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Abstract: Our previous study on the identification of common odorants and their 

conjugates in human urine demonstrated that this substance fraction is a little-understood 

but nonetheless a promising medium for analysis and diagnostics in this easily accessible 

physiological medium. Smell as an indicator for diseases, or volatile excretion in the 

course of dietary processes bares high potential for a series of physiological insights. Still, 

little is known today about the quantitative composition of odorous or volatile targets, as 

well as their non-volatile conjugates, both with regard to their common occurrence in urine 

of healthy subjects, as well as in that of individuals suffering from diseases or other 

physiological misbalancing. Accordingly, the aim of our study was to develop a highly 

sensitive and selective approach to determine the common quantitative composition of 

selected odorant markers in healthy human subjects, as well as their corresponding glucuronide 

conjugates. We used one- and two-dimensional high resolution gas chromatography-mass 

spectrometry in combination with stable isotope dilution assays to quantify commonly 

occurring and potent odorants in human urine. The studies were carried out on both native 

urine and on urine that had been treated by glucuronidase assays, with analysis of the 

liberated odor-active compounds using the same techniques. Analytical data are discussed 

with regard to their potential translation as future diagnostic tool. 
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1. Introduction 

Human urine contains an abundance of important information for physicians. The diagnostic 

potential of urine composition is mirrored in a broad range of assays, for example testing for 

glycosuria (etiologies include diabetes mellitus, liver and pancreatic disease, Fanconi’s syndrome, and 

Cushing’s syndrome), ketonuria (most commonly associated with uncontrolled diabetes), and testing 

for nitrites (associated with urinary tract infections) among many others [1]. However, with regard to 

its volatile and odorous profile, human urine has not yet been sufficiently evaluated. Nevertheless, 

some researchers (mainly in the 1960’s and 1970’s) tried to reveal the diagnostic potential of the 

volatile profile of human urine, and in several cases observed distinct differences between healthy and 

diseased individuals. Liebich and Zlatkis, for example, found that urinary volatile profiles were 

different in patients suffering from diabetes mellitus compared to healthy volunteers [2–5]. Still, few 

efforts have been paid in subsequent years to characterize the odor profile and the odorants in human 

urine. Recently, the characteristic odorant spectrum of human urine has been explored by gas 

chromatography-olfactometry (GC-O) [6]. Compounds were elucidated by means of a combinatory 

approach using human-sensory and chemo-analytical techniques such as two-dimensional GC-O/mass 

spectrometry; however, quantifications were not accomplished. 

Moreover, it is known that the concentrations of some volatiles in urine can vary depending on the 

hormonal status of the donor [7]. This has been shown in the case of acetone [7]. Accordingly, 

quantitative data on volatiles would help to find out if similar effects for example caused by hormonal 

status also exist for other compounds. 
As mentioned before, the urine of diseased people often contains compounds that are not present—or 

are in different amounts—in the urine of healthy people. In some cases, even the sensory impressions 

of the urine of diseased people can be quite divergent from that of healthy individuals as has been 

reported in a range of cases: The urine of patients suffering from maple syrup urine disease has a 

maple syrup-like odor [8,9], while the urine of tyrosinemia patients smells rancid [9] , and the urine of 

people suffering from trimethylaminuria has a fishy odor [9,10], just to name some examples. 

With the emergence of metabolomics and biomarkers research urine composition became even 

more interesting in the last years. Among other things, some urinary volatile compounds have been 

proposed as biomarkers for prostate cancer [11,12] and breast cancer [13]. 

The fact that urinary odor may contain important information for cancer diagnosis is mirrored by 

the attempt to train dogs to sniff specific associated smells. Studies revealed that canines were able to 

distinguish between urine of bladder cancer patients and urine of healthy subjects [14,15]. 

Furthermore, it was possible to discriminate between healthy humans and tuberculosis patients by 

analysis of the volatiles in human urine based on identification and quantification experiments [16].  

It was also attempted to diagnose urinary tract infections by detecting volatiles with an electronic nose [17]. 
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To date, only certain diseases can be diagnosed by detection of elevated concentrations of specific 

(volatile) compounds in human urine, specifically trimethylamine and trimethylamine N-oxide in 

trimethylaminuria [10]. Also, some volatiles can be used to obtain information about a person´s 

lifestyle, for example their smoking behavior. Elevated concentrations of acetonitrile have been found 

in the urine of recent smokers (active as well as passive smokers) [18]. 

Apart from its use in diagnostics, human urine can also potentially provide useful information with 

regard to nutrition. Characterization of odorants or their metabolites in human urine may increase our 

understanding of the fate of different dietary constituents. 

Still, it is a well-known phenomenon that urinary smell can be affected by nutrition. A prominent 

example for this is the specific smell that may be associated with the consumption of asparagus, being 

often described as rotten cabbage-like [19,20]. Investigations showed that this specific smell is induced 

by metabolization of asparagusic acid and its derivatives [19]. Moreover, the smell does only occur in 

some individuals; the genetic basis for this observation is yet unknown [20]. 

Apart from a few examples, metabolization and excretion of volatiles originating from dietary 

sources has barely been studied in humans. One of the rare examples is the excretion of  

5-hydroxymethyl-2-furoic acid in human urine after the consumption of 5-hydroxymethylfurfural-

containing food like coffee, dried fruit, honey and alcoholic beverages [21]. Other examples are the 

urinary excretion of the glucuronide of 4-hydroxy-2,5-dimethyl-3 (2H) furanone as the major 

metabolite of 4-hydroxy-2,5-dimethyl-3 (2H) furanone after the consumption of strawberries [22] and 

the excretion of the estragole metabolites 1′-hydroxyestragole, 1′-hydroxyestragole glucuronide and p-

allylphenol glucuronide in urine of humans consuming fennel tea [23]. 

Apart from that, work focusing on common odorous compounds in human urine hardly exists. 

With regard to the latter aspect, it is essential to know in which concentration ranges odorants are 

commonly present in the urine of healthy humans in order to be able to detect abnormalities resulting 

from diseases, environmental influences or diets. 

Thus, the first aim of the present study was to quantify selected common odorants in human urine 

of healthy people who were allowed to consume their freely chosen meals. 

In the second part of the study, investigations were also targeted at conjugated derivatives of 

common odorants in human urine. Glucuronidation is an important pathway among the phase II reactions 

to eliminate lipophilic xenobiotics as well as endobiotics by rendering them more hydrophilic [24]. The 

resulting glucuronides are mainly excreted by the kidneys. In most cases, the resulting glucuronides 

are chemically and biologically less active than the original compounds. Accordingly, the formation of 

glucuronides is commonly an important step with regard to detoxification reactions [24]. However, 

there is increasing evidence that in some cases glucuronide conjugates might be formed which also 

represent a physiologically active form. A prominent example is morphine: The morphine-6-

glucuronide is even more analgesic than morphine itself [25,26]. 

As a logical consequence, some glucuronides are also used as a diagnostic means. For example, 

ethyl glucuronide in urine is used as a marker to control the success of alcohol dehabituation [27,28]. 

In this context it needs to be kept in mind that for some drugs the rate of glucuronidation might be 

different between males and females [29,30]. Other factors affecting glucuronidation of specific drugs 

are age, weight, cigarette smoking, ethnicity, diet, coadministered drugs, genetic factors, hormonal 

factor, and certain diseases (i.e., HIV, hypothyroidism, and fulminant hepatitis) [29,30]. Whether the 
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same is true for other compounds than these drugs, e.g., for dietary constituents, is also not yet 

comprehensively addressed. 

Commonly, glucuronides represent the major part of metabolites of many phenols, alcohols and 

carboxylic acids [31]. Thereby, endogenous substrates for glucuronidation are for example steroids, 

bile acids, bilirubin and retinoids [32,33]. Exogenous substrates are, inter alia, drugs, environmental 

pollutants or food constituents [34,35]. 

The knowledge about the formation and excretion of glucuronides is mainly based on drugs with a 

known pharmacological effect, however studies on metabolization of other compounds, for example 

volatiles, hardly exist. In our recent study on odorants in human urine we also targeted our 

identification experiments on common glucuronide conjugates of odorants [6]. However, no quantification 

of the target substances was performed in this study. Thus, the amount of glucuronide-formation as 

well as inter-individual differences in the extent of formation of glucuronides remained unclear. 

Consequently, the second aim of the present study was to quantify selected common odorant-

glucuronide conjugates in human urine of healthy subjects. Thereby, the aim was to compare the 

concentrations of the respective glucuronide conjugates to those of the free odorants. 

Such insights are the basis for future studies targeting potential deviations from the common status. 

2. Results 

All urine samples showed negative results for bilirubin, ketones, protein, blood, nitrite and 

leucocytes in the dipstick-testings. Furthermore, all urine samples had normal amounts of urobilinogen 

and glucose. pHs were between 5.0 and 6.5, specific gravity/density between 1.000 and 1.030. 

As none of the urine samples had any abnormal values, all samples could, consequently, be 

included in our experiments. 

2.1. Quantification of Odorants in Native Human Urine 

Based on our previous odor identification experiments in human urine [6], we selected 10 

characteristic compounds for quantification. Among these were alcohols, phenols, ketones, aldehydes, 

pyrroles as well as a dialkyl trisulfide. Main consideration for the selection was that these compounds 

represent different substance classes as well as different chemical reactivities, volatilities, and 

polarities. Quantification experiments revealed that all compounds were present in median 

concentrations between 0.02 and 2.55 µg/L corresponding to values between 1.58 and 510 µg/mol 

creatinine. The lowest substance concentrations were found for the two ketones oct-1-en-3-one and 

(E)--damascenone, with median concentrations in the ng/L range. The highest concentrations were found 

for two phenols, 4-vinylguaiacol and vanillin, with median concentrations of 1.06 µg/L and 2.55 µg/L, 

respectively. The median concentrations of the remaining compounds 4-ethylguaiacol, dimethyl 

trisulfide, guaiacol, indole, methional, and skatole were between 0.10 µg/L and 0.51 µg/kg, or values 

between 28 and 82 µg/mol creatinine, respectively (Figure 1 and online supplementary Table S1). 

Generally, creatinine concentrations were between 1,923 and 21,370 µmol/L. 
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Figure 1. Minimum, median and maximum concentrations of selected odorants in native 

human urine. Concentrations are given in [µg/mol creatinine] and displayed on a 

logarithmic scale. 

 

Pronounced inter-individual variations were observed for several compounds. The highest variation 

was found for (E)--damascenone, for which the maximum concentration was 89-times higher than the 

lowest concentration measured (irrespective if calculated on basis of the concentrations in µg/L or on 

basis of concentrations normalized by creatinine concentrations (in µg/mol creatinine). Also, when 

inter-individual variations were calculated on basis of the non-normalized values (in µg/L), we found 

some additional major inter-individual variations for 4-ethylguaiacol, dimethyl trisulfide, and guaiacol, 

with factors of 33, 13 and 12, respectively (maximum concentration divided by minimum concentration). 

In contrast to these high variations, the concentrations of oct-1-en-3-one, skatole, indole, methional,  

4-vinylguaiacol, and vanillin varied only by factors 3 to 5 (maximum concentration divided by 

minimum concentration). When calculation of the inter-individual variation was based on the data 

normalized by creatinine concentrations, we observed even larger inter-individual variations. The 

variations for 4-ethylguaiacol were then nearly as high as for (E)--damascenone with a factor of 88 

between the maximum and the minimum concentrations. High variations were also observed for 

dimethyl trisulfide, guaiacol, and oct-1-en-3-one with factors between 20 and 26. For 4-vinylguaiacol, 

indole, skatole, and vanillin, the factors were about 10. The least pronounced inter-individual variation 

was found for methional, still being considerable with a factor of 7. 

Apart from that, a difference between urine of male test persons and urine of female test persons 

was observable. The median concentration of most compounds was higher in urine of females than in 

urine of males (see online supplementary material Figure S1). This was true for oct-1-en-3-one,  
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4-ethylguaiacol, 4-vinylguaiacol, dimethyl trisulfide, guaiacol, indole, methional, skatole, and vanillin 

(concentration normalized to µg/mol creatinine). Only the concentration of (E)--damascenone was 

higher in urine of male test persons (concentration normalized to µg/mol creatinine). The observed 

differences were especially striking for indole, 4-vinylguaiacol and vanillin: for these compounds even 

the minimum concentrations found in urine of females were higher than the corresponding maximum 

concentrations in urine of males, resulting in the fact that there was no overlapping of concentration 

ranges in male and female urine. Still, when regarding these differences on a statistical basis, the 

results were only significant for vanillin (Mann-Whitney-test at p = 0.05). Nevertheless, at p = 0.1, we 

found some additional significant differences for skatole, methional, and indole, while the differences 

were not significant for dimethyl trisulfide and 4-ethylguaiacol (Mann-Whitney-test at p = 0.1). The 

Mann-Whitney-test could not be performed for oct-1-en-3-one, 4-vinylguaiacol, (E)--damascenone, 

and guaiacol because the sample sizes were too small in these cases. The sample sizes were too small 

for these compounds as they were in some samples present below their limit of quantification and in 

some cases even below their limit of detection. 

Online supplementary material Table S1 shows the determined concentrations of odorants in native 

human urine, an additional table given in online supplementary material Table S2 provides a 

compilation of standard compounds, isotopic labeled standards, their mass, and the m/z-ratios selected 

for quantification. 

2.2. Quantification of Odorants in Enzymatically Hydrolyzed Human Urine 

2.2.1. Addition of Sodium Azide 

The addition of sodium azide to the urine before incubation with glucuronidase revealed that the 

concentrations of the compounds selected for our experiments remained stable regardless of addition 

of sodium azide as was ensured by additional quantitative experiments. 

2.2.2. Quantification of Selected Odorants in Glucuronidase-Treated Human Urine 

Based on our previous odor identification experiments in glucuronidase-treated human urine [6], we 

selected 12 compounds for quantification. The selected odorants were 3-methylbutanoic acid,  

4-ethylguaiacol, 4-vinylguaiacol, (E)--damascenone, butanoic acid, dimethyl trisulfide, guaiacol, 

indole, methional, skatole, sotolone, and vanillin. As mentioned above, the compounds were selected 

to represent different substance classes as well as different chemical reactivities, volatilities, and 

polarities. 4-Ethylguaiacol, 4-vinylguaiacol, (E)--damascenone, dimethyl trisulfide, guaiacol, indole, 

methional, skatole, and vanillin were also quantified in the native samples (see above). Oct-1-en-3-one, 

which was quantified in the native samples, could not be quantified in the hydrolyzed samples hence it 

was near the limit of detection and in contrast to the native samples, oct-1-en-3-one was additionally 

superimposed by other substances in the hydrolyzed samples. Therefore, a quantification was not 

possible. Limits of quantification of all compounds were depending on the compound, sample 

pretreatment (native or hydrolyzed) and preparation of calibration line. Three compounds were 

additionally quantified in the glucuronidase-treated samples. These were 3-methylbutanoic acid, 

butanoic acid, and sotolone. Butanoic acid and 3-methylbutanoic acid were previously found to be not 



Metabolites 2013, 3            

 

 

643

important odorants in native human urine (sotolone was even below the limit of quantification in the 

native samples), but they were obviously released to a major extent in glucuronidase-treated human urine [6]. 

Generally, the quantified compounds were present in a broad range of concentrations, namely in 

median concentrations between 0.39 and 1,050 µg/L (online supplementary material Table S3), 

corresponding to median concentrations between 52 and 174,000 µg/mol creatinine (online supplementary 

material Table S3 and Figure 2). 

The creatinine concentrations of the samples were between 1,923 and 21,370 µmol/L (see Section 2.1) 

as aliquots of the same samples used for quantification in native urine were used for quantification in 

hydrolyzed urine. The lowest median concentrations were found for (E)--damascenone and skatole, 

which were both present in median concentrations below 1 µg/L. Dimethyl trisulfide, methional, and 

4-ethylguaiacol were found in median concentrations between 1 and 10 µg/L, while vanillin,  

4-vinylguaiacol and sotolone were present in median concentrations between 10 and 100 µg/L. The 

remaining four compounds guaiacol, indole, and the two acids butanoic acid and 3-methylbutanoic 

acid were found in median concentrations above 100 µg/L (online supplementary material Table S3 

and Figure 2). 

Figure 2. Minimum, median and maximum concentrations of selected odorants in 

glucuronidase-treated human urine. Concentrations are given in [µg/mol creatinine] and 

displayed on a logarithmic scale. 

 

Again, major inter-individual variations were observed for several compounds. Thereby, the  

inter-individual variations were higher for most compounds when being compared on basis of the 
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concentrations normalized by creatinine than when compared on basis of the non-normalized values. 

Only for indole and guaiacol it proved to be vice versa. 

When compared on basis of the non-normalized values in [µg/L], the inter-individual variations 

were least pronounced for (E)--damascenone, dimethyl trisulfide, and vanillin (all factor 2 for 

maximum concentration divided by minimum concentration) and for butanoic acid and skatole (both 

factor 3). Two other compounds showed factors below 10: methional (factor 7) and indole (factor 8) 

when considering the non-normalized concentrations. Guaiacol, 4-vinylguaiacol, sotolone, and  

3-methylbutanoic acid showed factors between 10 and 17. The most pronounced inter-individual 

variation was found for 4-ethylguaiacol. The maximum concentration found was 22-times higher than 

the minimum concentration. 

As mentioned above, the variations were mostly higher when comparing on basis of the 

concentrations normalized by creatinine. The following compounds had factors lower than 10 when 

dividing maximum concentration by minimum concentration on basis of the concentrations normalized 

by creatinine: (E)--damascenone (factor 3), indole, dimethyl trisulfide, vanillin (all three factor 4), 

butanoic acid (factor 5), and guaiacol (factor 9). The remaining compounds had factors between 10 and 

100: skatole (factor 13), 4-ethylguaicol (factor 27), methional (factor 28), sotolone (factor 38),  

3-methylbutanoic acid (factor 47), and 4-vinylguaiacol (factor 89). 

The differences between urine of male and urine of female probands were not as pronounced as in 

the native urine. No definitive trend was visible for most substances, as for some compounds the 

median concentration was higher in female urine than in male urine and for other compounds it was 

the other way around. All in all, the median concentration in [µg/mol creatinine] differed no more than 

factor 0.4 to factor 1.8 when dividing the median concentration in male urine by the median 

concentration in female urine (see also online supplementary material Figure S2). These relatively 

small variations between men and women are also reflected when performing statistics on the data. 

The variations were found to be not significant even at a p-value of 0.1 for guaiacol, methional, 

vanillin, skatole, 4-vinylguaiacol, 3-methylbutanoic acid, butanoic acid, indole, and dimethyl trisulfide 

when analyzing the data by Mann-Whitney-test. The Mann-Whitney-test could not be performed for  

4-ethylguaiacol, sotolone, and (E)--damascenone, because the sample sizes were too small. The 

reason for the partly too small sample sizes is as explained above for the native samples that some 

compounds were in some samples present below their limit of quantification and in some cases even 

below their limit of detection. 

For additional information on internal standards, ions selected for quantification and chemical 

information on the odorants quantified in these experiments, see online supplementary material Table S4. 

3. Discussion 

Our manuscript provides for the first time detailed quantitative data on common odorants in human 

urine, as well as of their respective conjugates. The results of the quantification experiments are 

provided both in the original concentrations [µg/L] as well as in concentrations normalized by 

creatinine concentration of the samples [µg/mol creatinine]. Normalization by creatinine concentration 

was done to eliminate the impact of diuresis on the concentration, representing a parameter that is 

generally accepted for this purpose [9]. 
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Overall, the lowest concentrations in native urine were found for (E)--damascenone and oct-1-en-3-one. 

Nevertheless, those two substances also have lower odor thresholds in water than all the other 

compounds quantified in our experiments, with reported odor thresholds of 0.00075–10 µg/L for  

(E)--damascenone [36–40] and 0.0050–4.0 µg/L for oct-1-en-3-one [37,41–44]. That means that 

although present in low concentrations these compounds may still have an impact on the overall odor 

impressions of the samples, and might serve, accordingly, as diagnostic means. Interestingly, we found 

the largest inter-individual variations for (E)--damascenone, a compound, which is an important 

odorant in some foods. According to [45], (E)--damascenone is an important odorant in apple, coffee, 

wine, black tea, beer, honey and tomatoes. When looking at the dietary records of our test persons, we 

found out that the person, whose urine had by far the highest concentration of (E)--damascenone  

(73 µg/mol creatinine), drank 200 mL of black tea one hour before sample collection. None of the 

other test persons consumed (E)--damascenone containing food during such a short interval before 

sample collection. So this observation might serve as a case report on dietary influences on the odorant 

composition of human urine. Nevertheless, to support such assumptions, further detailed studies  

with controlled dietary interventions are needed as done recently in our group involving, e.g., a  

coffee intervention [46].  

Apart from that, most compounds were found in higher concentrations in native urine of females 

than of males. This observation might serve as a hint that there is a gender specific difference in the 

metabolization or excretion of these odorants. Gender-related differences in metabolization have 

previously been described: For a series of drugs, the rate of glucuronidation has been found to be lower 

in females [29,30]. On the other hand, the differences might be also related to gender-specific 

differences in dietary habits as reported several times [47–49]. Interestingly, the sex-specific 

differences between the concentrations of the odorants in our experiments were not as pronounced in 

the enzymatically hydrolyzed samples as in the native samples. 

Besides, to ensure that no bacterial degradations occurred during the deglucuronidation 

experiments, additional tests with addition of preservative were carried out, revealing that no 

quantitative changes occurred in comparison to incubated samples without preservative during  

15 h of incubation at 37 °C. Additionally, one needs to keep in mind that other factors may contribute 

to an increase of the concentration of specific volatiles after the enzyme treatment. One of these factors 

is the additional sulfatase activity of the glucuronidase (see Section 2.1). Another factor is a potential 

aging effect of the urine during 15 h incubation time. Aging effects of urine after a storage time of five 

days in an open container have been described by Troccaz et al. [50]. As we were concerned that a 15 h 

incubation time could possibly lead to the liberation of compounds which were not derived from the 

liberation of glucuronidated compounds but from the aging of the urine, we conducted an additional 

experiment. We took two aliquots (each 10 mL) of the same urine sample and subjected one aliquot to 

the procedure described in 4.6.2 (enzymatic hydrolysis). The second aliquot was treated analogously 

but no enzyme was added. Then we performed a gas chromatography-olfactometry analysis as 

described in [6] on both samples. If the compounds found after enzymatic hydrolysis were indeed 

formed by an aging process, we would also have found them in the second aliquot of the sample. As 

this was not the case, we concluded that the aging effect was of minor importance for the conditions 

used in our experiments. 
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Glucuronides are the vast majority of phase II-conjugates. In the literature, there were no previous 

reports on quantitative data for most of the compounds quantified in our experiments, with the only 

exceptions for some phenols, namely vanillin, guaiacol and 4-ethylguaiacol, and for butanoic acid. 

These three phenols had been quantified before, as they have been assumed to be biomarkers of wood 

smoke exposure [51–53]. Still, these compounds were only quantified in hydrolyzed and not in native 

urine, so that no conclusions can be drawn about the presence and quantities of the respective free or 

de-conjugated compounds. The mean urinary concentrations of non-exposed subjects were 710 µg/L [52], 

691 µg/L [51], 720 µg/L [54], 38800 µg/mol creatinine [53] for guaiacol, 60 µg/L [52] for  

4-ethylguaiacol, and 70 µg/L [52], 57 µ/L [51], 4638 µg/mol creatinine [53] for vanillin. [51] and [53] 

reported a mean concentration of ethylguaiacol (without specification of the 4-substituation of the 

ethyl-moiety) with 25 µg/L [51] and 3846 µg/mol creatinine [53]. With regard to our data, we decided 

to calculate and discuss the median concentrations as the inter-individual variations were in several 

cases quite pronounced. In order to be able to compare our results to those of Dills, Neitzel and 

Bieniek, we additionally calculated the mean concentrations for the three phenols. In our experiments, 

the mean concentration of guaiacol was 154 µg/L (26,900 µg/mol creatinine), of 4-ethylguaiacol 20 

µg/L (2,330 µg/mol creatinine) and of vanillin 33 µg/L (5,790 µg/mol creatinine). Comparing these 

concentrations, one can conclude that the mean concentrations of guaiacol and 4-ethylguaiacol were 

lower in our experiments compared to those of [51–54]. The mean concentration of vanillin in our 

experiments was lower than the values determined by [51,52], but higher than those determined by [53]. 

However, all these differences are of minor importance, considering the fact that huge inter-individual 

variations were observed in our experiments as well as in the previous studies of the other 

researchers [51–54]. Interestingly, Dills et al. and Neitzel et al. [51–53] conducted an acidic 

hydrolysis, while we and Bieniek et al. [54] chose to conduct an enzymatic hydrolysis. The enzymatic 

hydrolysis is more specific for the glucuronides (though the glucuronidase in our experiments 

contained also sulphatase activity). Therefore, the slightly lower concentrations in our experiments 

could be an indication that the hydrolysis was more gentle. The only compound, apart from those three 

phenols, for which quantitative data existed, is butanoic acid. Chalmers et al. [55] found butanoic acid 

in concentrations between 0 and 63 mg/g creatinine which is 0 and 7,100,000 µg/mol creatinine, while 

Perry et al. [56] determined this compound in concentrations between 0 and 0.26 µg/mg creatinine 

corresponding to 0 and 29,000 µg/mol creatinine. Our results lay well between these values with 

concentrations between 32,000 µg/mol creatinine and 168,000 µg/mol creatinine in the hydrolyzed 

samples (median 61,100 µg/mol creatinine). 

With regard to methylbutanoic acid, no distinction was made between the 2- and 3-isomers in 

previous investigations [6]. In the present study, differentiation between 2- and 3-methylbutanoic acid 

was accomplished based on the obtained chromatographic and mass spectrometric data, leading to the 

observation that 3-methylbutanoic acid is the predominant isomer. With regard to sensory or 

diagnostic relevance this observation is, nevertheless, of minor importance as both isomers have been 

reported with similar odor thresholds as well as comparable odor qualities. 

Comparing the odorant concentrations in the native urine samples to those in the enzymatically 

hydrolyzed samples, a dramatic increase was observed for most compounds after hydrolysis. Apart 

from skatole, the median concentration (normalized by creatinine) of which only increased by a factor 

of 3 after hydrolysis, the median concentrations of all remaining compounds increased by at least a 
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factor 11 (Table 2). Thereby, the concentrations of methional, vanillin, dimethyl trisulfide,  

4-ethylguaiacol, 4-vinylguaiacol, and (E)--damascenone increased by factors between 11 and 33 after 

enzymatic hydrolysis (Table 2), meaning that the major part of these odorants is excreted as 

glucuronides than as the original compounds. However, the most extreme increases were observed for 

indole and guaiacol, with factors of 638 and 647 (median concentration in hydrolyzed urine divided by 

median concentration in native urine). Figure 3a displays the amounts of selected compounds present 

in their free form as well as the amounts of glucuronide conjugates of the respective compounds in 

logarithmic scales. In Figure 3b, emphasis is further placed on the ratios of the free to their 

glucuronidated substances, thereby displaying the respective concentrations on a percentage basis. 

Table 2. Comparison of concentrations of odorants in native and glucuronidase-treated human urine. 

No. 1,2 Compound 3 

Median 
concentration 
native urine 
[µg/mol creatinine] 

Median 
concentration 
glucuronidase-
treated urine 
[µg/mol creatinine] 

Factor 4 Percentage 5 
[%] 

2 4-ethylguaiacol 44 952 22 5 // 95 
3 4-vinylguaiacol 290 7890 27 4 // 96 
4 (E)--damascenone 1.6 52 33 3 // 97 
5 dimethyl trisulfide 52 855 16 6 // 94 
6 guaiacol 34 22000 647 0 // 100 
7 indole 52 33200 638 0 // 100 
8 methional 82 904 11 9 // 91 
9 skatole 28 97 3 29 // 71 

10 vanillin 510 6300 12 8 // 92 
1 Numbering is in accordance to Table 1a; 2 As no quantitation of oct-1-en-3-one was possible in hydrolyzed 

urine (and the numbering is in accordance to Table 1a), number 1 (oct-1-en-3-one) is left out in this table.; 3 

Compounds listed in alphabetical order; 4 Factor: median concentration in glucuronidase-treated urine divided 

by median concentration in native urine; 5 Displayed is the average percentage of each compound present in 

its free form as opposed to its glucuronide conjugate, separated by a double slash. 

The huge differences between native and glucuronidase-treated samples are also reflected when 

analyzing the data by statistics. The paired-sample Wilcoxon signed rank test revealed that the 

concentrations of dimethyl trisulfide, guaiacol, indole, methional, skatole, and vanillin were at p = 0.05 

significantly higher in hydrolyzed than in native urine. Besides, the paired-sample Wilcoxon signed 

rank test could not be performed on the data of 4-ethylguaiacol, 4-vinylguaiacol, and  

(E)--damascenone because the sample size was too small, as discussed before. In order to be able to 

estimate the ratio of free to glucuronidated acid and thereby to be able to include the acids in Figure 3a, b, 

we conducted some additional experiments, where we quantified butanoic acid and 3-methylbutanoic 

acid in one native urine sample each. The concentration of butanoic acid was 35,100 µg/mol 

creatinine, while that of 3-methylbutanoic acid was 29,300 µg/mol creatinine. As these are only data of 

one urine sample we did not include them in any of the tables. Still, they are another indication that the 

ratios of the free to the corresponding glucuronidated odorants are higher for the acids than for the 

remaining compounds. 
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The increased concentrations after de-glucuronidation can be easily explained for skatole, vanillin, 

4-ethylguaicol, 4-vinylguaiacol, indole guaiacol, butanoic acid and 3-methylbutanoic acid as those 

compounds all have functional groups which are known to be glucuronidated (in these cases amino, 

hydroxyl and carboxy groups) [57,58]. 

Figure 3. (a) Comparison of median concentrations of selected odorants in native and 

glucuronidase-treated human urine. Concentrations are given in [µg/mol creatinine] and 

displayed in a logarithmic scale. (b) Comparison of median concentrations of selected 

odorants in native and glucuronidase-treated human urine. Concentrations are given in 

percent, the concentration of the compounds in the glucuronidase-treated urine is set  

100 percent. 

 
(a) 

 
(b) 
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In contrast to this, the increased concentrations of (E)--damascenone, methional and dimethyl 

trisulfide is striking as one would not expect those compounds to be found as glucuronides when regarding 

their chemical formulas. The reason why (E)--damascenone is present in higher concentrations after 

enzymatic hydrolysis than in the native samples may be that it is in fact glucuronidated. At first sight, 

(E)--damascenone does not have the functional groups which are commonly required for 

glucuronidation. However, (E)--damascenone may form a hydroxyl group by keto-enol tautomerism 

(Figure 4). The resulting enolic form would be resonance-stabilized. Further, the equilibrium position 

of this tautomerism is of minor importance as the enol would be glucuronidated in the body and thus 

no longer be part of the equilibrium. According to Le Chatelier´s principle [59], further enol is formed 

and the equilibrium is constantly rebuilt. When subjecting the urine to enzymatic hydrolysis, the enol 

would be freed by de-glucuronidation and the ketone would be formed until equilibrium is reached. 

Figure 4. Keto-enol tautomerism of (E)--damascenone and resonance stabilization of  

the enol. 

 

Dimethyl trisulfide is an aroma compound present in substantial amounts in some foods like red and 

white cabbage [45]. It is formed by oxidation of the thiol methyl mercaptan and further disproportionation 

of the resulting dimethyl disulfide. Methyl mercaptan is formed from methional which originates from 

methionine by Strecker degradation [45]. Increased release of dimethyl trisulfide in the context of glucuronidase 

assays has, to the best of our knowledge, not been reported until today. Overall, the increased release 

processes of this substance as well as of others monitored in our study as for example methional will 

need further targeted investigations. In any case, one needs to keep in mind that these processes might 

relate not only to the pure enzymatic de-conjugation step but might additionally be superimposed by, 

e.g., oxidation reactions or other follow-up reactions with other (odorless) constituents that are present 

in the substance mix obtained after enzymatic treatment. Accordingly, additional studies need to be 

accomplished with more detailed focus on the underlying precursor substances to obtain a 

comprehensive picture of the relevant substances and their formation. 

Based on the knowledge of common odorants and odorant conjugate profiles, further studies may 

then distinctly target, e.g., specific dietary influences on the urinary odorant profiles as they are quite 

evident for example in the case of asparagus [19,20]. Further, characteristic changes in urinary smell, 

and specifically the underlying molecular composition, due to diseases as discussed in the introduction 

represents another attractive area of research. Utilization of this important diagnostic mean, as already 

applied by our ancestors, e.g., in medieval times might thereby encounter a renaissance, supported by 

highly sensitive and selective analytical tools that are available nowadays. 
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4. Experimental 

4.1. Chemicals 

The following reference compounds were obtained from the suppliers shown: 3-(methylthio-) 

propanal (methional) ≥ 97%, 3-methylindole (skatole) ≥ 98%, 3-hydroxy-4,5-dimethyl-2(5H)-furanone 

(sotolone) ≥ 97%, 4-ethyl-2-methoxyphenol (4-ethylguaiacol) ≥ 9%, 2-methoxyphenol  

(guaiacol) ≥ 98%, 2-methoxy-4-vinylphenol (4-vinylguaicol) ≥ 98%, dimethyl trisulfide ≥ 98%,  

3-methylbutanoic acid ≥ 99%, 2-methylbutanoic acid ≥ 98%, (E)-1-(2,6,6-trimethyl-1-cyclohexa-1,3-dienyl) 

but-2-en-1-one ((E)--damascenone) 1.1–1.3 wt. %, and 1-octen-3-one 50% solution in 1-octen-3-ol 

from Aldrich (Steinheim, Germany). 4-hydroxy-3-methoxybenzaldehyde (vanillin) ≥ 99% was 

obtained from ABCR (Karlsruhe, Germany). Indole ≥ 98.5% and butanoic acid ≥ 99.5% were 

purchased from Fluka (Steinheim, Germany). The following stable isotope labeled standards were 

from aromaLAB AG (Freising, Germany): [2H3]-1-octen-3-one, [2H3]-methional, [13C2]- sotolone, 

[2H3-4]- (E)--damascenone, [2H6]- dimethyl trisulfide, [2H7]- skatole, and [2H3]- 4-vinylguaiacol.  

The stable isotope labeled standards [2H5]-4-ethylguaiacol, [2H3]-guaiacol, 2,2-[2H2]-3-

methylbutanoic acid, and [2H7]-indole were purchased from Dr. Ehrenstorfer / CDN-isotopes  

(Pointe-Claire, Quebec, Canada). [13C6]- Vanillin and [13C2]- butanoic acid were from Aldrich  

(Steinheim, Germany). 

Dichloromethane p.a. and acetic acid ≥ 99.95% were obtained from Th. Geyer GmbH & Co. KG 

(Renningen, Germany), and sodium azide ≥ 99.5% as well as -glucuronidase with < 7,500 unit/mL 

sulfatase activity from Helix pomatia type HP-2 (aqueous solution > 100,000 units/mL) were from 

Sigma (Steinheim, Germany). 

4.2. Study Design 

The study design was in concordance with the requirements of the declaration of Helsinki, and was 

conducted after consultation of the local ethical committee. 

4.3. Donors 

Donors were volunteers (8 females and 6 males, age range 22–36, mean age 28), exhibiting no 

known illnesses at the time of examination, and consuming their freely chosen meals without any 

specified dietary protocol but were asked to refrain from drinking coffee for two days before sample 

collections. The volunteers were asked to keep dietary records for two days before they provided the 

urine sample. Prior to sample collection and analysis written consent was obtained from all participants 

after a full explanation of the purpose and nature of the study. 

4.4. Samples 

Random urine samples [9] were collected in sterile amber glass bottles. The urine samples were 

processed and analyzed directly after donation as described below. To account for possible 

contamination and illnesses that probands were not aware of, dipstick-testing (multiproperty  

strips-testing) was carried out on all samples making sure that no urine with abnormal values was 
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included in the experiments. Therefore, multiple test stripes “Combi-Screen PLUS” from Analyticon 

Biotechnologies AG (Lichtenfels, Germany) were used, providing the possibility to simultaneously test 

ascorbic acid, bilirubin, blood, glucose, ketones, leucocytes, nitrite, pH, protein, specific  

gravity/density and urobilinogen. 

4.5. Measurement of Creatinine 

Creatinine was measured for calculation of analyte / creatinine-ratios, in accordance with the 

generally approved correction of diuresis using urinary creatinine concentration [9]. Generally, 

measurement of creatinine is recommended by the European Confederation of Laboratory Medicine 

when quantitative determinations in urine are performed and timed collections overnight or for 24 h 

are to be avoided [9]. Accordingly, a method based on the reaction of Jaffé was used for creatinine 

measurement in our experiments using the creatinine kit from Labor + Technik Eberhard Lehmann 

GmbH (Berlin, Germany). 

4.6. Solvent Extraction and Solvent Assisted Flavor Evaporation of Urine Volatiles 

Solvent assisted flavor evaporation (SAFE) [60] was applied as described in our previous study [6] 

for the fast and careful isolation of the urinary volatiles. The urine was either subjected to the SAFE 

directly for isolation of the volatile fraction, or immediately subjected to the hydrolysis procedure with 

-glucuronidase prior to SAFE as described below, and subsequently subjected to volatile isolation via SAFE. 

4.6.1. Isolation of the Volatile Fraction without Enzymatic Hydrolysis 

The labeled internal standards dissolved in dichloromethane were added to 50 mL fresh urine. The 

standards were added in similar concentrations as present in urine based on precedent orienting trials. 

Then, 25 mL of freshly purified dichloromethane were added, the mixture was stirred for 30 min, and 

immediately applied for mild distillation at 50 °C. After distillation of the mixture additional aliquots 

of 10 mL of dichloromethane were administered and distillation was re-performed thrice to achieve 

complete transfer of the respective odor compounds. The obtained aqueous distillate phase was 

additionally extracted thrice with 50 mL of dichloromethane. Then all combined dichloromethane 

phases were dried over anhydrous Na2SO4, and finally concentrated to a total volume of 100–200 μL at  

50 °C by means of Vigreux-distillation and micro-distillation [61]. Blank samples were prepared by 

subjecting only dichloromethane (same amount as added to the urine samples) to SAFE and treating 

the resulting distillate exactly like the urine samples. 

4.6.2. Enzymatic Hydrolysis (-Glucuronidase Assays) 

Exactly 10 mL of an acetic acid—sodium acetate-buffer adjusted to pH5 were added to 10 mL fresh 

urine in concordance with the methodology previously described in [6]. Then 0.2 mL of the -glucuronidase-

solution was added. The mixture was stirred for 15 h at 37 °C. Afterwards, 10 mL of purified 

dichloromethane and the labeled internal standards dissolved in dichloromethane were added and the 

mixture was stirred for 30 min. 
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Subsequently, the glucuronidase-treated samples were subjected to SAFE distillation analogous to 

the outline described above for the untreated samples. Therefore, additional aliquots of 5 mL of 

dichloromethane were administered and distillation was re-performed thrice. The distillate phase was 

dried over anhydrous Na2SO4, and finally concentrated to a total volume of 100–200 μL at 50 °C by 

means of Vigreux-distillation and micro-distillation. 

Blank samples were prepared by adding the sodium acetate-buffer to highly purified water instead 

of urine and treating this mixture as described above for the urine samples. Blank samples were 

analyzed as described for the native urine as well as the glucuronidase-treated samples. 

4.6.3. Addition of Sodium Azide 

As glucuronidase-assays were incubated for 15 h at 37 °C we conducted additional experiments to 

exclude the influence of bacterial growth in the course of the quantification experiments. Therefore, two 

urine samples were processed in two different ways each. One part of each of the two samples was 

processed precisely as described in Section 4.6.2. The second part was processed quite similarly, but  

1 mL sodium azide solution (200 mg/mL in deionized water) was added to the urine samples 

immediately at the beginning of the experimental procedure. 

4.7. Two-Dimensional High Resolution Gas Chromatography-Mass Spectrometry (TD-HRGC-MS) 

A two-dimensional gas chromatographic system (2D-HRGC) was applied with the specifications 

given in [6]. Mass spectra were generated in positive CI mode (m/z range 35–249) with methanol as 

reagent gas. Ion source temperature was kept at 190 °C, emission current was 10 µA and ionization 

energy was 70 eV. The intensities of the selected ions of the odorants and the labeled standards were 

calculated by MS Data Review, Varian MS-Workstation (Version 6.9; Service Pack 1, Varian, Inc.). 

Calibration curves of defined mixtures of odorants and isotopic labeled standards (5:1, 3:1, 1:1, 1:3, 1:5, w/w) 

were measured and calibration functions were calculated by using the relative intensities of the 

respective mass ions. The concentration of an odorant in human urine was obtained by calculating the 

intensity of selected ions for the odorant as well as for the matching isotopic labeled standard, 

incorporating the results of the calibration function and the known amount of isotopic labeled standard 

added to the sample as described by [62]. Standard compounds, isotopic labeled standards, their mass, 

and the m/z selected for quantification are given in online supplementary material Table S2 for 

compounds quantified in native urine and Table S4 for compounds quantified in hydrolyzed urine samples. 

4.8. High Resolution Gas Chromatography-Mass Spectrometry (HRGC-MS) 

Quantification of the two acids butanoic acid and 3-methylbutanoic acid was carried out using a 

one-dimensional HRGC-MS system as the concentrations of the acids were high enough to quantify 

these substances without the need for two-dimensional gas chromatographic separation. Moreover, the 

acids are polar compounds, thus a better separation could be achieved using a polar column  

(DB-FFAP) only. The one-dimensional system was a Finnigan Trace GC Ultra (Thermo Electron 

Corporation/Thermo Scientific) coupled to a Thermo DSQ Single Quadrupole MS (Thermo Electron 

Corporation/Thermo Scientific). The approach was the same as described above (4.7) for the 
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remaining compounds. The software was Xcalibur Data System (Version 1.4, Thermo Electron 

Corporation / Thermo Scientific). 

4.9. Statistical Analyses 

The Mann-Whitney U test was used for the comparison of concentrations of selected odorants in 

urine of female and of male test persons. The paired-sample Wilcoxon signed rank test was used for 

the comparison of concentrations of odorants in native and hydrolyzed urine samples. 

5. Conclusions 

Pronounced inter-individual differences in the excretion of both un-metabolized as well as 

glucuronidated substances were found for most of the odorants analyzed in this study. Moreover, 

pronounced gender-related differences could be observed in the excretion of un-metabolized odorants. 

Comparing the concentrations of the odorants in native and hydrolyzed urine, a distinct increase after 

deglucuronidation was observed for most compounds. 

Generally, from our observations one can conclude that the investigation of odorants and  

volatiles/semi-volatiles in general obviously opens up a new window into physiological processes 

occurring in our organism. Further studies might also target at disturbances of these processes due to 

general physiological, hormonal or potential disease-related changes, and might bare the potential to 

serve as a diagnostic mean. There is a series of factors which may contribute to the variations observed 

in this study, for example differences in diet or life style (e.g., uptake of volatiles or odorants from 

smoking or hygienic products), metabolization and resorption processes. Further investigations will be 

needed to shed light on their relative contribution to volatile and odorant profiles in humans. 

Generally, our study shows that we are just on our way to understanding the presence and composition 

of volatile classes in our organism that have rarely been addressed until today. The diagnostic potential 

of odorless compounds might therefore be similar to that of odor-active compounds. Nevertheless, the 

latter are a group of substances that have to date been seldom addressed and which are often present at 

concentrations that elude detection when they are not specifically focusing on. On the other hand, 

urinary odor changes during the development of diseases have been shown to be of additional 

diagnostic value, potentially adding further specificity to the diagnostics. In this context, one needs to 

keep in mind that urinary excretion strictly relates to systemically circulating substances in our body. 

Our studies show that these compounds represent (a) compounds that may easily access diverse 

physiological targets (specifically in the case of the free compounds), (b) might be easily distributed by 

diverse routes within the human organism, and (c) represent a substance group that has to be indeed 

regarded as a substantial mean due to their obvious quantitative presence. Accordingly, future research 

in this field will further need to translate the knowledge about their presence in the human body into 

targeted studies on their potential physiological meaning. 
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