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Abstract: Aging is an inevitable condition leading to health deterioration and death. Regular physical
exercise can moderate the metabolic phenotype changes of aging. However, only a small number of
metabolomics-based studies provide data on the effect of exercise along with aging. Here, urine and
whole blood samples from Wistar rats were analyzed in a longitudinal study to explore metabolic
alterations due to exercise and aging. The study comprised three different programs of exercises,
including a life-long protocol which started at the age of 5 months and ended at the age of 21 months.
An acute exercise session was also evaluated. Urine and whole blood samples were collected at
different time points and were analyzed by LC-MS/MS (Liquid Chromatography–tandem Mass
Spectrometry). Based on their metabolic profiles, samples from trained and sedentary rats were
differentiated. The impact on the metabolome was found to depend on the length of exercise period
with acute exercise also showing significant changes. Metabolic alterations due to aging were equally
pronounced in sedentary and trained rats in both urine and blood analyzed samples.
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1. Introduction

Aging refers to the time-related deterioration of the physiological functions of an organism, which
eventually leads to death. It is characterized by a general reduction in cellular function, ultimately
affecting the whole body homeostasis. DNA damage, oxidative stress and metabolic dysfunction are
common features of aging [1].

Metabolomics has been proven a valuable tool for studying the effects of aging on the
metabolic phenotype of organisms. Chromatographic tandem mass spectrometry [1–9] and NMR
spectroscopy [2,8,10,11] have been widely applied to serve the investigation of aging biochemistry.
Blood [1,3,7,9], urine samples [2,5,6,8,10,12] and tissues—mostly hepatic tissue samples [1,4]—have
been analyzed to study aging. Fecal samples [10,11] have also been used for this purpose.

Aging metabolomics studies have been published for both humans and rodents [13–15].
The findings of these studies could be summarized in the altered metabolism of the associated
pathways of amino acids [1,2,4,10], nucleotides [4], glucose [1,2], metabolites of Krebs cycle [2,4,8,10],
and lipids [1–3,7].

Exercise, and especially physical activity, improves heath and has been proven able to reduce
the adverse effect of aging [16]. The physiological [17] and metabolic [18] alterations derived from

Metabolites 2017, 7, 10; doi:10.3390/metabo7010010 www.mdpi.com/journal/metabolites

http://www.mdpi.com/journal/metabolites
http://www.mdpi.com
http://www.mdpi.com/journal/metabolites


Metabolites 2017, 7, 10 2 of 15

training are well-established and there are several studies which investigated these through a metabolic
profiling approach. In both humans [19–24] and rodents [25–34], metabolomics-based studies decipher
changes in amino acids, carbohydrates’ metabolism, Krebs cycle and lipids’ metabolism and other
intermediates of biochemical pathways featured as energy providers. These findings on altered
metabolism derived from exercise on humans were recently reviewed [35]. For the metabolomics
study of exercise in rodent models, GC–MS (Gas Chromatography–Mass Spectrometry) [25–27],
UPLC–MS/MS (Ultra Performance Liquid Chromatography–tandem Mass Spectrometry) [32,33]
and NMR spectroscopy [28–31,34] have been used to analyze blood [26,28,30], urine [31], and tissue
extracts [25,27,29,32,33], mainly from skeletal muscles and hepatic tissue. Recently, a study has
provided evidence that rat exercise response imitates human’s response, in blood samples [36].

A small number of studies examines the combined effect of aging and exercise, both of which
represent strong metabolome modifiers in rodents [37–42]. Of these studies, only one employed
metabolomics [42].

In this study, the impact of training and the effect of life-long training against the aging process is
explored via their metabolic signatures on rat urine and blood. This is a part of a larger study, where
various types of specimens were collected from rats for a long period of time. The results on fecal and
cecal tissue metabolome have been previously reported [43]. Here, the effect of exercise and aging in
rats is discussed, as a continuation of our previous published work [43], providing a comprehensive
picture of the study and supporting previous findings.

2. Results and Discussion

2.1. Long-Term Exercise Effect on Urine Metabolome

In total, 320 urine samples from seven sampling time points were analyzed in order to study the
long-term effects of training. By using the applied method, 71 metabolites were detected in the tested
urine samples. In Table S1 of the Supplementary Information, the metabolites detected by the applied
method are listed. The detected metabolites are mainly amino acids, nucleic acids, carboxylic acids,
carbohydrates, hormones, transmitters, vitamins, cofactors, and others. Figure 1 shows an overview of
the experiment, indicating the time point of blood and urine samples collection.
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Figure 1. The groups of rats, the training duration and the sample collection time points are 
illustrated. Urine samples collected at seven sampling time points and one acute training point are 
marked in yellow. Blood samples collected at two sampling time points are marked in red. A: 
sedentary group, B: life-long exercise group, trained from 5 to 21 months of age, C: exercise group trained from 
5 to 15 months of age, D: exercise group trained from 15 to 21 months of age.  

Looking into the profiling data, it could be seen that the effect of exercise does not seem so 
pronounced at the first time point. When the following time points were examined, a much clearer 
effect could be seen. The OPLS-DA model for the data of time point 2, corresponding to two months 

Figure 1. The groups of rats, the training duration and the sample collection time points are illustrated.
Urine samples collected at seven sampling time points and one acute training point are marked in
yellow. Blood samples collected at two sampling time points are marked in red. A: sedentary group,
B: life-long exercise group, trained from 5 to 21 months of age, C: exercise group trained from 5 to 15 months of
age, D: exercise group trained from 15 to 21 months of age.

Looking into the profiling data, it could be seen that the effect of exercise does not seem so
pronounced at the first time point. When the following time points were examined, a much clearer
effect could be seen. The OPLS-DA model for the data of time point 2, corresponding to two months
of exercise, exhibited separation of the exercise group B from the sedentary group A, however, the
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permutation plot showed that this distinction is not statistically strong. Additionally, univariate
statistical analysis by t-test failed to give statistically significant alterations for the analyzed metabolites.
On the contrary, when the consecutive sampling points were examined, strong trends could be found.
At sampling points 3 and 4, exercise could reveal statistically significant differentiators by multivariate
and univariate statistical analysis, whereas after six months of training (time point 5), the effect
was even more pronounced. The permutation plot and the p-value of CV-ANOVA (ANOVA of the
Cross-Validated residuals) of the OPLS-DA model indicated a strong differentiation between groups A
and B. The OPLS-DA scores plot for the fifth sampling time point can be seen in the Supplementary
information, Figure S1. At this point, it should be noted that at sampling time point 3, rats swam with a
maximum load in their tails, while at sampling time point 5, rats swam weightlessly. It can be assumed
that the longer period of training had a higher impact in urinary metabolic profiles in comparison to
the intensity of the exercise. Similar findings were observed in our previous analysis on fecal metabolic
profiles of the same study groups [43]. Regarding the time points 6 and 7, corresponding to 10 and
16 months of training respectively, again the effect of exercise was clearly demonstrated. OPLS-DA
scores plots for the last sampling time point (seventh) is given in the Supplementary information,
Figure S2. In Figure 2, the scores plot for five selected time points after 2, 3, 6, 10 and 16 months of
training is given. This shows the clustering of trained rats’ urine samples, apart from the urine samples
of sedentary rats. It can be observed that the two groups, A and B, show superior separation after
6 months of training.

Metabolites 2017, 7, 10 3 of 15 

 

of exercise, exhibited separation of the exercise group B from the sedentary group A, however, the 
permutation plot showed that this distinction is not statistically strong. Additionally, univariate 
statistical analysis by t-test failed to give statistically significant alterations for the analyzed 
metabolites. On the contrary, when the consecutive sampling points were examined, strong trends 
could be found. At sampling points 3 and 4, exercise could reveal statistically significant differentiators 
by multivariate and univariate statistical analysis, whereas after six months of training (time point 5), 
the effect was even more pronounced. The permutation plot and the p-value of CV-ANOVA (ANOVA 
of the Cross-Validated residuals) of the OPLS-DA model indicated a strong differentiation between 
groups A and B. The OPLS-DA scores plot for the fifth sampling time point can be seen in the 
Supplementary information, Figure S1. At this point, it should be noted that at sampling time point 3, 
rats swam with a maximum load in their tails, while at sampling time point 5, rats swam weightlessly. 
It can be assumed that the longer period of training had a higher impact in urinary metabolic profiles 
in comparison to the intensity of the exercise. Similar findings were observed in our previous analysis 
on fecal metabolic profiles of the same study groups [43]. Regarding the time points 6 and 7, 
corresponding to 10 and 16 months of training respectively, again the effect of exercise was clearly 
demonstrated. OPLS-DA scores plots for the last sampling time point (seventh) is given in the 
Supplementary information, Figure S2. In Figure 2, the scores plot for five selected time points after 2, 
3, 6, 10 and 16 months of training is given. This shows the clustering of trained rats’ urine samples, 
apart from the urine samples of sedentary rats. It can be observed that the two groups, A and B, show 
superior separation after 6 months of training. 
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Based on univariate and multivariate statistical analysis, the metabolites that were found to 
differentiate between groups A and B after 6 months swimming are alpha-hydroxyisobutyric acid, 
2-hydroxy-3-methylbutyric acid, 3-methylhistidine, acetylcarnitine, arabinose, biotin, cotinine, 
creatinine, cytidine, glutamine, hypoxanthine, myoinositol, methionine, methylamine, pantothenic 
acid, threonine, gamma-aminobutyric acid and leucine listed in descending order of VIP (variable 
importance in projection) value. The AUC (the area under receiver operating characteristic curves) 
values for the above metabolites were ranged from 0.591 to 0.656. 

Figure 2. A three-dimensional PLS-DA scores plot of rat urine samples of life-long exercise group B
(red colored) and sedentary group A (blue colored) projected in time for five sampling time points,
namely 2,3,5,6 and 7 (from down to up), corresponding to 2,3,6,10 and 16 months of training. The Z axis
shows the rat age in months while the horizontal axes show t1 vs. t2 and describe the sample variability
where the exercise effect is shown.

Based on univariate and multivariate statistical analysis, the metabolites that were found
to differentiate between groups A and B after 6 months swimming are alpha-hydroxyisobutyric
acid, 2-hydroxy-3-methylbutyric acid, 3-methylhistidine, acetylcarnitine, arabinose, biotin, cotinine,
creatinine, cytidine, glutamine, hypoxanthine, myoinositol, methionine, methylamine, pantothenic
acid, threonine, gamma-aminobutyric acid and leucine listed in descending order of VIP (variable
importance in projection) value. The AUC (the area under receiver operating characteristic curves)
values for the above metabolites were ranged from 0.591 to 0.656.

The same 18 metabolites were also found to have discriminatory value in the last sampling time
point (16 months of training) together with four more metabolites, asparagine, N-acetylaspartic acid,
xylose, sucrose and riboflavin.
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For better data interpretation, further univariate statistical evaluation was realized on the common
compounds that were changed along all sampling time points. In Figure 3, examples of two metabolites
which are shown to differentiate with exercise are provided with their trend along aging. It was found
that glutamine and acetylcarnitine showed higher response in the samples derived from trained
rats in comparison to those derived from sedentary rats, while the opposite happens for creatinine.
A descending trend is also observed in other metabolites along aging.
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Figure 3. Average of peak areas of rat urine samples of exercise group B (green colored) and sedentary
group A (blue colored) at six sampling time points. (a) Glutamine; (b) Acetylcarnitine.

To conclude, exercise-differentiated compounds appear to be related to amino acids’ metabolism.
In detail, biochemical pathways of valine-leucine-isoleucine, alanine-aspartic-glutamic acid,
cysteine-methionine were most likely affected by swimming. In addition, other compounds, well
associated to exercise, such as hypoxanthine and acetylcarnitine were evidenced in potential changes
in purines’ catabolism and lipids’ oxidation. Hypoxanthine, along with other purine metabolisms’
derivatives, is a valuable marker of the effectiveness of training [35]. The mild exercise protocol that
was adopted, simulated physical activity. Thus, the acceleration of purines’ degradation as precursors
of uric acid possibly happened, but not at the same intensity as in vigorous exercise protocols [44].
Furthermore, hypoxanthine, may be altered in the presence of unchanged xanthine and uric acid,
caused by the depletion of the enzymatic pathway, of xanthine-oxidase activity or by the inhibition
process [45].

Furthermore, when groups B and C, which represent the life-long exercise animals and those
which were trained for a long period of their life and then quit (no training for the last six months), are
examined, no differences could be detected in their urinary metabolic profiles. This finding suggests
that the impact of continuous training has a profound metabolic effect which remains even after
a period of 6 months in rats.

Furthermore, no differentiation could be seen when group D (training for a 6 month period in
the latter stage of their life) was compared with the group of sedentary rats at time point 7. It seems
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that rats that have never been trained had similar urine metabolic profiles with rats that were trained
only for the last six months, suggesting that the initiation of exercise in older rats was not found to
influence the specific set of metabolites monitored by the applied method. It should be noted that the
exercise protocol of group B and D in the last 3 months was of lower intensity (i.e., only 2times per
week and weightlessly), adapted with animals aging.

2.2. Acute Training Effect on Urine Metabolome

To study the acute training effect in urine, samples collected from the same animals belonging to
group C at their fifth month of age (Figure 1), right before and after an acute training session, were
also analyzed (n = 22, ni = 11 prior, nj = 11 post).

There was a clear effect of exercise in the urinary metabolites post-training. The differentiation
could be described by a PCA model (shown in the Supplementary information, Figure S3), but it is
even more clear in the OPLS-DA scores plot of Figure 4, where the inset permutation plot confirms the
reliability of the constructed model. In Table 1, VIP scores and p-values of the compounds found to be
responsible for differentiation between pre- and post-acute exercise groups are presented. The AUC
values for the differentiated metabolites were ranged from 0.545 to 0.842.
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Table 1. Metabolites found to be responsible for the differentiation of rat urine samples, pre- and
post-acute exercise session in both multivariate and univariate statistical approaches. VIP scores and
p-values of each metabolite, sorted in descending VIP score order, are presented.

Significant Metabolites VIP Score p-Value

Thiamine 2.096 0.001
Adenosine 2.035 0.005
Putrescine 1.985 0.034
Adenine 1.950 0.005
Inosine 1.860 0.015

Acetylcarnitine 1.779 0.011
Niacinamide 1.723 0.016

3-(4-Hydroxyphenyl)lactate 1.572 0.045
Tryptamine 1.556 0.038

3-Methylhistidine 1.470 0.023
Glutamic acid 1.402 0.045

Creatine 1.384 0.048

It can be seen that the significant metabolites are not exactly the same as in long-term exercise.
Metabolite alterations derived from acute exercise shared differences from those derived from
long-term exercise adaptations.

Careful examination of the differentiated compounds indicates the biochemical pathways in which
these are involved. The metabolic pathway of purines and of arginine-proline, thiamine, nicotinic
acid-nicotinamide, appear to be involved in greater scale, following the “pathway analysis” using
Metaboanalyst 3.0 [46]. The contribution of the pathways is only a first glance of examining the
obtained data. The compounds found to differentiate in pre- and post-exercise rat urine samples, were
further examined for each rat individually. It was found that inosine, niacinamide, putrescine and
thiamine showed the greatest fold change (%).

Thiamine plays an important role in metabolism as it is a coenzyme of several key enzymes
such as pyruvate, oxoglutarate and branched-chain dehydrogenase. Physical activity can alter the
related pathways and thiamine requirements are associated to energy demand [47]. Other post-exercise
changes also included increase of nicotinamide due to the conducted enhancement of intracellular
respiration in order to reproduce high energy compounds. Tryptophan-related metabolic pathways
are well associated with the previous finding and with the increase of insulin release [22,48,49].

2.3. Impact of Aging

As our study was longitudinal (over a period of 21 months), changes in the urinary metabolite
profiles due to aging are expected to be pronounced. The effect of exercise was studied independently
at various sampling points, by comparing animals of the same age. However, when we aimed
to investigate the effect of training as a general aspect over aging, all sampling points across the
experiment were considered.

In Figure 5, the OPLS scores plot of sedentary and life-long training rats’ urine samples from
four sampling time points, corresponding to 5, 8, 15, 21 months of rat age, can be seen. Based on
the constructed models, it can be concluded that aging overrules differences due to exercise as these
are expressed in the metabolic phenotype described in the first two principal components. Models
comparing sedentary and exercise groups at specific sampling time points separated the groups
(Figure 2). In contrast, models examining the separation between the two groups along with aging
demonstrated lower statistical significance. A similar finding was observed on rat fecal metabolome,
where age was found to be the strongest metabolome alteration factor [43].

The comparison of life-long exercise rat (group B) samples between the first and the last sampling
time points clearly proved the aging effect on rat urine metabolome (Figure S4). The respective
comparison was made for the sedentary rats (group A), providing similar separation (Figure S5). Based
on the two PCA models which exhibited similar separation of young and elderly rats’ samples, it can
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be concluded that the impact of aging in urine metabolome is distinct and that exercise does not seem
to invert it.

In the case of group B, 35 metabolites were found to be responsible for the separation, while
for group A, the respective number was 29 (22 in common). These included mainly amino acids,
carbohydrates and other intermediate products of metabolism. From the metabolites that were found
to be altered due to aging (2-hydroxy-3-methylbutyric acid, arabinose, betaine, choline, cotinine,
creatinine, γ-aminobutyric acid, glucose, histamine, myoinositol, kynurenic acid, leucine, methionine,
methylamine, valine, pantothenic acid, sarcosine, thiamine, threonine, uridine, xylitol, xylose) ten were
also affected by exercise.
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In Table S2, the metabolites affected by both factors (aging and exercise) are provided together
with their fold change (%). The fold change of column “aging” was estimated for samples from group
A, in the fifth and 21st month of age (sampling time points 1 and 7 respectively); while for column
“exercise” the estimation was for life-long exercise and sedentary rats in time point 7. The majority of
the metabolites show a decrease with aging while they increase with exercise.

2.4. Effect of Training on Blood Metabolome

In vivo rat blood collection proved challenging. Current practices were tested and different
degrees of hemolysis were observed leading to dissimilar blood samples. Thus, whole blood was
preferred as a sample to conduct our study.

Overall 45 metabolites were identified in rat blood samples by the applied method (Table S3).
In total, 109 rat whole blood samples from two sampling time points were analyzed. Samples which
were collected at the age of 8 and 21 months, corresponding to 3 and 16 months of training respectively,
were analyzed and compared.

It was expected that, due to homeostasis mechanisms, endogenous metabolites alterations by
exercise would be less pronounced in blood compared to the effect found in urine. Nevertheless,
training had a noticeable effect on the levels of blood metabolites in both time points, demonstrating
that whole blood can serve as a reliable type of sample to assess exercise effect, although urine samples
are generally preferred for such studies [31].

In Figure 6a,b, the OPLS-DA scores plots of rat blood samples of life-long exercise group B
and sedentary group A in both studied time points are presented. At the first sampling time
point, corresponding to 3 months of rat exercise, 11 compounds (AUC values, 0.621–0.794) were
found to be altered (alanine, aspartic acid, choline, glucose, glutamic acid, leucine, methylamine,
proline, thymidine, trimethylamine, trimethylamine N-oxide) while at the second sampling time
point, corresponding to 16 months of exercise, 19 metabolites (AUC values, 0.644–0.833) were altered
(3-methylhistidine, acetylcarnitine, betaine, citric acid, citrulline, creatine, creatinine, cytosine, glucose,
glutamic acid, glutamine, histidine, leucine, methylamine, niacinamide, ornithine, proline, pyruvic
acid, tryptophan), based on both univariate and multivariate statistical approaches. Only five of
them (glucose, glutamic acid, leucine, methylamine and proline) were common for both examined
time points.
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were collected at the age of 8 and 21 months, corresponding to 3 and 16 months of training 
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It was expected that, due to homeostasis mechanisms, endogenous metabolites alterations by 
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training had a noticeable effect on the levels of blood metabolites in both time points, demonstrating 
that whole blood can serve as a reliable type of sample to assess exercise effect, although urine 
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In Figure 6a,b, the OPLS-DA scores plots of rat blood samples of life-long exercise group B and 
sedentary group A in both studied time points are presented. At the first sampling time point, 
corresponding to 3 months of rat exercise, 11 compounds (AUC values, 0.621–0.794) were found to 
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corresponding to 16 months of exercise, 19 metabolites (AUC values, 0.644–0.833) were altered 
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pyruvic acid, tryptophan), based on both univariate and multivariate statistical approaches. Only 
five of them (glucose, glutamic acid, leucine, methylamine and proline) were common for both 
examined time points.  

Long-term exercise (for 16 months) affected blood metabolites at a greater scale. It is obvious 
that the training duration had a stronger influence than the intensity, as rats at the first sampling 
time point were trained with the maximum attached load. Changed metabolites were mainly 
associated with amino acids’, Krebs cycle’s, and pyruvate’s metabolism, which constitute hallmarks 
of the effect of exercise on the metabolome.  

 

Figure 6. Cont.



Metabolites 2017, 7, 10 9 of 15

Metabolites 2017, 7, 10 9 of 15 

 

 
(a)

 

 
(b)

Figure 6. (a) OPLS-DA scores plot of rat whole blood samples of sedentary group A (blue) and 
exercise group B (green) at the first sampling time point. The permutation plot demonstrates a 
statistically significantly model; (b) OPLS-DA scores plot of rat whole blood samples of sedentary 
group A (blue) and exercise group B (green) at the second sampling time point. The permutation plot 
demonstrates a statistically significantly model. 

Rat blood samples were also examined in order to explore the impact of aging. Comparing 
either life-long exercise groups (Figure S6) or sedentary groups (Figure S7) between the two 
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Figure 6. (a) OPLS-DA scores plot of rat whole blood samples of sedentary group A (blue) and exercise
group B (green) at the first sampling time point. The permutation plot demonstrates a statistically
significantly model; (b) OPLS-DA scores plot of rat whole blood samples of sedentary group A (blue)
and exercise group B (green) at the second sampling time point. The permutation plot demonstrates
a statistically significantly model.
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Long-term exercise (for 16 months) affected blood metabolites at a greater scale. It is obvious that
the training duration had a stronger influence than the intensity, as rats at the first sampling time point
were trained with the maximum attached load. Changed metabolites were mainly associated with
amino acids’, Krebs cycle’s, and pyruvate’s metabolism, which constitute hallmarks of the effect of
exercise on the metabolome.

Rat blood samples were also examined in order to explore the impact of aging. Comparing either
life-long exercise groups (Figure S6) or sedentary groups (Figure S7) between the two sampling time
points, a clear effect of aging is observed. However, it can be seen that the separation is slightly
inferior in the case of training rats which could be attributed to metabolic alterations due to exercise.
Concerning the altered metabolites, 16 metabolites showed significant change in training rats and
23 metabolites showed significant change in sedentary rats. From these, 12 metabolites (aspartic
acid, creatinine, cytidine, cytosine, glutamine, glycine, histidine, methionine, proline, thymidine,
trimethylamine, trimethylamine N-oxide) were common in the two groups. Amino acids’ metabolic
pathways, such as alanine, aspartate and glutamate’s pathway; glycine, serine and threonine’s pathway;
arginine and proline’s pathway; cysteine and methionine’s pathway; and histidine’s pathway appeared
to be related along with pyrimidine’s metabolism pathway.

3. Experimental

3.1. Samples

Urine and whole blood samples were collected from female Wistar rats, under the frame of an
animal experiment performed in the animals’ facilities of Veterinary Medicine School of Aristotle
University of Thessaloniki for a period of 17 months in accordance to the Helsinki Declaration and
National standards (Permission code EL54BIO10). The rats’ initial population was 60, but there
were small losses (three individuals) at the beginning of the experimentation. In the last month,
the population was further diminished, due to physiological aging. Housing of the rats was under
a regulated light/dark cycle of 12 h, in controlled temperature and humidity conditions. Female rats
were preferred in accordance to international guidelines, enhancing female gender in experimental
practices (US Department of Health & Human Services, NIH, Bethesda, MD, USA) and because aging
related disorders such as frailty have been reported as being more evident in female mammals.

The study comprised three groups of animals, performing training for a short or a long period
of time, and a control sedentary group. The training protocol was mild in order to simulate physical
activity, since swimming is part of rats’ natural behavior [50].

Training included 15–18 min of swimming every day, 2–5 days per week, with a load of 4% to 0%
of their body weight attached to rats’ tails.

Duration and intensity of training was adapted as the animals were aging from 5 months to
21 months, when they were sacrificed. Sedentary rats also came into contact with water, in order
to avoid differentiations of the exercise rats due to the contact with the water. More details on the
experimental protocol are provided in Deda et al., 2017 [43]. The groups of animals and the period
of training are graphically described in Figure 1. Urine samples were collected at seven time points
and blood samples were collected at two time points (shown in Figure 1). An additional set of urine
samples was collected pre- and post-acute exercise session (the first day of the adopted protocol,
after the mild acclimatization period of one week), (Figure 1). Urine samples were collected from the
animals, strictly at a specific time of the day. All rats were fed ad libitum with standard chow and
they were allowed to have free access to water. Body weight and food consumption were regularly
monitored, and results were given in previous work (Supplementary Figure S1a,b, [43]).

For urine collection, each rat was put onto a glass surface until urinating. The sample was
directly collected by a pipette into eppendorf tubes and stored at −80 ◦C. For blood collection, rats
were restrained into a transparent plexiglass tube specially prepared for this purpose and blood was
collected from the lateral vein of the tail, using a very thin needle (23 G). This procedure is considered
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as mild and is well established in rat experimental procedures. Following bio-ethical guidelines,
approximately 80 µL was collected from each rat in every collection sample time point. Directly after
blood collection, a three-fold volume of methanol was added with high precision into the samples,
in order to precipitate proteins. The mixtures were centrifuged for 10 min in 18,000× g at 4 ◦C and the
clear supernatants were stored at −80 ◦C. Receiving this bio-fluid ensured that all samples were of the
same quality, minimizing variations due to differences in hemolytic degree.

3.2. Sample Preparation and Analysis

In the 20 µL urine sample, 60 µL of ice-cold acetonitrile was added; the mixture was centrifuged
for 15 min (18,000× g) and the clear supernatants were inserted in LC-MS vials and immediately
subjected to analysis. The protein-precipitated blood extracts were centrifuged for 25 min (18,000× g)
after thawing and 60 µL of them was inserted in LC-MS vials for analysis.

All samples were subjected to a targeted metabolomics analysis by an in-house HILIC-MS/MS
method previously described in other publications of our group [43,51,52]. With the applied method,
113 metabolites are detectable with a high level of confidence in the metabolites’ identification. QC
(Quality Control) samples were used in both rat urine and whole blood analysis to evaluate the
precision of the analytic system [53–56].

3.3. Data Analysis

Data obtained from the LC-MS analysis were reprocessed using MassLynx® (Waters, Milford,
MA, USA) and TargetLynx® (v4.1) software. The evaluation of the results was realized using Microsoft
excel for univariate statistical analysis and SIMCA 13.0 (Umetrics, Malmö, Sweden) for multivariate
statistical analysis based on peak areas data of the detected metabolites. Peak areas were not normalized
and univariate scaling was applied for the construction of models. The validity of constructed models
was evaluated using permutation plots (300 random permutations) and the value of CV ANOVA.
Statistically significant compounds were also evaluated using ROC (Receiver Operating Characteristic)
curve analysis. The AUC (area under the curve) of the ROC curve is given as an indicator of the
accuracy of the separation of significant compounds.

The online tools MetaboAnalyst 3.0 (Montréal, QC, Canada) [46], KEGG PATHWAY Database
(Kyoto, Japan) [57] were used in order to investigate the related biochemical pathways and to illustrate
their connection.

4. Conclusions

The effect of exercise was demonstrated in the metabolome of rats’ urine and whole blood.
The impact of exercise was observed at all examined sampling time points, but a higher impact of
exercise was mainly observed as the length of the training period was increased. Long-term training
could leave marks on urine metabolites, which may remain even after a period of 6 months, as has been
shown in our results. Long-term exercise brings adaptations in related organs and can change glucose
metabolism and enhance lipolysis even at rest, as Monleon et al. [28] concluded in their 18 months
training study on a rat model. Based on our results, exercise altered amino acids-related pathways,
purine’s degradation and acetylcarnitine which is a key metabolite in lipid oxidation.

In the acute session, exercise profoundly changed adenine, adenosine and glutamic acid, based
on individual rat data evaluation. Huang et al. [25], who investigated rats in exhaustive and
endurance exercise, concluded that there were alterations on amino acids, fatty acids, organic acids,
and carbohydrates in rat liver metabolic profiles. Liver amino acids and Krebs cycle metabolites were
also found to be altered in mice trained with maximal aerobic capacity [27].

Urine samples are considered to be a more suitable substrate in order to study exercise effect [31].
Our study proved that rats’ whole samples could be an equally reliable matrix for the investigation of
exercise metabolic perturbations. Whole blood samples present the advantages that normalization
could be avoided and also that the existence of high concentrated metabolites does not suppress the
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lower ones. Normalization is needed more in the analysis of urine samples, as differences in renal
function and contained water could be reflected in the urine metabolic profiles [31]. In our studies, we
avoid normalization, in order to keep pure biological responses.

As far as the aging process is concerned, aging proved to be a stronger modifier in the analysed
biofluid (urine and blood). The holistic changes that derived from the aging process influenced the
majority of biochemical pathways reflected in rat metabolome.

In both urine and whole blood samples, aging managed to change more metabolites than exercise.
Further investigations are needed in order to decipher the changes in metabolites that are altered due
to long-term exercising against aging.

Supplementary Materials: The following are available online at www.mdpi.com/2218-1989/7/1/10/s1,
Figure S1: OPLS-DA scores plot of rat urine samples of sedentary group A (blue) and exercise group B (green) at
the fifth sampling time point. The inset permutation plot demonstrates a statistically significant model; Figure S2:
OPLS-DA scores plot of rat urine samples of sedentary group A (blue) and exercise group B (green) at the seventh
sampling time point. The inset permutation plot demonstrates a statistically significant model; Figure S3: PCA
scores plot of rat urine samples before (blue) and after (green) the acute exercise session; Figure S4: PCA scores plot
of life-long exercise rats (group B) of the first (blue colored) and last (green colored) sampling time point; Figure S5:
PCA scores plot of life-long sedentary rats (group A) of the first (blue colored) and last (green colored) sampling
time point; Table S1: Detected compounds found in analyzed urine samples using the applied HILIC-MS/MS
method; Table S2: The effect of both aging and exercise (% fold change) on 10 metabolites affected by both
exercise and aging; Table S3: Detected compounds found in analyzed whole blood samples using the applied
HILIC-MS/MS method.
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