
Metabolites 2012, 2, 479-495; doi:10.3390/metabo2030479 

 

metabolites
ISSN 2218-1989 

www.mdpi.com/journal/metabolites/ 

Article 

1H Nuclear Magnetic Resonance (NMR) Metabolomic Study of 

Chronic Organophosphate Exposure in Rats 

Todd M. Alam 
1,

*, Muniasamy Neerathilingam 
2,†

, M. Kathleen Alam 
3
, David E. Volk 

2,4
, 

G. A. Shakeel Ansari 
5
, Swapna Sarkar 

2 
and Bruce A. Luxon 

2
  

1
 Department of Electronic and Nanostructured Materials, Sandia National Laboratories, 

Albuquerque, NM 87185, USA 
2
 Department of Biochemistry and Molecular Biology, School of Medicine, University of Texas 

Medical Branch, Galveston, TX, 77555, USA; E-Mail: baluxon@utmb.edu (B.A.L.) 
3
 Energetics Characterization Department, Sandia National Laboratories, Albuquerque, NM 87185, 

USA; E-Mail: mkalam@sandia.gov (M.K.A.) 
4 

Institute for Molecular Medicine for the Prevention of Human Diseases, Centers for Proteomics & 

System Biology, University of Texas Health Science Center Houston, 1825 Pressler, Houston, TX 

77555, USA; E-Mail: David.Volk@uth.tmc.edu (D.E.V.)  
5 

Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA;  

E-Mail: sansari@utmb.edu (S.A.)  

†  
Present Address: Center of Cellular Molecular Platforms, National Center for Biological Sciences, 

GKVK, Bellary Road, Bangalore -65, India; E-Mail: munish@ncbs.res.in (M.N.). 

* Author to whom correspondence should be addressed; E-Mail: tmalam@sandia.gov; 

Tel.: +1-505-844-1225; Fax: +1-505-844-2974.  

Received: 18 April 2012; in revised form: 26 June 2012 / Accepted: 5 July 2012 /  

Published: 24 July 2012 

 

Abstract: 
1
H NMR spectroscopy and chemometric analysis were used to characterize rat 

urine obtained after chronic exposure to either tributyl phosphate (TBP) or triphenyl 

phosphate (TPP). In this study, the daily dose exposure was 1.5 mg/kg body weight for TBP, 

or 2.0 mg/kg body weight for TPP, administered over a 15-week period. Orthogonal signal 

correction (OSC) -filtered partial least square discriminant analysis (OSC-PLSDA) was used 

to predict and classify exposure to these organophosphates. During the development of the 

model, the classification error was evaluated as a function of the number of latent variables. 

NMR spectral regions and corresponding metabolites important for determination of 

exposure type were identified using variable importance in projection (VIP) coefficients 
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obtained from the OSC-PLSDA analysis. As expected, the model for classification of 

chronic (1.5–2.0 mg/kg body weight daily) TBP or TPP exposure was not as strong as the 

previously reported model developed for identifying acute (15–20 mg/kg body weight) 

exposure. The set of majorly impacted metabolites identified for chronic TBP or TPP 

exposure was slightly different than those metabolites previously identified for acute 

exposure. These metabolites were then mapped to different metabolite pathways and ranked, 

allowing the metabolic response to chronic organophosphate exposure to be addressed. 

Keywords: NMR; metabolomics; tributyl phosphate, triphenyl phosphate, chemometrics 

 

1. Introduction  

Environmental exposure to organophosphates (OP) continues to be a concern due to the prevalent 

use of these chemicals in industrial applications. The identification of OP in almost every 

environmental matrix, including surface and ground water, air, soil, sewage and sludge, demonstrates 

the extent and persistence of these pollutants [1–7]. It has also recently been demonstrated that urinary 

metabolites of OP can be seen in the general human population at background levels [8]. Tributyl 

phosphate (TBP) and triphenyl phosphate (TPP), the focus of this paper, are used in aircraft hydraulic 

fluids and lubricant oils, flame retardant substitutes for halogenated compounds in plastics and resins, 

non-flammable plasticizers in acetate, polyester and polyurethane films, and antifoaming agents in 

concrete. TBP is also used during solvent extraction of nuclear waste and reprocessing of nuclear 

material based on the PUREX (Plutonium-Uranium Reduction Extraction) process.  

Numerous studies suggest that TBP and TPP are neurotoxic (delayed neurotoxicity) and may have 

possible teratogenic effects [9–15]. An overview of these findings is available from the International 

Programme of Chemical Safety (IPCS). On the other hand, the metabolism of TBP and TPP has seen 

fewer investigations. A 
14

C-labeling study showed that there are 11 different phosphate containing 

metabolites produced directly from TBP, with the mono- and di-butyl phosphates being the dominant 

metabolite species produced [18,19]. Additional studies identified sulfur containing metabolites, 

implying that glutathione-S-transferase is involved in the metabolism of TBP [18,19]. A single study 

involving the metabolism of TPP in liver homogenates determined that diphenyl phosphate is the 

primary product [20]. The metabolism of other organophosphates (primarily OP pesticides) commonly 

yields dialkyl phosphates, and as such these metabolites are used as biomarkers [21].  

More recently, our group used nuclear magnetic resonance (NMR)-based metabolomics studies to 

explore correlating environmental exposure of TBP or TPP to changes in the urine metabolite profile 

of rats [22,23]. Metabolomic/metabonomics is a very powerful tool in determining the response of an 

organism to chemical intake or exposure. Metabolomics couples advanced spectroscopic detection 

techniques with multivariate or chemometric analysis to identify the metabolite signature associated 

with some environmental chemical exposure. Several excellent articles are available describing the use 

of NMR as applied to metabolites [24–29]. We have previously reported the metabolomics response of 

rats to an acute (one time) TBP or TPP exposure (TBP, 15 mg/kg body weight and TPP, 20 mg/kg 

body weight). In the case of TBP, there were three directly produced metabolites, dibutyl phosphate 
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(DBP), N-acetyl-(S-3-hydroxybutyl)-L-cysteine and N-acetyl-(S-3-oxobutyl)-L-cysteine identified in 

the urine of treated rats [23]. In addition, it was shown that changes in the endogenous urinary 

metabolites could also be correlated with TBP exposure. A multivariate/chemometric analysis of the 

NMR spectra of urine from rats exposed to either TBP or TPP has also been reported. Using orthogonal 

signal correction (OSC)-filtered partial least squares discriminate analysis (OSC-PLSDA) a series of 

important metabolites were identified and ranked based on their ability to provide classification during the 

analysis [22]. The endogenous metabolites contributing to the exposure classification were taurine, betaine, 

2-oxoglutarate, creatine and citrate; suggesting an impact on the citrate (TCA) cycle. 

In this paper, we present an extension to these 
1
H NMR metabolomic studies of acute TBP and TPP 

exposure by evaluating the metabolomic response to a chronic, lower dose TBP and TPP exposure in 

rats over a 15-week period. The OSC-PLSDA method previously employed for the acute studies was 

also used here, thus providing a direct comparison of metabolites responsible for identification of acute 

and chronic organophosphate exposure. 

2. Results and Discussion 

2.1. 
1
H NMR of Urine Following Chronic TPP and TBP Exposure 

The normalized 
1
H NMR spectra of urine samples collected from TBP exposed (5 rats), TPP 

exposed (5 rats) and control animals (7 rats) for seven different time points during the total 15-week 

study are shown in Figure 1. As expected for urine samples, resonances for numerous metabolites are 

observed, with changes in the overall metabolite profile occurring as a function of both exposure time 

and exposure class. Even though previous studies of acute TBP and TPP exposure have identified 

specific spectral regions and metabolites that are impacted by exposure, we were unable to identify 

simple unique NMR spectral signatures that correlated with a given exposure class over all animals in 

that set. Note that the resonances previously assigned to the dibutylphosphate (DBP), an intermediate 

metabolic degradation species of TBP, would be observable at δ = +0.9 ppm. This spectral region does 

not reveal any significant intensity variation during the chronic exposure studies, suggesting that at this 

level of insult, the native detoxification mechanism(s) reduce the concentration of DBP below the 

NMR detection limits. There are also some metabolite spectral signatures that increase and then 

decrease during the exposure process, such as the singlet resonance at δ = +1.31 ppm, and the sharp 

singlet at δ = +1.91 ppm (Figure 1). Similarly, there are no large changes in the aromatic region that 

could be associated with the production of the diphenyl phosphate byproduct of TPP, again suggesting 

that the concentration of this metabolic degradation species is below NMR detection limits. To identify 

spectral regions that correlate with OP exposure a chemometric analysis of the entire exposure data set 

was undertaken, as described below. There are numerous multivariate methods that could be applied, 

including principal component analysis (PCA), soft independent modeling of class analogy (SIMCA), 

linear discriminant analysis (LDA), partial least squares (PLS), PLS-discriminant analysis (PLS-DA), 

along with non-linear methods such as hierarchical cluster analysis (HCA), self-organizing maps 

(SOMs), non-linear mapping (NLM) and genetic programming (GP) [29–31]. For this paper we have 

elected to utilize the same OSC-PLSDA method previously implemented in the analysis of acute TBP 

and TPP exposure [22], allowing direct comparison between the two studies. 
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Figure 1. 600 MHz 
1
H nuclear magnetic resonance (NMR) spectra of rat urine collected 

from control (blue), tributyl phosphate (TBP) (magneta) or triphenyl phosphate (TPP) (red) 

exposed animals over a 15 week period with chronic administered doses. The NMR spectra 

were referenced using the internal chemical shift indicator DSS (500 µM), with the overall 

signal intensity normalized using the quotient method. The water spectral region (4.1 to 5.5 

ppm) was removed prior to analysis. 
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2.2. OSC-PLSDA Model Development for Chronic TPP and TBP Exposure 

Orthogonal signal correction (OSC)-filtered partial least squares discriminate analysis (OSC- 

PLSDA) was employed as previously described [32]. In this study, three classes were utilized: TBP-

exposed (class 1), TPP-exposed (class 2) and control (class 3). The OSC-PLSDA method attempts to 

identify the spectral regions that are responsible for separation of the different classes and predicts the 

identity of each sample with a 1 designating a sample is included within a class, and a 0 if it is not 

being included in that class. During the development of the OSC-PLSDA model the number of latent 

variables (LV) required for classification needs to be identified. This was estimated by monitoring the 

change in classification error (% of sample misclassified) for each sample in the data set as a function 

of the number of latent variables. The classification error commonly drops quickly as the first few LV 

are incorporated into the model, followed by a slower reduction for higher number of latent variables. 

This allows the user to choose the number of latent variables to employ based on the magnitude 

classification error acceptable. For the present study we have chosen a classification error of <5% prior 

to cross validation. To prevent over fitting of the data set the minimum number of latent variables 

based on this error criteria was employed. 

The classification error as a function of the number of LV for prediction of each exposure type 

during the 15-week chronic exposure is shown in Figure 2. The OSC-PLSDA model was originally 

evaluated using the NMR data from the entire 15-week sampling period (black symbols). Between six 

and eight LV were required to reduce the classification error below 5%, and in many instances 

produced perfect classification when using eight or more LV. The TBP classification error was slightly 

higher than the error for TPP or control classifications. The number of LV for this chronic model is 

similar to the six LV employed for the acute TBP and TPP exposure modeling [22], but for the acute 

model only six LV were required to obtain a classification error of zero (all samples  

correctly classified). 

The classification errors obtained during cross validation (CV), using a venetian blind method (see 

experimental for details), are shown in Figure 2B and represents an average over all CV trails. There is 

clearly an increase in the error for all three classes, with a higher number of LV required to obtain the 

desired target 5% error level. For this chronic exposure NMR data set, between 10 and 14 LV were 

required to obtain classification errors below 5%. An exception is the identification of the  

TPP-exposed animals which hovers near 10% classification error (under CV) until over eighteen LV 

were employed. Table 1 provides a select summary of the classification errors with increasing number 

of LV. The high number of variables required for classification following chronic exposure is 

somewhat disappointing, and is in contrast to the six LV required to provide excellent classification in 

the acute exposure [22]. This result suggests that while the metabolic response to TBP and TPP 

exposure as monitored by 
1
H NMR analysis of the rat urine is present, it is not particular strong, nor is 

it an easily recognized response. 
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Figure 2. Classification error for identification of control, TPP- or TBP exposed rats as a 

function of the number of latent variables in the OSC-PLSDA model using the entire 15 

week exposure data set. The error results are shown for A) the original model developed, 

and B) following cross validation (CV). 

 

Table 1. Error of prediction for original model and after cross validation (CV) for the 

identification of control, TPP-exposed and TBP-exposed samples as a function of latent 

variables (LV) in the model and specific weeks evaluated. 

System  % Error in Prediction 

(Model) 

 % Error in Prediction 

(Cross Validation) 

Control TPP TBP  Control TPP TBP 

6 LV 3.2 3.0 4.7  10.6 27.2 10.2 

8 LV 1.7 4.4 0.6  6.7 17.7 3.2 

10 LV < 0.5 1.2 < 0.1  4.9 10.6 1.2 

12 LV 

(Week 1 – 15) 

< 0.1 1.2 < 0.1  3.9 13.3 1.2 

12 LV 

(Week 2 – 15) 

< 0.1 0.7 < 0.1  0.8 12.8 1.4 

12 LV 

(Week 4 – 15) 

< 0.1 < 0.1 < 0.1  < 0.1 5.8 14.8 

12 LV 

(Week 8-15) 

< 0.1 < 0.1 < 0.1  < 0.1 4.7 18.5 
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The question has been raised whether the exposure to TBP or TPP produces a delayed metabolic 

response, and if classification might be improved by only considering the NMR data response from 

later weeks? To explore this concern, the classification error was determined as a function of the 

number of latent variables (Figure 2) for subsets of the data involving weeks 2 through 15 (red), weeks 

4 through 15 (green) and weeks 8 through 15 (blue). For classification of the control and TPP animals 

there is a slight improvement in the prediction error when only data from week 4 through 15 is 

included in the analysis, perhaps suggesting a delayed (but weak) metabolic response to TPP exposure. 

For example, the error in TPP prediction using 12 LV drops from 13.3 % to 5.8%, while the control 

classification error drops from 3.95 to <0.1%, by only evaluating the later exposure weeks. This 

delayed metabolic response was also observed in the variation of VIP scores as a function of time for 

the important metabolites (Figure S1, supplemental material), and discussed further in section 2.3.  

In contrast, the TBP classification error increases when analyzing data sets that include the later 

weeks of chronic exposure. For twelve LV, the TBP classification error jumps from 1.2% to almost 

18.5% by going from the full (1 through 15 week) data set to a reduced (8 to 15 week) data set (see 

Table 1). This increasing prediction error with truncation of the first few weeks of exposure argues that 

for chronic TBP exposure, the metabolic changes that allow for classification are the strongest in the 

early weeks following TBP exposure. While it is possible to tailor the OSC-PLSDA model for optimal 

TPP or TBP classification by altering the sampling subset following exposure, we have elected to 

utilize the entire data set for the remaining analysis discussed below. 

Figure 3 shows the OSC-PLSDA classification results using twelve latent variables on the complete 

15-week data set. For the original model, the separation of the three classes is excellent with all 118 

urine spectra being correctly classified (classification errors < 1%, Table 1). A perfect classification 

score of 1.0 (positive) or 0.0 (negative) is shown as a green line in Figure 2 to provide a visual 

reference. Under cross validation there is an increased scatter in the error observed (Figure 3B) with 

some samples being misclassified (classification score < 0.6). The TPP classification errors reveal the 

greatest degree of scatter, which is consistent with the prediction errors shown in Table 1. 

The data in Figure 3 is also grouped in time series for each exposure type. For example, samples 1 – 

49 represent control rats (no TBP or TPP exposure), with week one on the left ending with week 15 on 

the right. Samples 50-83 are from the TPP exposed rats, with week one on the left and week 15 on the 

right. Similarly, urine samples 84–118 are from the TBP exposed animals, with week one on the left 

and week 15 on the right. Inspecting the time variation in the predicted classification score within each 

group (left to right), there were no large increases/decreases in the performance of the model with time 

observed. This again supports the argument that there were not any delayed metabolic responses to 

chronic exposure that become dominant in controlling the classification, and that the entire data set 

over the exposure period should be employed in the analysis. 
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Figure 3. Prediction for sample identification into either the control, TPP-exposed or TBP-

exposed class using the entire 15 week exposure data set, and 118 samples. The results for 

A) the original model involving 12 latent variables, and B) following venetian blind cross 

validation (CV). 

 

2.3. Important Metabolite Identification Using VIP Scores 

The spectral regions responsible for the classification of TBP or TPP exposure were identified using 

the variable importance in projections (VIP) coefficients obtained during OSC-PLSDA (See 

experimental section for definition of VIP, Equation 1). Spectral regions with high VIP coefficients are 

more important in providing class separation during analysis, while those with very small VIP 

coefficients provide little contribution to classification. VIP coefficients were obtained for each 

exposure class; control, TBP- and TPP-exposed. Mapping of these VIP coefficients onto the 
1
H NMR 

spectra is shown in Figure 4 (only the TBP- and TPP-exposed classes are shown), with the colors 

representing the scaled VIP scores observed for each spectral region, allowing the identification of 

important metabolites. While there are similarities between the VIP coefficients in each class, 

inspection of Figure 4 shows that indeed different spectral regions are employed during the 

classification process. It is important to note that it is not the spectral intensity reflecting the VIP 

scores (like would be seen in a loadings plot), but the color coding associated with each frequency. For 

example, in Figure 4 the acetate resonance at δ = +1.91 ppm has a very large VIP score (red), even 

though the peak intensity for that particular spectrum is small. 
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The 
1
H NMR spectral regions with the highest ten VIP coefficients obtained from the chronic OSC-

PLSDA are summarized in Table 2. The top VIP-identified spectral regions identified during the 

previous acute exposure studied are also provided in Table 2 for comparison [22]. Identification of the 

metabolites responsible for resonances in these spectral regions was accomplished using the 

CHENOMX NMR Suite metabolite spectral library. Some of the important metabolites identified are 

noted in Figure 4, and in Table 2. There are a few spectral regions with high VIP scores that were not 

assigned due to the inability to uniquely identify or resolve spectral features in highly overlapped 

regions. 2D NMR experiments such as COSY, TOCSY or HMQC could be pursued to help in 

identification of these regions, but were not obtained for the current samples. For classification of TPP 

exposed animals, the spectral regions with the highest two VIP scores were δ = +3.04 and +3.25 ppm, 

which have been assigned to succinate and betaine, respectively. The remaining top five spectral 

regions identified from these VIP scores (Table 2) are assigned to the endogenous metabolites acetate 

and creatine. For the TBP-exposed animals the top two spectral regions identified were δ = +3.0 ppm 

and +2.43 ppm, corresponding to 2-oxoglutarate. The other important metabolites also identified for 

TBP exposure were acetate, betaine and taurine (Table 2). There are also several other metabolites that 

have intermediate VIP scores (0.25 to 0.6) that are incorporated into the developed model: these 

include succinate, citrate and creatine. 

The variation of the different VIP scores for the dominant metabolites as a function of exposure 

week is shown in Figure S1 (supplemental material). It should be emphasized that there is no single 

metabolite that provides complete classification for chronic TBP or TPP exposure over the entire 

exposure study. Instead it is a combination of variation in several metabolite profiles that give rise to 

the classification. While there are large variations in the relative importance of the different 

metabolites, a few trends should be noted. For the classification of TBP and TPP exposure the VIP 

scores for acetate and succinate begin relatively low. With increased exposure time the VIP scores for 

these metabolites increase, becoming >0.3 after 4 to 8 weeks of exposure, and a maximum near week 

14. The VIP classification scores for 2-oxoglutarate shows very high values between week 2 and week 

8, then decreases while the acetate and succinate VIP scores become more important. While these 

classification dynamics with exposure time are interesting, it is important to recall that the milestone of 

this paper was to identify metabolites that could be used for exposure classification. For this reason, 

the analysis of the entire time series simultaneously is the focus of our results shown in Table 2. 

2.3.1. Comparison of Metabolites for Acute and Chronic Exposure 

Table 2 summarizes the important metabolites and corresponding VIP scores for both acute and 

chronic TBP or TPP exposure. The top three metabolites have been color coded for easy comparison 

between the different exposure classes. Many of the identified metabolites are similar for both acute 

and chronic classes, with differences in the relative ranking of importance. The chronic exposure does 

uniquely identify acetate as being important for both TBP and TPP classification, and was not 

previously observed during the acute exposure studies. Inspection of Figure 1 reveals this metabolite 

produces the sharp spectral signature (δ = +1.91 ppm) that appears in the later weeks of exposure, but 

then disappears again by week 15. 
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Figure 4. Urine 
1
H NMR spectra with color mapping showing the relative orthogonal 

signal correction-filtered partial least squares discriminate analysis (OSC-PLSDA) variable 

importance in projection (VIP) coefficients for sample classification. Representative 

spectrum is for a control animal in week 1. Expansion of different spectral regions with the 

VIP color coding with the TBP-treated (a,c) and the TPP-treated (b,d). Representative 

metabolites are labeled: A: Dibutyl phosphate, B: Acetate, C: Succinate, D: 2-

Oxoglutarate, E: Citrate, F: Creatine, G: Betaine, H: Taurine, I: Urea, J: Benzoate. 
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Table 2. Identification of important spectral regions and metabolites based on the VIP 

scores and OSC-PLSDA classification following both acute [22], and chronic 

organophosphate exposure. The top five VIP ranked metabolites are listed in parenthesis, 

with the top three for identification of each class color coded for quick comparison.  

 

Resonance 

(ppm) 

 

 

Metabolite 

Scaled VIP Coefficients 

Acute Exposure[22]  Chronic Exposure 

Control TBP TPP  Control TBP TPP 

0.91 Dibutyl 

Phosphate 

<0.01 0.03 0.02  <0.01 <0.01 <0.01 

1.31,1.32 Lactate -- -- --  0.19 0.18 0.05 

1.91 Acetate -- -- --  1.00 (#1) 0.85 (#3) 0.65 (#5) 

2.05 -- 0.05 0.13 0.09  0.02 0.03 <0.01 

2.40 Succinate 0.19 0.17 0.22  0.67 0.22 0.97 (#2) 

2.41 Succinate <0.10 0.18 0.25  0.33 0.05 0.95 (#4) 

2.43 2-Oxoglutarate 0.37 (#5) 0.73 (#3) 0.52 (#4)  0.81 (#5) 0.94 (#2) 0.32 

2.54, 2.56 Citrate 0.28 1.00 (#1) 0.45  0.33 0.24 0.46 

2.68, 2.71 Citrate 0.23 0.80 (#2) 0.51 (#5)  0.17 0.20 0.20 

3.00 2-Oxoglutarate 0.40 (#4) 0.63 (#4) 0.60 (#3)  0.83 (#4) 1.00 (#1) 0.25 

3.04 Creatine 0.19 0.28 (#5) 0.25  0.93 (#2) 0.29 0.96 (#3) 

3.25 Betaine 0.42 (#3) 0.17 0.50  0.89 (#3) 0.35 (#5) 1.00 (#1) 

3.27 Taurine 0.82 (#2) 0.14 0.84 (#2)  0.30 0.27 0.31 

3.41 -- 0.33 <0.1 0.34  0.10 0.12 0.06 

3.42 Taurine 1.00 (#1) <0.1 1.00 (#1)  0.31 0.38 (#4) 0.15 

3.43 -- 0.25 <0.1 0.25  0.06 0.07 <0.01 

3.67 -- 0.13 0.16 0.17  <0.01 <0.01 <0.01 

3.81 -- 0.13 0.19 0.17  <0.01 <0.01 <0.01 

4.06 Creatine 0.20 0.12 0.22  0.59 0.33 0.46 

5.78 Urea 0.03 0.01 0.03  0.01 0.01 0.02 

6.60 Fumarate 0.06 0.03 0.07  0.01 0.01 0.03 

7.54 Benzoate 0.01 0.09 0.04  0.10 0.07 0.05 

7.67 Benzoate 0.01 0.09 0.03  0.11 0.08 0.06 

7.82, 7.83 Benzoate 0.01 0.10 0.04  0.11 0.07 0.06 

8.44 Formate -- -- --  0.10 0.05 0.13 

2.4. Identification of Impacted Metabolite Pathways 

To determine what metabolic pathways were being impacted by chronic exposure to TBP and TPP, 

the metabolites with VIP scores > 0.1 (Table 2) were mapped using the MetaboAnalyst 2.0 software 

(www.metaboanalyst.ca/MetaboAnalysts). For analysis, the rat (Rattus norvegicus) pathway library 

and the hypergeometric test and the out-degree centrality algorithms were employed. The software 
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provided a fit coefficient (p) from pathway enrichment analysis and an impact factor from pathway 

topology analysis for each analyzed pathway. The mapping of 14 different metabolic pathways is 

shown in Figure 5, with the top five pathways for TBP or TPP exposure being summarized in Table 3. 

While the metabolite list employed (Table 2) is rather limited and provides only two or three 

metabolite hits for each pathway, the mapping does allow a ranking of the relative importance and 

identification of different possibilities. The citrate cycle (TCA cycle) was identified as having the 

highest –log(p) value for both TBP and TPP chronic exposure. The TCA pathway involves changes in 

the cellular energy metabolism, and was previously identified as an impacted metabolic pathway for 

acute TBP and TPP exposure. Mapping to the glyoxylate and dicarboxylate pathway is also indicated 

as relatively important following chronic TPP exposure, and is related to the TCA cycle. The other 

identified pathways include the alanine, aspartate and glutamate metabolism, pyruvate, taurine and 

hypotaurine, and glycolysis metabolic pathways. This is consistent with the perturbation of the creatine 

production in the liver of roaches exposed to the OP pesticide fenitrothion, reported using non-targeted 
1
H NMR metabolomic studies [33]. Creatine synthesis is initiated in the kidney, and then completed in 

the liver. These same fenitrothion studies also revealed perturbations of the phenylalanine and tyrosine 

metabolite levels. While OP exposure is known to impact cellular metabolism in a variety of different 

tissues [34], the observed metabolite perturbations following chronic TBP and TPP exposure involved 

generic metabolic pathways, and does not provide information concerning the specific mechanisms of 

toxicity or targeted organs. Additional detailed organ or tissue specific studies would be required to 

address these chronic effects.  

Table 3. Metabolic pathway mapping of the important metabolites identified for chronic 

TBP and TPP exposure obtained using the MetaboAnalyst software. 

  TBP TPP 

Pathway Name # 

Metabolites 

 # 

Hits 

 

-log(p) 

 

Impact  

 # 

Hits 

 

-log(p) 

 

Impact 

Citrate Cycle (TCA cycle) 20 3 8.92 0.15 3 8.92 0.15 

Glyoxylate/Dicarboxylate  16 1 2.41 0.30 2 5.72 0.41 

Taurine and Hypotaurine 8 1 3.10 0.43 1 3.10 0.43 

Pyruvate  22 2 5.08 0.06 1 2.13 0.06 

Alanine/Aspartate/Glutamate  24 2 4.91 0.06 2 4.91 0.06 
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Figure 5. Metabolome view following metabolite pathway mapping of the impacted 

metabolites identified during chronic TBP or TPP exposure. The analysis was performed 

using the MetaboAnalyst software. 

 

3. Experimental Section  

3.1. Animal Studies 

The chronic exposure studies were performed on male Sprague-Dawley rats weighing 200-220 g 

(Harlan Sprague–Dawley Inc., Indianapolis, IN, USA) which were acclimatized for two weeks prior to 

the first dose in the animal care facility at the University of Texas Medical Branch (UTMB) Galveston. 

Seventeen rats were divided into three exposure classes: tributyl phosphate (TBP) exposure (5 rats), 

triphenyl phosphate (TPP) exposure (5 rats), and a control group (7 rats). Tributyl phosphate (TBP- 

98.0% purity, Sigma Aldrich, USA) was dissolved in 1 ml corn oil and was administered by gavage to 

the rats using a daily 1.5 mg/kg body weight dose, while the TPP (98.0% purity, Sigma Aldrich, USA) 

was administrated daily at a 2.0 mg/kg body weight dose. The control rats received 1 mL of corn oil 

only. This dosing regime was repeated for a total of 15 weeks (Monday through Friday). On each 

Friday, the rats were transferred overnight to metabolic cages, with the urine collected Saturday 

afternoon (~20–22 hours after last weekly dose), and stored at -80 °C for further analysis. The rats 

were then returned to a normal cage for the following dose week. The 5 day dose, 2 days non-dose 

regime was used to reflect possible occupational exposure. The proton (
1
H) NMR data was only 

collected for urine samples from weeks 1, 2, 4, 8, 12, 14 and 15. The NMR spectra for one sample in 

week eight was corrupted during acquisition and was not included in the data set, with the total data set 

including 118 NMR spectra. 

3.2. NMR Studies 

The NMR analysis was performed on samples obtained from mixing 100 µl of urine with 650 µl of 

phosphate buffer giving a final concentration of 50 mM phosphate (pH = 6.0), 10% D2O, containing 
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500 µM DSS (2,2-dimethyl-2-silapentane-5-sulfonic acid) as a chemical shift indicator. The 
1
H NMR 

spectra were obtained using a Varian Unity Plus 600 with a three channel 
1
H-

13
C-

15
N (HCN) 5mm 

probe at 25 °C. A standard 1D NOESY pulse sequence, with a 1s recycle delay, a 1s water pre-

saturation, 4 dummy scans, 256 scan averages, a 6 µs π/2 pulse width and a 100 ms mixing time (τm) 

was employed. A spectral width of 20 ppm, with 28k complex data points, zero-filling to 64k points 

prior to Fourier transformation, and apodization using a 0.5 Hz exponential line broadening was used 

for all experiments. The NMR spectra were transformed, phased, chemical shift referenced (DSS  

δ = 0 ppm), and baseline corrected using CHENOMX NMR 7.0 Suite (Edmonton, Canada). The 

processed NMR data was binned to 0.001 ppm sections prior to analysis. This retains the spectral fine 

structure which is important during the variable importance in projection (VIP) score analysis 

described below. No peak alignment algorithms were employed on these datasets. The water region 

(4.2 to 5.5 ppm) was removed using the CHENOMX Suite prior to analysis. Due to the non-

quantitative signal intensity resulting from the proton exchange between water and urea (which varies 

with the performance of water saturation), the urea spectral region (δ = 4.50 to 5.98 ppm) is commonly 

removed. In the present study, the urea spectral region was retained as it did not make a major impact 

on the PLSDA analysis. This impact is most easily seen in Figure 4, where the VIP score of urea 

remains relatively low (~0.25), is not a critical spectral region for classification.  

The processed NMR spectra were transferred at full resolution (no binning) for analysis in 

MATLAB2010b (The Mathworks) using PLS Toolbox 6.7 (Eigenvector Research, Inc.). The data sets 

were normalized using the Probabilistic Quotient Normalization (PQN) method [35] followed by mean 

centering. The PQN normalized data gave a small improvement in the observed cross-validation errors 

in comparison to integral normalization or constant sum normalization [36], and was used for all of the 

analysis presented here.  

3.3. Chemometric Analysis 

This orthogonal signal correction (OSC) filtered partial least squares discriminate analysis (OSC-

PLSDA) method has also been previously described [32,37], and was used to classify exposure in this 

NMR data set. The OSC-PLSDA method attempts to identify what spectral variations contribute to the 

identification of the designated classes. Orthogonal signal correction (OSC) was applied to remove 

non-correlating spectral variations (2 components) that were not contributing to classification. The 

OSC filtering can be integrated directly into the regular PLS-DA modeling, allowing the orthogonal 

variations to be analyzed separately [30,38,39]. This extended method is commonly referred to as O-

PLSDA and should not be confused with the pre-filtering OSC-PLSDA method employed for the 

current analysis. Cross validation was performed using a Venetian Blind process, with the number of 

data splits equal to the nearest integer of the square root of the total number of samples in the data set. 

This number changed when a subset of weeks was analyzed. The VIP scores [40] were obtained from 

the OSC-PLSDA analysis and mapped onto the original NMR spectra. VIP coefficients reflect the 

importance of each spectral frequency to each variable in the PLS model. The VIP coefficient for the 

k-th parameter (frequency) is the sum over all PLS dimensions (a) of the contribution VIN (variable 

influence) 

 



Metabolites 2012, 2                

 

 

493 

  (1) 

where is equal to the squared PLS weight of that parameter multiplied by the percent explained 

sum of squares for that PLS dimension.  

4. Conclusions  

These results demonstrate that 
1
H NMR metabolomics can be used to identify rats that have had 

long term chronic exposure to particular organophosphates; either tributyl phosphate or triphenyl 

phosphate. Using OSC-PLSDA chemometric modeling it was possible to classify and separate TBP-

treated versus TPP-treated animals based on the NMR spectra of the urine. Unfortunately, the 

developed models were slightly disappointing requiring greater than twelve latent variables in order to 

keep the classification error below 10% under cross-validation analysis. A set of metabolites that were 

important for chronic TBP or TPP exposure classification were identified, and show some unique 

impacted metabolites in comparison to the set of metabolites obtained from the analysis of acute TBP 

or TPP exposure. These results demonstrate that metabolite response to environmental chemicals can 

provide a signature for identification of exposure. 
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