,
59.0126

3

coumaric acid derivative phenylpropanoid 3.78 459.1512 C20H28O12 −3.3 2.73 2.18 ↑ 8.9 × 10−5

265.0715,
235.0715,
205.0500,
163.0391,
145.0285,
119.0492,
117.0335,
89.0233,
59.0126

3

sinapaldehyde phenylpropanoid 4.29 369.1195 C17H22O9 −4.1 2.51 1.88 ↑ 5.7 × 10−2

359.1194,
163.0392,
145.0295,
117.0336

2

coumaric acid derivative phenylpropanoid 5.57 473.1452 C24H26O10 −2.1 2.37 1.47 ↑ 2.7 × 10−3

307.0826,
273.0771,
165.0549,
150.0313,
145.0285,
123.0441,
117.0336

2

coumaric acid derivative phenylpropanoid 4.57 383.1352 C18H24O9 −3.9 2.36 1.92 ↑ 1.7 × 10−1

383.1356,
163.0391,
145.0286,
117.0335

2

2.20 206.9884 2.35 1.44 ↓ 1.7 × 10−1

coumaric acid derivative phenylpropanoid 5.38 487.1246 C24H24O11 −2.3 2.35 1.40 ↑ 5.5 × 10−4

341.0885,
179.0345,
161.0239,
145.0288,
135.0444,
117.0338

2
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Table 1. Cont.

Identity Compound Class Retention
Time (min)

Mass (m/z)
[M − H]−

Molecular
Formula

Mass Error
(ppm) VIP Score Effect Size * p-Value MS2 Ions Metabolite

Level

coumarate diglucoside phenylpropanoid 3.70 489.1618 C21H30O13 −3.1 2.21 2.07 ↑ 2.5 × 10−4
163.0393,
145.0286,
119.0492

2

5.34 503.1557 − 2.18 1.31 ↑ 1.3 × 10−1 − 5
3.09 427.0859 − 2.16 1.49 ↑ 1.0 × 10−1 − 5
3.09 359.0990 − 2.15 1.54 ↑ 1.5 × 10−1 − 5
1.32 209.0661 − 2.13 1.55 ↑ 6.0 × 10−3 − 5

quercetin
3-(6′′-malonyl-glucoside) flavanol 4.79 549.0890 C24H22O15 −2.7 2.09 1.85 ↓ 7.3 × 10−5

As per + ve
mode

(Table 2)
3

4.85 433.0469 − 2.07 1.48 ↓ 3.5 x10−5 − 5
4.42 307.1400 − 2.05 1.38 ↑ 2.1 x10−2 − 5
5.06 475.1250 − 2.03 1.69 ↑ 1.1 × 10−1 − 5
4.82 501.0649 − 2.01 1.15 ↓ 8.9 × 10−5 − 5

abscisate glucoheptonic acid abscisic acid 4.81 471.1869 C22H32O11 −1.7 2.43 1.52 ↑ 3.8 x10−3

263.1291,
219.1391,
151.0755,
125.0600

2

inosine derivative cytokinin 3.89 439.1827 C19H28N4O8 −0.9 2.42 1.22 ↑ 1.8 × 10−3

393.1770,
325.1147,
265.0931,
205.0712,
163.0604

3

inosine diglucoside cytokinin 1.23 475.1781 C29H24O3N4 −3.4 2.18 2.62 ↑ 3.3 × 10−3

343.1250,
179.0551,
131.0452,
113.0346

2

inosine derivative cytokinin 1.26 473.1625 C19H28N3O11 3.2 2.01 2.16 ↑ 8.5 × 10−3

341.1106,
179.0556,
131.0453,
113.0347

3

inosine cytokinin 1.27 267.0723 C10H12N4O5 0.4 2.20 1.31 ↑ 2.8 × 10−3

249.0614,
207.0509,
191.0558,
175.0245,
113.0234,
85.0284

2
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Table 1. Cont.

Identity Compound Class Retention
Time (min)

Mass (m/z)
[M − H]−

Molecular
Formula

Mass Error
(ppm) VIP Score Effect Size * p-Value MS2 Ions Metabolite

Level

ureidopropionic acid cytokinin 1.18 131.0452 C4H8N2O3 −0.8 2.00 2.10 ↑ 5.7 × 10−2
114.0188,
113.0348,
95.0241

2

* ↑ = up-regulated in RTHIGH, ↓ = down-regulated in RTHIGH.

Table 2. Positive mode LC-MSMS data that were significant (VIP > 2.0) in the OPLSDA model (RTHIGH vs RTLOW) with associated effect size. P values indicate
significance of linear model (y (metabolite response) ~ flower clusters) in ‘Ruby Matilda’.

Identity Compound Class Retention
Time (min)

Mass (m/z)
[M + H]+

Molecular
Formula

Mass Error
(ppm)

VIP
Score

Effect
Size * p-Values MS2 Ions

Metabolite
Level

epicatechin-3′-O-
glucuronide flavanol 3.85 453.1365 C21H24O11 5.7 2.53 2.23 ↑ 3.7 × 10−6

291.0855,
147.0446,
139.0389,
123.0443

2

cytokinin derivative cytokinin 4.81 449.1775 C16H26N5O10 −5.1 2.46 1.53 ↑ 1.4 × 10−1

287.1249,
269.1140,
185.0420,
153.0185

2

inosine diglucoside cytokinin 1.23 477.1919 C29H24N4O3 −0.4 2.39 3.14 ↑ 4.9 × 10−3

133.0608,
116.0344,
87.0556,
74.0241

2

inosine derivative cytokinin 1.28 475.1765 − − 2.39 3.07 ↑ 2.0 × 10−1

133.0610,
116.0346,
87.0557,
74.0241

3

4.82 267.0431 − − 2.31 1.14 ↓ 2.5 × 10−1 5
5.57 497.1410 − − 2.28 1.61 ↑ 2.4 × 10−3 -

quercetin
3-(6′′-malonyl-glucoside) flavanol 4.79 551.1024 C24H22O15 1.3 2.26 1.90 ↓ 6.7 × 10−3

303.0497,
257.0431,
231.0494,
153.0187

2
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Table 2. Cont.

Identity Compound Class Retention
Time (min)

Mass (m/z)
[M + H]+

Molecular
Formula

Mass Error
(ppm)

VIP
Score

Effect
Size * p-Values MS2 Ions

Metabolite
Level

(2R)-3-(3,4-
dihydroxyphenyl)-2-
hydroxypropanoate

phenylpropanoid 3.09 199.0601 C9H10O5 0.0 2.25 1.49 ↑ 6.0 × 10−2

155.0702,
140.0468,
123.0442,
95.0495

2

flavanol 4.83 454.0647 − − 2.25 1.27 ↓ 5.3 × 10−3 − 5
1.21 315.1392 − − 2.25 2.34 ↑ 7.1 × 10−2 − 5
4.57 407.1309 − − 2.25 1.82 ↑ 7.8 × 10−3 − 2
4.82 671.1072 − − 2.20 1.66 ↓ 5.8 × 10−3 − 5
9.61 537.3027 − − 2.19 1.78 ↑ 9.6 × 10−4 − 5
1.82 256.1288 − − 2.19 2.16 ↑ 1.7 × 10−2 − 5

ureidopropionic acid cytokinin 1.19 133.0606 C4H7N2O3 2.18 2.70 ↑ 6.1 × 10−2
116.0344,
87.0557,
74.0241

2

1.34 256.1287 − 2.16 2.12 ↑ 3.1 × 10−2 − 5
1.28 112.9999 − 2.15 1.68 ↑ 1.7 × 10−3 − 5
3.09 383.0949 − 2.15 1.42 ↑ 7.1 × 10−2 − 5

leucine amino acid 2.40 132.1020 C6H13NO2 −0.8 2.11 1.57 ↑ 6.3 × 10−2 86.0968,
69.0703 2

1.27 85.0287 C4H4O2 −3.5 2.11 1.18 ↓ 9.3 × 10−5 −

L-carnitine amino acid 1.25 162.1122 2.04 2.51 ↑ 9.5 × 10−2
144.0656,
116.0709,
98.0604

2

aspartyl-aspartate dipeptide 1.32 249.0713 C8H12N2O7 1.7 2.02 2.62 ↑ 9.4 × 10−3

232.0450,
214.0347,
204.0502,
186.0398

2

aminoisobutyrate cytokinin 1.22 104.0708 C4H9NO2 −1.9 2.02 1.78 ↑ 4.4 × 10−2
87.0445,
60.0812,
58.0655

2

4.81 891.1567 − − 2.02 1.29 ↓ 1.9 × 10−3 −
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Table 2. Cont.

Identity Compound Class Retention
Time (min)

Mass (m/z)
[M + H]+

Molecular
Formula

Mass Error
(ppm)

VIP
Score

Effect
Size * p-Values MS2 Ions

Metabolite
Level

methoxy coumarin phenylpropanoid 5.84 177.0546 C10H8O3 0.0 2.00 1.27 ↑ 1.7 × 10−2
145.0283,
117.0335,
89.0388

2

* ↑ = up-regulated in RTHIGH, ↓ = down-regulated in RTHIGH.

Table 3. Negative mode LC-MSMS data that were significant (VIP > 2.0) in the OPLSDA model (RLHIGH vs RLLOW) with associated effect size. P values indicate
significance of linear model (y (metabolite response) ~ flower clusters) in ‘Ruby Matilda’.

Identity Compound Class Retention
Time (min)

Mass (m/z)
[M − H]−

Molecular
Formula

Mass Error
(ppm)

VIP
Score

Effect
Size * p-Value MS2 Ions

Metabolite
Level

quercetin-3-arabinoside flavanol 4.87 433.0775 C20H18O11 −2.3 2.3 1.2 ↓ 3.1 × 10−2

300.0279,
271.0252,
255.0298,
243.0299

2

naringenin glucoside flavanol 5.42 433.1147 C21H22O10 4.1 2.2 1.5 ↓ 1.1 × 10−2

271.0602,
255.0299,
253.0505,
151.0029,

2

coumaric acid phenylpropanoid 3.70 489.1618 C21H30O13 −3.1 2.2 1.6 ↑ 3.9 × 10−4

325.1147,
265.0719,
163.0393,
145.0286,

2

gingerol phenolic 8.70 293.1762 C17H26O4 −5.1 2.1 1.1 ↓ 2.1 × 10−1
249.1861,
193.1593,
136.0885

2

sinensin flavanol 5.17 449.1094 C21H22O11 −3.6 2.1 3.2 ↓ 1.0 × 10−2

287.0566,
151.0028,
135.0442,
107.0128

2

apigenin-O-(malonyl-
glucoside) flavanol 5.17 517.0967 C24H22O13 1.9 2.1 3.5 ↓ 3.6 × 10−1 - 3
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Table 3. Cont.

Identity Compound Class Retention
Time (min)

Mass (m/z)
[M − H]−

Molecular
Formula

Mass Error
(ppm)

VIP
Score

Effect
Size * p-Value MS2 Ions

Metabolite
Level

dalpatein-apiofuranosyl-
glucopyranoside flavanol 4.96 635.1596 C29H32O16 1.7 2.1 1.6 ↓ 1.8 × 10−2

589.1551,
567.1729,
463.0878,
316.0229

2

tetrahydroxyanthraquinone quinone 3.70 375.0698 C18H16O9 −3.5 2.1 1.4 ↓ 1.9 × 10−4

357.0582,
201.0164,
189.0163,
179.0342,
161.0235,
135.0442

2

hydroxycinnamate phenylpropanoid 5.57 473.1452 C24H26O10 −2.1 2.1 1.4 ↑ 1.5 × 10−2

307.0826,
273.0771,
165.0549,
150.0313,
145.0285,
123.0441,
117.0336

2

coumarate glycoside phenylpropanoid 3.78 459.1512 C20H28O12 −3.3 2.0 1.6 ↑ 8.5 × 10−4

265.0715,
235.0715,
205.0500,
163.0391,
145.0285,
119.0492,
117.0335,
89.0233,
59.0126

2

methoxy cinnamate phenylpropanoid 6.44 177.0550 C10H10O3 −2.3 2.0 1.8 ↑ 4.0 × 10−6

162.0315,
145.0267,
123.0442,
121.0286

2

phenylpropanoid 4.94 567.1719 2.0 1.5 ↑ 4.6 × 10−2

273.0772,
167.0343,
123.0441,
81.0334

4
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Table 3. Cont.

Identity Compound Class Retention
Time (min)

Mass (m/z)
[M − H]−

Molecular
Formula

Mass Error
(ppm)

VIP
Score

Effect
Size * p-Value MS2 Ions

Metabolite
Level

hydroxycinnamate phenylpropanoid 3.85 429.1407 C19H26O11 −3.7 2.0 1.6 ↑ 2.8 × 10−4

361.1503,
265.0700,
163.0391,
145.0281,
117.0335

2

- 4.78 737.1725 2.0 2.8 ↓ 6.7 × 10−6

575.1197,
407.0775,
395.0775,
243.0297

5

* ↑ = up-regulated in RLHIGH, ↓ = down-regulated in RLHIGH.

Table 4. Positive mode LC-MSMS data that were significant (VIP > 2.0) in the OPLSDA model (RLHIGH vs RLLOW) with associated effect size. P values indicate
significance of linear model (y (metabolite response) ~ flower clusters) in ‘Ruby Matilda’.

Identity Compound Class Retention
Time (min)

Mass (m/z)
[M + H]+

Molecular
Formula

Mass Error
(ppm)

VIP
Score

Effect
Size * p-Value MS2 Ions

Metabolite
Level

naringenin flavanol 3.41 273.0756 C15H12O5 0.4 2.56 2.14 ↑ 1.5 × 10−5

243.0650,
215.0702,
151.0389,
123.0442

2

1.44 247.0422 − − 2.47 1.58 ↑ 1.3 × 10−4
229.0319,
173.0209,
97.0283

5

1.38 261.0577 − − 2.44 1.57 ↑ 5.5 × 10−4 − 5
1.42 324.0341 − − 2.42 1.75 ↑ 2.6 × 10−3 − 5
4.57 407.1309 − − 2.34 1.46 ↑ 2.2 × 10−3 − 5
1.24 295.0784 − − 2.25 1.69 ↑ 9.0 × 10−4 − 5

flavanol derivative flavanol 5.42 435.1279 C21H22O10 1.6 2.21 1.62 ↓ 1.4 × 10−2

303.0498,
273.0754,
229.0493,
153.0181

3

4.81 891.1567 − − 2.18 1.35 ↓ 1.9 × 10−2 −
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Table 4. Cont.

Identity Compound Class Retention
Time (min)

Mass (m/z)
[M + H]+

Molecular
Formula

Mass Error
(ppm)

VIP
Score

Effect
Size * p-Value MS2 Ions

Metabolite
Level

hydroxycinnamic acid phenylpropanoid 3.80 165.0544 C9H8O3 1.2 2.15 1.57 ↑ 5.7 × 10−3
147.0441,
119.0493,
91.0546

2

1.28 112.9999 − − 2.14 1.67 ↑ 1.1 × 10−3 − 5
5.17 451.1233 − − 2.11 2.03 ↓ 9.1 × 10−3 − 5
5.42 273.0756 − − 2.11 1.55 ↓ 2.0 × 10−2 − 5

avicularin (flavanol
glucoside) flavanol 4.89 435.0913 C20H18O11 2.1 2.09 1.28 ↓ 9.7 × 10−2

303.0498,
273.0757,
229.0494,
153.0182

2

adenosine cytokinin 1.32 268.1035 C10H13N5O4 1.9 2.08 2.60 ↑ 2.1 × 10−2

245.2293,
136.0617,
91.0577,
77.0421

2

unknown cytokinin
derivative glucoside cytokinin 5.57 497.1410 C19H22N5O11 −4.2 2.06 1.44 ↑ 1.8 × 10−3 331.0780,

189.0524 3

eriodictyol flavanol 5.17 289.0703 C15H12O6 1.4 2.04 4.10 ↓ 2.2 × 10−2

163.0390,
153.0182,
135.0441,
123.0442

2

5.74 277.0640 − − 2.01 1.40 ↑ 1.9 × 10−3 − 5

adenosine
5′-monophosphate cytokinin 1.32 348.0699 − − 2.00 1.62 ↑ 3.1 × 10−3 − 2

3.69 491.1752 − − 2.00 1.47 ↑ 5.5 × 10−4 −

* ↑ = up-regulated in RLHIGH, ↓ = down-regulated in RLHIGH.
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4. Discussion

Key compounds associated with FI, representing chemical signals within leaders and
in the whole tree, were determined using positive and negative LCMS metabolic profiling
on apple buds collected within the FI time period (60 DAFB). The overall high levels of
cytokinins, flavanols, hydroxycinnamic acid and cinnamate derivatives in trees with high
return bloom indicated disruption in the phenylpropanoid and cytokinin biosynthesis
pathway. These results were consistent with previous studies on cultivars ‘Nicoter’ and
‘Rosy Glow’ [21] as well as ‘Fuji’ and ‘Gala’ [1]. The metabolic pathways associated
with FI can vary between cultivars and root stocks depending on their susceptibility to
biennial bearing and crop load treatments [1,7,21,24]. Previous studies on the cultivar ‘Rosy
Glow’—mildly susceptible to biennial bearing—indicated cytokinin involvement due to
the presence of the downstream signalling peptide His-Asp in trees with high FI (‘OFF’
trees), although the related pathway intermediates were not identified.

In this study, ‘Ruby Matilda’ showed marked increase in the cytokinin precursors
and derivatives including adenosine, and its deaminated form, inosine in trees with high
return bloom. The compounds showed significant correlation with return bloom, both
as local signalling and as a whole tree response. Inosine is a purine nucleoside that is a
constituent of DNA and RNA and a precursor of cytokinin, a chemically diverse class
of plant hormones associated with a range of actions on plant growth and development.
Application of inosine to seeds of rice, tomato, onion, sunflower and soybean grown in
a hydroponic system resulted in improved growth of all plant parts, particularly root
growth, with the exception of soybean [25]. In the present study, the pyrimidine metabolite,
ureidopropionic acid, an intermediate in uracil metabolism, also increased in high-return-
bloom trees. Proteomic studies on early flower bud development mechanism in OFF apple
trees indicated the involvement of purine and pyrimidine metabolism, as well as flavonoid
biosynthesis [1].

The increased levels of compounds identified in the FI phase of buds collected from
‘Ruby Matilda’ trees with high return bloom could be candidates for improving return
bloom and mitigating biennial bearing via exogenous application. Current thinning agents
utilised by the industry are thought to potentially induce return bloom when fruitlets are
removed prior to FI or at the early stages of fruitlet development of 8–15 mm in size. For
example, the synthetic derivative of cytokinin BAP (thinning agent), is known to promote
return bloom when application is performed during the critical FI period. Similarly, the
natural phytohormone abscisic acid has been known to be an effective thinning agent with
some cultivars and increases return bloom only in combination with BA. However, in
this study, the cytokinin derivatives inosine and its bound derivatives, as well as ABA,
were found to be significantly involved in FI. Based on previous studies, it was unclear
whether cytokinins and ABA thinning agents were flower-promoting or abscission-related
metabolites [26]. However, this study provided evidence that cytokinins and ABA are
directly involved in FI; thus, the mechanism of thinning is likely the activation of a hormone
signal transduction pathway, which likely leads to abscission of fruit. Leaves are known
as promoters of FI and are also a major source of cytokinins. Metabolic profiling of leaves
could improve the understanding of sink–source relationships in FI.

While exogenous application of cytokinins has been linked to improve rate of floral
stimuli and bloom in apple, endogenous levels of cytokinin-related metabolites in the bud
meristem have only been previously identified in the form of an adenine derivative [1].
Corbesier et al. [27] described the role of cytokinins during floral transition of the long-day
plant Arabidopsis thaliana (L.) Heynh. The study describes that in response to a 16 h pho-
toperiod, the leaf tissues and leaf phloem exudate contained increased levels of isopentenyl
adenine, and at 20 h, the shoot apical meristem increased in both isopentenyladenine and
zeatin in induced plants when compared to vegetative controls. Similarly, in strawberry,
free cytokinins were significantly higher in shoot tips when compared to controls [28].
There are also examples where exogenous application of rare earth metal nitrates such as
lanthanum and cerium and/or long-chain primary alcohol triacontanol manipulates the
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endogenous cytokinins for early flowering in A. thaliana [29,30] and boosts quality and
yield of flowers in other plants such as orchids and Chrysanthemum × morifolium (Ramat.)
Hemsl. Although the mechanism is unclear, the potential to improve endogenous cytokinin
concentrations without the use of hormonal agents could be useful for the apple industry.

The flavonoids quercetin, epicatechin, naringenin, eriodictyol, avicularin and sinensin
showed varied levels with high and low treatments. Kaempferol and its precursor narin-
genin are important biomarkers, as previous reports have identified derivatives of its
biosynthetic intermediate, p-coumaryl COA in ‘ON’ trees [1]. Moreover, the transcriptome
and proteome of apple buds showed enzymatic activity of enzymatic reaction EC:2.3.1.133
that metabolizes at least three derivatives of p-coumaric acid, including p-coumaroyl CoA
and caffeoyl shikimic acid, precursors of the kaempferol and chlorogenic acid pathway [1].
Nuclear localisation of flavonoids has been reported in many plant species, suggesting that
flavonoids may function in transcriptional regulation of endogenous gene expression [31].
Naringenin chalcone and apigenin may also influence flavonoid biosynthesis by regulating
transcription of flavonoid biosynthetic enzymes [32]. The increased levels of the phenyl-
propanoid pathway intermediates, including hydroxy- and methoxy-cinnamates observed
in the present study, are consistent with investigations related to the strongly biennial
cultivar ‘Nicoter’ [21], where increased levels of cinnamates and salicylate derivatives
indicated involvement of the phenylalanine ammonia lyase pathway (PAL) pathway.

The amino acids leucine and L-carnitine and the peptide aspartyl-aspartate were
observed in high-return-bloom trees. Amino acids serve as protein building blocks and
increased levels could suggest resources/nutrients for floral organ development.

Using ESI LCMS profiling, and MSMS fragmentation techniques, many of the differen-
tially expressed metabolites in ‘Ruby Matilda’ cultivars were identified. Although further
annotation of the “unknown” metabolites would be required to characterise the full extent
of the metabolic pathways driving biennial bearing, most of the classes of compounds
and derivatives identified in this study and previous studies give confidence on the in-
volvement of the phenylpropanoid and cytokinin pathway in FI, as described in the KEGG
plant hormone biosynthesis map [33] (Figure S3). Moreover, the compounds identified
corroborate previous investigations on FI pathways in apple cultivars [1,21].

5. Conclusions

This study showed that the unique metabolite expression in high-return-bloom ‘Ruby
Matilda’ trees is likely associated with FI. The increased levels of ABA, a compound
typically associated with fruit abscission, is a notable response and further advances our
understanding of the interactions of FI and carboyhydrate levels in trees. Moreover, the
diverse and distinct compounds identified in the cytokinin pathway, including the inosines
and adenosine derivatives as well as the phenylpropanoid pathway, further support their
involvement in FI. Further validation studies would be required to confirm the source
of the differentially expressed metabolites as well as their function in other plant tissues.
Together these studies provide insight into bud metabolite expression in response to varying
levels of flower numbers in the tree as well as within its leaders/branches, representing a
zonal signal response. Findings obtained on the cultivar ‘Ruby Matilda’ are relevant for
other ‘Cripps Pink’ sports marketed as Pink Lady®, that together account for 41% of the
Australian apple production [34].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo14050251/s1. Figure S1: PCA scores plot of (a) ESI+
UHPLC-HRMS and (b) ESI− UHPLC-HRMS data acquired from the aqueous extracts of apple spur
buds of ‘Ruby Matilda’. Figure S2: PCA scores plot of ESI+ UHPLC-HRMS of (a) RLHIGH vs RLLOW

(b) RTHIGH vs RTLOW and ESI− UHPLC-HRMS of (c) RLHIGH vs RLLOW (d) RTHIGH vs RTLOW,
acquired from the aqueous extracts of apple spur buds of ‘Ruby Matilda’ crop load treatments:
RTHIGH (12.6–20.0 flower no. cm−2 leader cross-sectional area (LCSA); 4.0–10.1 fruit no. cm−2 LCSA;
n = 12), RLHIGH (15.4–21.6 flower no. cm−2 LCSA of leader; 3.3–17.2 fruit no. cm−2 LCSA of leader;
n = 12), RTLOW (2.93–4.48 flower no. cm−2 LCSA; 2.24–6.46 fruit no. cm−2 LCSA; n = 12), and RLLOW

https://www.mdpi.com/article/10.3390/metabo14050251/s1
https://www.mdpi.com/article/10.3390/metabo14050251/s1
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(2.09–3.95 flower/cm2 LCSA of leader; 5.0–7.5 fruit no. cm−2 LCSA of leader; n = 12). Figure S3: Plant
hormone biosynthetic map sourced from KEGG pathways identifying key plant hormones (auxins,
cytokinins, abscisates and salicylates) and compounds reported in the present study and previous
literature that are associated with floral induction in apple.
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