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Abstract: Cancer cells often have dysregulated metabolism, which is largely characterized by the
Warburg effect—an increase in glycolytic activity at the expense of oxidative phosphorylation—and
increased glutamine utilization. Modern metabolomics tools offer an efficient means to investigate
metabolism in cancer cells. Currently, a number of protocols have been described for harvesting
adherent cells for metabolomics analysis, but the techniques vary greatly and they lack specificity
to particular cancer cell lines with diverse metabolic and structural features. Here we present an
optimized method for untargeted metabolomics characterization of MDA-MB-231 triple negative
breast cancer cells, which are commonly used to study metastatic breast cancer. We found that an
approach that extracted all metabolites in a single step within the culture dish optimally detected both
polar and non-polar metabolite classes with higher relative abundance than methods that involved
removal of cells from the dish. We show that this method is highly suited to diverse applications,
including the characterization of central metabolic flux by stable isotope labelling and differential
analysis of cells subjected to specific pharmacological interventions.
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1. Introduction

Cancer is a disease state in which cellular processes—including metabolism—are altered,
contributing to uncontrolled cell proliferation. The dysregulation of cellular respiration, which is
common in cancer cells, is better known as the Warburg effect or aerobic glycolysis, whereby cells
metabolize glucose via glycolysis in preference to oxidative phosphorylation as the primary means
of energy generation [1,2]. Glutamine is another key nutrient that plays a pivotal role in metabolic
processes within proliferating tumour cells, including production of energy for biological processes,
protection against oxidative stress and providing both carbon and nitrogen sources for macromolecule
synthesis [3–5]. In addition to these central metabolic pathways, altered amino acid, lipid and
nucleotide metabolism has been associated with cancer cells, and cellular metabolism is seen as
a key target for the diagnosis and treatment of specific cancers [6–10].
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Metabolomics is a useful tool to probe cancer cell metabolism, and offers insight into how
metabolic processes may influence cancer progression. Metabolomics strategies typically employ either
a hypothesis-driven approach or a hypothesis-forming approach. The hypothesis-driven method
involves assessing either a specific pathway or metabolites of interest, based on previous knowledge
of the involvement of that pathway or metabolite in the phenotype or intervention under investigation.
In contrast, an untargeted or hypothesis-forming approach allows for an unbiased investigation
of all metabolic pathways under defined experimental conditions. To facilitate these approaches,
a number of analytical techniques may be used to detect changes in metabolite levels, including
nuclear magnetic resonance (NMR), gas chromatography mass spectroscopy (GC-MS) and liquid
chromatography mass spectroscopy (LC-MS). There are advantages and limitations to each analytical
method. The key advantages of NMR are that it is inherently quantitative, highly reproducible, and
can provide structural information which enables accurate identification of metabolites. However,
when comparing this technique to other analytical platforms, it is less sensitive than MS and is capable
of detecting only a limited number of metabolites. Comparatively, GC-MS is useful for the detection
and identification of a range of metabolites, and comprehensive spectral databases are available
for metabolite identification. However, GC-MS requires derivatization of most metabolites to make
them volatile, and if compounds are not volatile and unable to be derivatized then they will not be
detected. Lastly, LC-MS combines the separation capabilities of chromatography with the sensitivity
of MS, without the need to derivatize samples, allowing detection and identification of a wide range
of metabolites with high sensitivity from a complex sample. These characteristics have led to the
widespread application of LC-MS for metabolomics studies, and make it particularly suitable for
untargeted analyses [11,12].

The main aim of this study was to develop a method for the optimal detection of metabolites
from MDA-MB-231 cells using LC-MS. This methodology is suitable for untargeted metabolomics
analysis of breast cancer cells and is capable of providing a better understanding of the relationships
between cancer cell metabolism and proliferation, metastasis, or the impact of various exogenous
and endogenous stimuli (e.g., drugs, stress, nutrients). MDA-MB-231 cells are triple negative breast
cancer cells which lack oestrogen, progesterone and human epidermal growth factor receptor 2 (HER2)
receptors, thus providing significant challenges for therapy [13]. As such, triple negative breast cancer
is associated with poor prognosis [14,15]. It is known that breast cancer cells have altered central
carbon metabolism and lipid metabolism, therefore developing a method that extracts both polar
and non-polar metabolites will allow a global analysis of metabolism [9]. The MDA-MB-231 cell line
is routinely used in both in vivo and in vitro studies to investigate cancer progression [16]. Despite
the widespread use of this cell line, a reliable and sensitive protocol for an untargeted extraction of
metabolites has not been reported for this cell line. Current adherent cell extraction methods may not
be ideally suited to our aims for several reasons: Methods that had been optimized for alternative
analytical platforms were not suitable for untargeted LC-MS analysis [17–23]. Additionally, extraction
methods for different mammalian cell lines may not be ideal for MDA-MB-231 cells due to the different
metabolic profile and physical properties of each cell type [24]. Methods for detaching adherent cells
from culture dishes using trypsin have been shown to cause significant metabolite leakage [23–25].
Lastly, methods developed for targeted analyses are not suitable for untargeted analyses as they are
optimized to extract metabolites from a specific metabolite class (e.g., only polar metabolites) [26–28].

In this study, we have developed and validated an untargeted metabolomics method that was
able to extract, detect and provide relative quantification for hundreds of lipid and polar metabolites
in a monophasic extract from MDA-MB-231 cells using LC-MS analysis. The application of this
methodology was demonstrated by addition of stable isotope labelled glucose and glutamine to reveal
flux in central metabolic pathways, and by pharmacological intervention studies.
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2. Materials and Methods

2.1. Materials

High glucose Dulbecco’s Modified Eagle Medium (DMEM), with Glutamax supplement and
pyruvate was purchased from Invitrogen (Thermo Fisher Scientific, Waltham, MA, USA). Foetal bovine
serum (FBS) was purchased from Invitrogen. (−)-isoproterenol hydrochloride (isoproterenol) and
(S)-(−)-propranolol hydrochloride (propranolol) were purchased from Sigma Aldrich (St. Louis, MO,
USA). For the isotope labelling studies, U-13C6-D-Glucose was purchased from Sigma Aldrich and
U-13C5-L-Glutamine was purchased from NovaChem. All other solvents and reagents were of LC-MS
analytical grade (Merck, Kenilworth, NJ, USA).

2.2. Cell Culture

MDA-MB-231HM, a highly metastatic variant of the MDA-MB-231 triple negative breast
adenocarcinoma cell line, were a kind gift from Dr Zhou Ou (Fudan University, Shanghai Cancer Center,
Shanghai, China) and were karyotyped for confirmation (Cellbank, Westmead, Australia) [29–31].
Cells were grown in DMEM, supplemented with 10% FBS, at 37 ◦C and 5% CO2.

2.3. Sample Preparation for LC-MS Analysis

Three monophasic extraction methods were compared for metabolomics analysis (Figure 1).
For the “one-step in-plate” extraction method, 106 cells were grown in 10 cm glass dishes (Corning)
coated with 10 mM fibronectin. For all other methods, 10 cm polystyrene cell culture dishes (Falcon)
were used. Cells were harvested at 70%–80% confluency and all experiments were performed in
replicate with cultures prepared and extracted on separate days within a 2-week period (n = 3–4).
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Figure 1. Workflow of metabolite extraction methods. For the one-step in-plate method, MDA-MB-231
cells grown in glass dishes were scraped in chloroform:methanol:water (1:3:1) for simultaneous
extraction of polar and lipid metabolites. For the two-step in-plate method, cells were scraped in
methanol:water (3:1) and chloroform was added after transfer of the mixture to a tube. For the
in-tube method, cells were scraped in saline and transferred to tubes, where they were extracted in
chloroform:methanol:water (1:3:1).

For all extractions, immediately prior to cell harvest, cells were quenched and washed three times
with 4 ◦C 0.9% NaCl (Baxter, Sydney Australia), and all subsequent steps in the extraction process
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were performed at 4 ◦C in a cold room. For the “in-tube” extraction method, cells were scraped in
0.5 mL 0.9% NaCl in water (4 ◦C), centrifuged at 200 × g for 5 min at 4 ◦C and resuspended in 200 µL
of extraction solvent (chloroform:methanol:water = 1:3:1) at 4 ◦C. For the “two-step in-plate” extraction
method, cells were scraped in 600 µL ice cold extraction solvent (methanol:water = 3:1), transferred to
a 1.5 mL Eppendorf tube and 150 µL chloroform was added. For the “one step in plate” extraction
method, cells were scraped in 750 µL of ice cold extraction solvent (chloroform:methanol:water = 1:3:1).
After scraping, all extraction samples were mixed thoroughly on a vortex mixer for 30 min at 1200 rpm
at 4 ◦C, then centrifuged at 20,000 × g for 10 min at 4 ◦C. For the “in-tube” extraction method,
the supernatant (160 µL) was transferred into a glass vial for LC-MS. All other samples were evaporated
to dryness under a nitrogen stream. All samples were then frozen at −80 ◦C until LC-MS analysis.

2.4. Stable Isotope Labelling and Drug Treatment

106 cells were seeded in fibronectin-coated glass dishes. After 44 h in culture, cells were treated
with 1 µM isoproterenol (or vehicle) for 3 h and then the medium was replaced with medium
containing 25 mM U-13C6-D-Glucose labelled medium, or 1 mM U-13C5-Glutamine labelled medium
(or isoproterenol as appropriate). After 1 h, samples were processed for LC-MS as described above.
To determine specificity, some samples were treated with 5 µM propranolol for 30 min before addition
of isoproterenol. The glucose-labelled media was prepared by adding the stable-isotope labelled
glucose into DMEM to give a 50:50 ratio of U-13C and U-12C D-glucose. The glutamine-labelled media
was prepared by adding the stable-isotope labelled glutamine into DMEM without L-glutamine or
Glutamax to give 100% U-13C L-glutamine.

2.5. LC-MS Analysis

Before analysis, samples were thawed and reconstituted in 160 µL (chloroform:methanol:water
= 1:3:1) with vortex mixing, followed by centrifugation to remove any precipitate. One hundred
fifty microlitres of supernatant was transferred into a LC-MS glass vial. A quality control (QC)
sample was prepared by pooling 10 µL from each vial. Samples were analysed on a Q-Exactive
Orbitrap MS (Thermo Fisher Scientific, Pleasanton, CA, USA) with the use of hydrophilic interaction
chromatography in both positive and negative modes. This was done using a ZIC-pHILIC
150 mm × 4.6 mm, 5 µm column (Merck Sequant, Darmstadt, Germany), which was coupled to
a U3000 RSLC HPLC (Dionex, Thermo Fisher Scientific, Germering, Germany) The mobile phase (A)
consisted of 20 mM ammonium carbonate in Milli-Q water and mobile phase (B) was comprised of
100% acetonitrile. The method was run as a gradient: 0 min 80% B; 15 min 50% B; 18 min 5% B; 24 min
80% B at a flow rate of 0.3 mL/min. The total run time was 32 min per sample. The samples were
placed into the autosampler where they were maintained at 4 ◦C and 10 µL sample was injected onto
the column, which was kept at 25 ◦C. Mass spectrometry was performed using a Q-Exactive Orbitrap,
which was operated in polarity switching mode, with the following settings: resolution 35,000,
AGC 1 × 106, m/z range 85–1275, sheath gas 50, auxiliary gas 20, sweep gas 2, probe temperature
150 ◦C, and capillary temperature 300 ◦C. For positive mode ionization: source voltage +4 kV, S-lens
voltage +50 V. For negative mode ionization: source voltage −3.5 kV, S-lens voltage −50 V. A mass
calibration was performed for each polarity before running each batch to ensure accurate masses.
Over 200 authentic metabolite standards were analysed at the start of each batch to provide accurate
retention times to facilitate metabolite identification. Samples were analysed in random order with
periodic injections of the pooled QC sample, and blank samples, throughout the batch.

2.6. LC-MS Data Processing

The raw metabolite data were processed using XCMS (Centwave) software for peak picking and
mzMatch.R software for alignment and annotation of related metabolite peaks. Metabolites were then
identified in IDEOM software, version 19c by matching the mass of each peak and its retention time
with a database, using a mass accuracy window of 2 ppm and a retention time window of 5% for
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metabolites matching authentic standards, and 35% for other putative metabolites based on a retention
time prediction model [32]. Noise and mass spectrometry artefacts were filtered using previously
described algorithms [32,33] to minimize false identifications. Detection of stable isotope labelled
metabolite peaks was performed using mzMatch-ISO [34]. Initial statistical analysis of metabolomics
data was performed with IDEOM (Excel) using peak intensities (height) for all detected putative
metabolites. Further analysis was undertaken using Tracefinder, version 3.1 (Thermo) to obtain
manually curated accurate peak areas for selected analytes to allow targeted univariate analyses for
metabolites in key pathways.

2.7. Statistical Analysis

All data are presented as mean ± SE. Statistical differences were determined using one-way
ANOVAs and Dunnett’s or Tukey’s multiple comparisons where significant interactions were observed.
Significance was determined at p values <0.05. Univariate analyses used GraphPad Prism software,
version 6.05 (GraphPad Software).

3. Results

3.1. One-Step In-Plate Extraction Method Is Optimal for MDA-MB-231 Untargeted Metabolomics

To develop a robust technique to prepare extracts of MDA-MB-231 cells for metabolomics
analysis, three different extraction methods were tested; a “one-step in-plate” extraction, a “two-step
in-plate” extraction method, and an “in-tube” extraction method (Figure 1). These methods vary
in how metabolism is quenched and metabolites are extracted. The “in-tube” extraction method
quenches metabolism first, allowing transfer of intact cells from the plate to a tube by physical
scraping, followed by a solvent-based metabolite extraction. In the “one-step in-plate method” the
extraction solvent is added directly to the plate, ensuring simultaneous quenching and extraction of
all metabolites. As efficient extraction of lipid metabolites can be enhanced with chloroform [24,28],
which is incompatible with polystyrene cell culture dishes, cells were grown in glass dishes for this
method. However, as many labs routinely grow cells in polystyrene dishes, we also investigated
a “two-step in-plate method”, in which metabolism was quenched and polar metabolites extracted
with 75% methanol in water, followed by a second step involving transfer to a microfuge tube and
addition of chloroform to enhance extraction of lipid metabolites.

The “in-tube” extraction method performed poorly, with few metabolites reliably detected,
as indicated by the median LC-MS peak height from all detected features, which was only marginally
greater than that seen in solvent blanks (Figure 2). The median LC-MS peak height was significantly
higher in both of the two in-plate extraction methods, indicating significantly enhanced extraction
efficiency (Figure 2). A qualitative analysis of the metabolite classes detected for each of the methods
revealed no difference in the scope of polar metabolites detected for the two in-plate extraction
methods (Figure 3A). However, the one step in-plate extraction method detected higher levels of lipid
metabolites than the two-step in-plate extraction method (Figure 3B). Interestingly, the in-tube method
performed very well for the detection of lipid species, despite being largely ineffective at extracting
polar metabolites (Figure 3).

In addition to metabolite coverage and sensitivity, quantitative reproducibility is a critical feature
of any metabolomics workflow. The relative standard deviation (%RSD; %CV) was calculated for all
detected putative metabolites in each of the three methods, revealing %RSD values less than 30% for
63% of putative metabolites detected in the “one-step in-plate” method. Precision was considerably
worse for the “in-tube” and the “two-step in plate” methods (Figure 4A). The precision of the “one-step”
method was further tested across six additional experiments (over four different occasions) to confirm
reproducibility. The median %RSD was consistently below 30%, suggesting that this method is
appropriate for semi-quantitative comparative studies (Figure 4B). These findings demonstrate that
the “one-step” extraction method provides optimal detection of a broad range of metabolites, and has
sensitivity and precision that is suitable for application in untargeted metabolomics studies.
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Metabolites 2016, 6, 30 6 of 16 

 

 
Figure 2. Comparison of global metabolite extraction efficiency: MDA-MB-231 cells were extracted 
using the “one-step in-plate”, ” two-step in-plate” or “in-tube” protocol (see Figure 1) and analysed 
on an LC-MS untargeted metabolomics platform. y-axis (relative abundance) represents the median 
peak height from all detected LC-MS peaks (mean ± SE; n = 3–4). 

 
(A)

 
(B)

Figure 3. Heat map of relative abundance of metabolites detected for each sample from the three 
extraction methods: Putatively identified metabolites clustered according to pathway/class (from 
Ideom database) and relative abundance shown as LC-MS peak height normalized to the mean for 
each metabolite. Heat map shows low relative abundance (blue) of polar metabolites (A) and high 
relative abundance (red) of lipids (B) for the “in-tube” method. Low recovery (blue) of lipid 
metabolites (B) is evident for the “two-step in-plate” method. Minimal variance observed within the 
quality control (QC) samples (all five replicates shown) confirms the excellent technical precision of 
the LC-MS method. 

 
Figure 4. Precision and repeatability of the “One-step in-plate” method: The relative standard 
deviation (RSD) for each metabolite was determined for: (A) each of the extraction methods within a 

Figure 3. Heat map of relative abundance of metabolites detected for each sample from the three
extraction methods: Putatively identified metabolites clustered according to pathway/class (from
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metabolite. Heat map shows low relative abundance (blue) of polar metabolites (A) and high relative
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evident for the “two-step in-plate” method. Minimal variance observed within the quality control (QC)
samples (all five replicates shown) confirms the excellent technical precision of the LC-MS method.
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Figure 4. Precision and repeatability of the “One-step in-plate” method: The relative standard deviation
(RSD) for each metabolite was determined for: (A) each of the extraction methods within a single
experiment (n = 3–4); and (B) the “one-step in-plate” method performed on seven independent
occasions (Note: experiments 2a and 2b were analysed in a single LC-MS batch, as were 5a and 5b).
Box plots represent the median ± interquartile range, and whiskers show the 5th and 95th percentile
(n = 3–4). **** p ≤ 0.0001, using one-way ANOVA with Tukey’s multiple comparison test.
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3.2. Application 1: Determination of Metabolic Flux with Isotope Labelling

Having identified an optimal method for unbiased detection of metabolites, we then applied
this method to characterize the utilization of glucose and glutamine in central metabolic pathways.
The relative abundance of metabolites detected in an untargeted metabolomics assay does not provide
information about the direction of metabolic flux through pathways, which is known to be altered
in cancer cells. A detailed characterization of glucose and glutamine utilization under baseline
conditions will greatly enhance the interpretation of untargeted metabolomics data. In order to
trace carbon flux through central metabolic pathways, we incorporated stable-isotopes of glucose
or glutamine into cell culture medium for 1 h prior to harvest of MDA-MB-231 cells. Consistent
with the expected glycolytic phenotype, cells exposed to labelled U-13C-glucose showed consistent
labelling of either all, or 0, carbons in each metabolite throughout the glycolytic pathway, as to be
expected with a 50% 12C-glucose and 13C-glucose mixture (Figure 5, Supplementary Tables S1 and
S2). Somewhat unexpectedly, 3-carbon labelled isotopologues of D-fructose 6-phosphate (5%) and
D-fructose 1,6-bisphosphate (21%) were also observed, suggesting some level of gluconeogenic flux
remains in these cells.

Extensive labelling was also observed in the pentose phosphate pathway (PPP), with complete
(6-carbon) labelling of 6-phosphogluconate confirming flux through the oxidative PPP. D-ribose
5-phosphate (R5P) was found to have multiple isotopologues where 2, 3 and 5 carbons were labelled
(Figure 5), suggesting that the primary source of R5P is via the non-oxidative branch of the PPP,
which can generate 2-, 3- and 5-carbon labelled isotopologues due to the actions of transaldolase and
transketolase combining fully labelled and unlabelled precursors [35].

Both glucose and glutamine were incorporated into TCA cycle metabolites. Citrate was
predominantly labelled by glucose (76% labelled, corrected for initial glucose enrichment), with
the predominant 2-carbon isotopologue indicating that glycolysis-derived pyruvate is metabolized to
acetyl CoA, where it combines with oxaloacetate to form citrate. Measurable levels of 3-carbon labelled
citrate confirms the role of pyruvate carboxylase in producing some oxaloacetate from glycolytic
pyruvate [36]. Whilst oxaloacetate itself could not be measured with this methodology, the 3-carbon
labelling observed in aspartate (the transamination product of oxaloacetate) is consistent with pyruvate
carboxylase activity. Minimal labelling was observed for the 4- and 5-carbon labelled isotopologues
of citrate, indicating that the TCA cycle is not operating as a full cycle, which would be required
to generate these higher labelled isotopologues. Indeed, once the cycle reached 2-oxoglutarate,
glutamine became the main carbon source (20% glucose, 53% glutamine), and the lower part of
the TCA cycle between 2-oxoglutarate and malate appears primarily driven by glutaminolysis.
While glutamine-derived oxaloacetate was not detected, we detected 4-carbon labelled isotopologues
of aspartate and citrate (28%) derived from labelled glutamine. Collectively, these findings suggest
that both glucose and glutamine are important metabolic precursors in these rapidly-dividing cells.

In addition to the thorough investigation of central metabolic pathways, an untargeted isotope
analysis was performed in order to detect flux into other metabolic pathways that branch out from the
primary glycolytic and glutaminolytic pathways. The 1-h labelling period did not produce widespread
labelling in related pathways, suggesting that longer periods of incubation would be necessary to
trace glucose and glutamine utilization throughout the metabolic network. Nevertheless, significant
labelling (>10%) was observed in several pathways. Glucose-derived carbon was incorporated into
sugar nucleotides from glycolytic intermediates (hexose phosphates), nucleotides from PPP products
(R5P) and acetylcarnitine from pyruvate-derived acetyl-CoA (Figure 6A). Glutamine-derived 13C
labelling was observed in proline and putative 1-pyrroline-3-hydroxy-5-carboxylate, indicating de novo
proline synthesis via glutamate (Figure 6B,C). Significant labelling was also observed in the metabolite
putatively annotated as 5-oxoproline, which is involved in glutathione recycling. Some labelling
was observed in glutathione (3%) and glutathione disulphide (5%), confirming low levels of active
glutathione biosynthesis from glutamate (Figure 6B,C).
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Incorporation of glucose (blue) or glutamine (red) into central carbon metabolism in MDA-MB-231
cells after 1 h. Circles represent the number of carbon atoms in each metabolite, with the shaded circles
corresponding to the number of labelled carbons in the most abundant isotopologue. The shading
intensity corresponds to the percentage of 13C-enrichment (darker = higher enrichment), with values
from 13C-glucose labelling corrected (doubled) to allow for the 50% initial glucose enrichment.
Column charts show relative isotopologue abundances for selected metabolites with complex labelling
profiles (x-axis indicates the number of 13C-labelled carbons in each isotopologue).
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Figure 6. Metabolome-wide detection of isotope-labelled metabolites arising from glucose and
glutamine. Heat-map shows the percentage 13C-enrichment of each isotopologue for metabolites
with >10% 13C isotope enrichment. (A) Metabolites labelled from U-13C-glucose are associated
with sugar-nucleotides, nucleotide metabolism and amino acid metabolism. Scale: white represents
0% labelling and blue represents 100% labelling; (B) Additional metabolites labelled from
U-13C-glutamine were limited to amino acid metabolism. Scale: white represents 0% labelling and red
represents 100% labelling. (C) Schematic representing the pathways involving labelled metabolites
from U-13C-glucose and U-13C-glutamine. (UDP: uridine diphosphate, GDP: guanosine diphosphate,
ATP: adenosine triphosphate, ADP: adenosine diphosphate, GTP: guanosine triphosphate).

3.3. Application 2: Metabolic Impact of Isoproterenol Treatment

A critical feature of any untargeted metabolomics method is the ability to detect specific changes
in metabolite abundance induced by a defined exposure. To investigate this, we treated cells with
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isoproterenol, a β-adrenergic receptor agonist, and examined cellular metabolite levels using the
one-step in-plate method. β-adrenergic receptors are highly expressed by MDA-MB-231 cancer
cells and β-adrenergic receptor signalling drives cancer progression [37–39]. β-adrenergic receptor
activation results in a conformational change to the receptor, which activates GαS and increases
cellular levels of cAMP, triggering other intracellular signalling pathways. Multivariate analysis
of the total of 474 putatively identified metabolites, using principal components analysis, revealed
distinct separation of the isoproterenol-treated and untreated samples, which was partly reversed
by propranolol (Figure S1). Whilst changes to most metabolite levels were subtle (less than 2-fold),
univariate analysis (volcano plot) identified significant accumulation of two specific metabolites,
cAMP (3.4-fold; p = 0.004) and a putative metabolite with monoisotopic mass (126.043) indicating
the formula C5H6N2O2 (3.8-fold; p = 0.002) (Figure 7A). The detection of cAMP accumulation was
confirmed in two more independent experiments, and this effect was blocked by pre-treatment with
the β-adrenergic receptor antagonist propranolol, demonstrating that the effects are mediated by the
β-adrenergic receptor (Figure 7B). The accumulation of the other putative metabolite (C5H6N2O2)
was not reversed by propranolol, and was not observed in the other two experiments, indicating
that this differential feature was likely due to a specific artefact or contamination in one experiment.
Importantly, these data show that this optimized untargeted metabolomics method is capable of
reproducibly identifying a specific metabolic change, i.e., accumulation of cAMP, among almost
500 putative metabolites following β-adrenergic receptor activation.
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Figure 7. Detection of cAMP accumulation in untargeted metabolomics analysis. (A) Volcano plot
showing metabolite abundance (LC-MS peak height) relative to untreated controls (x-axis) and
p-value from Welch’s test (y-axis) for all metabolites (black circles) in MDA-MB-231 cells treated
with isoproterenol for 4 h, compared to untreated control cells. Metabolites with a fold-change >3
and p-value <0.05 are shown in red (B) cAMP abundance from cells treated with isoproterenol and/or
propranolol for 4 h shown as LC-MS peak area relative to untreated control cells (mean ± SE, n = 4).
**** p ≤ 0.0001, using one-way ANOVA with Dunnett’s multiple comparison test.
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4. Discussion

These results demonstrate the validation and application of a one-step in-plate extraction method
that provides optimal identification and relative quantification of a wide range of metabolites with
greater sensitivity than other tested methods. The simplicity and reproducibility of this method
provides a standard procedure that will allow comparative untargeted metabolomics studies to detect
metabolic changes in diverse pathways, following exposure to specific interventions. Furthermore,
the baseline data generated regarding central carbon flux will assist in the design and biochemical
interpretation of untargeted metabolomics studies that seek to provide a greater understanding of
MDA-MB-231 cell metabolism.

The “one-step in-plate” method involved simultaneous quenching of metabolism and complete
extraction of metabolites and provided better coverage than removing the cells from the plate before,
or during, extraction. The potential disadvantages of this method were: (i) the need to use a relatively
large volume of extraction solvent, which diluted the metabolite concentration; (ii) the necessity for
a solvent-resistant cell culture dish; and (iii) the inability to accurately determine the cell density of
the sample at the time of extraction. However, these issues were easily overcome by: (i) drying down
the extract under nitrogen gas followed by reconstitution for analysis; (ii) using fibronectin-coated
glass culture dishes; and (iii) ensuring tightly defined culture conditions and including an additional
culture dish for each condition to accurately count the cell density. These minor issues were clearly
outweighed by the advantages of rapid in-plate quenching, comprehensive cell lysis and metabolite
extraction with a mixed chloroform/methanol/water solvent system. Technical limitations inherent in
the “in-tube” and “two-step” methods likely limited their capacity to detect a range of metabolites.
For the “in-tube” method, it is likely that the use of a cell scraper to lift cells in saline resulted in cell
lysis, releasing polar metabolites into the saline, which was discarded. Thus few polar metabolites
remained in the pellet, leading primarily to detection of lipids from cellular membranes. In contrast,
the “two-step in-plate” extraction method performed poorly for lipid extraction, as cells were lysed
into a methanol and water mixture, where some of the lipids were poorly solubilized and remained
in the culture dish. This two-step procedure also introduced more experimental variance than the
other methods (Figure 4). We propose that the superior performance of the “one-step in-plate”
extraction method was due to the direct solubilization of both polar and non-polar metabolites into the
monophasic chloroform/methanol/water solvent. It is possible that the cell adherence properties in
the fibronectin-coated glass dish may have also influenced the extraction efficiency, however this is
unlikely as there was no difference in cell growth between the two culture dishes. The ability of the
one-step in-plate extraction method to detect metabolites with diverse physicochemical properties,
and with greater recovery and precision than the other tested methods, makes this method ideal for
untargeted metabolomics studies in MDA-MB-231 cancer cells.

Dysregulation of central metabolic pathways, including glycolysis and the TCA cycle,
are a hallmark of cancer cell metabolism [40]. It was therefore important to demonstrate the suitability
of the optimized untargeted metabolomics method for analysis of these central pathways. Whilst many
intermediates of glycolysis and the TCA cycle were detected in the untargeted analysis, the metabolic
architecture of these pathways cannot be understood with untargeted metabolomics alone [41],
and an understanding of the metabolic flux through central metabolism pathways is essential for
interpretation of experimentally-induced perturbations in metabolite levels. Through the use of stable
isotope labelling, the activity of key central metabolic pathways was elucidated. Labelling the cells
with a 50% mixture of U-13C-glucose and U-12C-glucose allowed detection of metabolites that were
derived from the labelled carbon source, and measurement of the number of carbons labelled in
each isotopologue, and the percentage enrichment of each isotopologue, allowed inference of the
primary pathways responsible for generation of each metabolite. Glucose was incorporated into the
glycolytic pathway as expected [42] and complete labelling of the intracellular pools of glycolytic
intermediates within 1 h showed that the pathway was highly active, although accurate quantification
of glycolytic flux was beyond the scope of this study. Surprisingly, despite the extensive reliance of
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cancer cells on glycolysis, the significant levels of 3-carbon labelled fructose 1,6-bisphosphate suggested
the presence of some degree of gluconeogenic flux through the reversible action of aldolase. Both the
oxidative and non-oxidative branches of the pentose phosphate pathway were also highly active [43],
and the labelling pattern of ribose 5-phosphate revealed that the non-oxidative PPP is the primary
source of this key nucleotide precursor, consistent with previous studies in pancreatic adenocarcinoma
cells [44]. The incorporation of two, and three, carbons from glucose into citrate confirmed the activity
of pyruvate dehydrogenase, and pyruvate carboxylase [36], respectively, linking glycolysis to the TCA
cycle. Indeed, despite the well-characterized shift away from TCA cycle activity towards glycolysis
for energy generation [3], glucose-derived precursors remain responsible for three-quarters of the
synthesized citrate. However, the lack of complete cycling of carbon skeletons around the TCA cycle
support a primarily anaplerotic, rather than bioenergetic, role for TCA cycle metabolism [45].

Significant utilization of glutamine by MDA-MB-231 was also observed, primarily via conversion
to glutamate, which is required for cancer cell proliferation and survival [46]. Glutamine was the
predominant carbon source for the part of the TCA cycle linking 2-oxoglutarate to oxaloacetate.
This utilization of glutamine for anaplerosis of the TCA cycle is yet another cancer phenotype which is
suggested to be important for cell proliferation and survival [47].

Low levels of incorporation of 13C-labelled carbon from glucose and glutamine into metabolic
pathways beyond central carbon metabolism were also detected. Labelled carbons from glucose were
found to be incorporated into UDP-sugars, nucleotides and fatty acyls, which all have established roles
in cancer cell proliferation, invasion, metastasis and angiogenesis [48,49]. The limited enrichment of
glucose-derived carbon-13 in metabolites beyond glycolysis, PPP and the TCA cycle suggests that the
1 h incubation was not a sufficient duration to reach isotopic steady state in the peripheral pathways,
indicating that metabolite turnover rates in those pathways are substantially slower. This finding
has implications for the design and interpretation of studies that seek to investigate perturbation of
metabolism beyond the high-flux central pathways. However, further studies are required to determine
whether the relatively lower isotope enrichment is (partly) due to utilization of alternate carbon sources
in these pathways. The methodology described here is ideally suited to further investigation of nutrient
utilization in cancer cells, and is likely to provide additional mechanistic information for metabolomics
studies that seek to investigate the impact of specific exposures, or interventions, on breast cancer cells.

Lastly, the optimized method was successfully applied in a standard untargeted metabolomics
study design to reveal the metabolic impact of a pharmacological intervention with a known
response. The activation of β-adrenergic receptors by isoproterenol to stimulate cAMP production,
and inhibition of this activity by propranolol, is well characterized [39,50]. The optimized method
successfully differentiated treated and untreated cells by multivariate analysis, demonstrating that the
intervention had a greater impact on metabolite levels than the inter-day variability associated with
the extraction method. Most importantly, the approach successfully identified cAMP accumulation,
among almost 500 putative metabolites, as the most significant metabolic perturbation associated with
β-adrenergic receptor activation, and this significant cAMP accumulation was confirmed across three
independent studies.

5. Conclusions

This work describes the development and application of a rapid and efficient extraction method
that was suitable for extraction of both polar and lipid metabolites from MDA-MB-231 breast cancer
cells for untargeted metabolomics analysis using LC-MS. The method was successfully applied to
characterize the metabolism of stable-isotope labelled glucose and glutamine and elucidate the most
active metabolic pathways in these cells under standard culture conditions. In addition, we provide
“proof-of-concept” that this method is suitable for the unbiased detection of a specific known
response caused by pharmacological intervention. These techniques provide a powerful tool for
further understanding the role of metabolism in the progression and management of triple negative
breast cancer.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/6/4/30/s1.
Figure S1: Principal components analysis scores plot for the first two principal components from untargeted
metabolomics analysis of MDA-MB-231 cells treated for 4 h with isoproterenol (Iso), propranolol (Prop),
combination of isoproterenol and propranolol (Prop + Iso) or untreated control cells (control). Values in parenthesis
indicate the percentage of variance explained by each principal component, Table S1: Glucose Labelling, Table S2:
Glutamine Labelling.
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Abbreviations

The following abbreviations are used in this manuscript:

βAR β-adrenergic receptor
µL microliter
µM micromolar
µm micrometer
ACN acetonitrile
ADP adenosine diphosphate
ATP adenosine triphosphate
cAMP 3′,5′-cyclic adenosine monophosphate
CO2 carbon dioxide
CoA coenzyme A
DMEM Dulbecco’s Modified Eagle’s Medium
EDTA ethylenediaminetetraacetic acid
FBS fetal bovine serum
g g-force
GC-MS gas chromatography mass spectrometry
KV kilovolt
LC-MS liquid chromatography mass spectroscopy
mL milliliter
mm millimeter
mM millimolar
MS mass spectrometry
m/z mass to charge ratio
NMR nuclear magnetic resonance
PKA Protein kinase A
ppm parts per million
PPP Pentose Phosphate Pathway
QC quality control
Rpm revolutions per minute
TCA cycle tricarboxylic acid cycle
UDP uridine diphosphate
V volt
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