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Abstract: Renal cell carcinoma (RCC) is a heterogeneous disease that is usually asymptomatic until
late in the disease. There is an urgent need for RCC specific biomarkers that may be exploited
clinically for diagnostic and prognostic purposes. Preoperative fasting urine and serum samples
were collected from patients with clinical renal masses and assessed with 1H NMR and GCMS
(gas chromatography-mass spectrometry) based metabolomics and multivariate statistical analysis.
Alterations in levels of glycolytic and tricarboxylic acid (TCA) cycle intermediates were detected
in RCC relative to benign masses. Orthogonal Partial Least Square Discriminant Analysis plots
discriminated between benign vs. pT1 (R2 = 0.46, Q2 = 0.28; AUC = 0.83), benign vs. pT3 (R2 = 0.58,
Q2 = 0.37; AUC = 0.87) for 1H NMR-analyzed serum and between benign vs. pT1 (R2 = 0.50, Q2 = 0.37;
AUC = 0.83), benign vs. pT3 (R2 = 0.72, Q2 = 0.68, AUC = 0.98) for urine samples. Separation was
observed between benign vs. pT3 (R2 = 0.63, Q2 = 0.48; AUC = 0.93), pT1 vs. pT3 (R2 = 0.70, Q2 = 0.54)
for GCMS-analyzed serum and between benign vs. pT3 (R2Y = 0.87; Q2 = 0.70; AUC = 0.98) for
urine samples. This pilot study suggests that urine and serum metabolomics may be useful in
differentiating benign renal tumors from RCC and for staging RCC.
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1. Introduction

Renal cell carcinoma (RCC) is a metabolic disease that accounts for 5% of all adult malignancies
and is the second most lethal urinary cancer after bladder. It is estimated that, in 2016, 62,700 new
cases and 14,240 deaths will be recorded in the United States [1,2]. Most renal masses are identified
incidentally by cross-sectional imaging, which cannot distinguish RCC from benign renal lesions.
Moreover, 20%–30% of small renal masses (SRMs) (<4cm) that are surgically removed are found to
be benign, and majority of the resected RCCs in this size range are low grade and thought to be
indolent [3]. Therefore, many of these masses are surgically removed or ablated without significant
benefit to patients, increasing morbidity and cost to the health care system that could be avoided if
accurate, non-invasive diagnosis were possible. Renal mass biopsy may be helpful but is prone to
sampling error and ultimately is invasive and associated with some morbidity [4]. Thus; there is no
non-invasive means of accurately diagnosing and risk stratifying renal masses.
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Altered metabolism is a well-established hallmark of cancer and is directly implicated in the
pathogenesis of RCC [5]. Mutations affecting hypoxia inducible factor (HIF), succinate dehydrogenase
and fumarate hydratase are known to alter cellular metabolism and contribute to cellular growth [6].
Perturbed glycolysis, TCA cycle, amino acid and fatty acid metabolism have been consistently reported
in metabolomics studies as the major metabolic alterations associated with the disease [7], and these
direct biochemical changes and the proximity of the renal mass to blood circulation and the urinary
collecting system suggest that metabolomics analysis of serum and urine may lead to a quantitative
metabolic signature that can distinguish between RCC and benign lesions.

In agreement with this notion, renal cell carcinoma metabolomics has already been applied to
tissue [8–10], serum [11,12], plasma [13] and urine [14,15] samples. These metabolomics studies were
aimed at distinguishing between RCC and disease-free controls and RCC biomarker discovery
is already underway. The translation of potential biomarkers from “bench-to-bedside” utility is also
vigorously pursued. In more recent studies, NMR analysis distinguished between RCC and controls while
demonstrating minimal impact of confounding factors on a 32-metabolite urinary signature [16]. Other
authors have identified a 7-metabolite cluster (alanine, creatine, choline, isoleucine, lactate, leucine,
and valine) in serum [11], alpha-ketoglutarate and quinolinate in urine [17] and alpha-tocopherol,
hippuric acid and myo-inositol in tissue [8], highlighting the diversity in metabolites detected in
different biological materials along with the convergence in the overall altered metabolic pathways.

NMR spectroscopy and chromatography-coupled mass spectrometry (MS) methodologies in
combination with multivariate statistical data analysis are currently the most widely employed
metabolomics platforms for detecting and measuring metabolites [18]. NMR spectroscopy is
directly related to Magnetic Resonance Imaging (MRI), but it identifies and quantitatively measures
the concentrations of various compounds [19,20]. Generally, NMR of biofluids is known for
its reproducibility, minimal sample preparation requirements and its non-destructive nature [21].
Gas chromatography involves the separation of volatile and semi-volatile compounds, which is
then coupled to a mass spectrometer where the metabolites are ionized and resolved per their
mass/charge ratio. Gas chromatography-mass spectrometry (GCMS) has a higher sensitivity than
NMR spectroscopy but not all features detected can be classified as metabolites. The information
obtained from these platforms is complementary [22,23]. Nonetheless, integrating data obtained from
complementary metabolomics methods has been shown to provide better model interpretability and
improved coverage of the metabolome [24].

In this work, we have applied 1H nuclear magnetic resonance (NMR) spectroscopy and gas
chromatography mass spectrometry (GCMS) based metabolomics analyses of serum and urine samples
with multivariate statistical analysis (individual and combined), in patients undergoing surgical
intervention for small renal masses (SRMs) to investigate if metabolic profiles could differentiate
between benign and malignant renal masses.

2. Results

2.1. Samples

Forty (40) malignant samples and thirteen (13) benign samples of serum and urine were assessed.
The malignant groups were stratified by pathological stage pT1 (n = 28), pT2 (n = 1), pT3 (n = 10) and
pT4 (n = 1). The clinicopathologic characteristics of the samples are outlined in Table 1.

Table 1. Clinicopathologic characteristics of 53 patients with renal masses undergoing metabolomics
analysis. RCC: Renal cell carcinoma. BMI: Body Mass Index.

Sample Group Number of Sample
(Urine and Serum)

Age at Surgery
Range (Years)

Mean Age
(Years)

Number
of Men

Number of
Women

Controls 13 39–69 53.67 9 4
All RCC 40 36–84 61.89 23 17
ccRCC 37 36–84 62.49 22 15
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Table 1. Cont.

Sample Group Number of Sample
(Urine and Serum)

Age at Surgery
Range (Years)

Mean Age
(Years)

Number
of Men

Number of
Women

Papillary 2 37–72 53.91 1 1
Unclassified 1 56 55.52 - 1

Stage I (T1a: 22; T1b: 6) 28 36–84 60.88 16 12
Stage II 1 46 45.52 1 -
Stage III 10 59–80 66.35 6 4
Stage IV 1 57 56.87 - 1
Smokers 20 50–84 62.91 14 6

Non-smokers 28 36–82 57.31 13 15
Unknown smoking status 5 62-69 65.30 4 1

BMI 19–25 13 39–84 61.02 4 9
BMI above 25 28 36–74 58.02 21 7
BMI unknown 12 45–80 63.94 7 5

2.2. 1H NMR Spectral Analysis of Serum and Urine Samples

For the experiments, 28, 10, 1, 1 and 13 spectra were obtained for the pT1, pT3, pT2, pT4 and
benign samples, respectively. Figure 1 shows characteristic NMR spectra of urine samples (A) benign,
(B) cancer; visually differential metabolites include increased 3-aminobutyrate, reduced citrate and
trimethylamine, reduced glycine and trigonelline in RCC relative to controls. In serum samples, visual
inspection of the spectra showed increased glucose, reduced citrate and 3-hydroxybutyrate levels in
RCC compared with controls (Supplementary Figure S1).
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Figure 1. Characteristic NMR spectra of urine samples obtained from (A) benign (control); and (B) 
RCC patients 0: 3-aminoisobutyrate, 1: fucose, 2: lactate, 3: threonine, 4: alanine, 5: citrate, 6: 
dimethylamine, 7: creatinine, 8: trimethylamine, 9: methanol, 10: 3-methylxanthine, 11: glycine 12: 
gluconate. 13: creatine, 14: creatinine, 15: trigonelline, *—deleted water region, 16: lactose, 17: urea, 
18: Hippurate, 19: formate, 20: trigonelline. 

  

Figure 1. Characteristic NMR spectra of urine samples obtained from (A) benign (control); and (B) RCC
patients 0: 3-aminoisobutyrate, 1: fucose, 2: lactate, 3: threonine, 4: alanine, 5: citrate, 6: dimethylamine,
7: creatinine, 8: trimethylamine, 9: methanol, 10: 3-methylxanthine, 11: glycine 12: gluconate. 13: creatine,
14: creatinine, 15: trigonelline, *—deleted water region, 16: lactose, 17: urea, 18: Hippurate, 19: formate,
20: trigonelline.
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2.3. Distinguishing between Benign and Cancerous Renal Masses in 1H NMR and GCMS Datasets

An average of 56 metabolites were identified and quantified in all serum samples and 70 urine
metabolites were detected by 1H NMR spectroscopy. The most differential serum metabolites
identified based on VIP values > 1 were considered significant. 1H NMR spectroscopy mostly
distinguished between benign renal lesions and malignant renal masses assigned pathological stage
pT1 with minimal overlap between the stages. However, the validation metrics were somewhat poor
(R2Y = 0.46; Q2 = 0.28; Figure 2A). Figure 1B also shows some overlap between benign renal lesions
and pT3 with improved metrics more typical of a biological system (R2Y = 0.58; Q2 = 0.37; Figure 2B).
Low Fuhrman grade (stages 1 and 2) were found to overlap with high Fuhrman grade (stages 3 and
4) (R2Y = 0.37; Q2 = 0.23 Figure 2C). Urine samples analyzed by 1H NMR and supervised OPLS-DA
(orthogonal partial least squares discriminant analysis) showed improved separation between benign
and malignant groups; while the separation between benign and pT1 (R2Y = 0.50; Q2 = 0.37; Figure 2D)
was somewhat reduced by overlap between groups and the same is true for the separation between
low Fuhrman grade (stage 1 and 2) and high Fuhrman grade (stage 3 and 4) (R2Y = 0.54; Q2 = 0.36
Figure 2F), benign samples were distinguished from pT3 with much better metrics (R2Y = 0.72;
Q2 = 0.68; Figure 2E).

Metabolites 2017, 7, 6 4 of 17 

 

2.3. Distinguishing between Benign and Cancerous Renal Masses in 1H NMR and GCMS Datasets 
An average of 56 metabolites were identified and quantified in all serum samples and 70 urine 

metabolites were detected by 1H NMR spectroscopy. The most differential serum metabolites 
identified based on VIP values > 1 were considered significant. 1H NMR spectroscopy mostly 
distinguished between benign renal lesions and malignant renal masses assigned pathological stage 
pT1 with minimal overlap between the stages. However, the validation metrics were somewhat poor 
(R2Y = 0.46; Q2 = 0.28; Figure 2A). Figure 1B also shows some overlap between benign renal lesions 
and pT3 with improved metrics more typical of a biological system (R2Y = 0.58; Q2 = 0.37; Figure 2B). 
Low Fuhrman grade (stages 1 and 2) were found to overlap with high Fuhrman grade (stages 3 and 
4) (R2Y = 0.37; Q2 = 0.23 Figure 2C). Urine samples analyzed by 1H NMR and supervised OPLS-DA 
(orthogonal partial least squares discriminant analysis) showed improved separation between benign 
and malignant groups; while the separation between benign and pT1 (R2Y = 0.50; Q2 = 0.37; Figure 
2D) was somewhat reduced by overlap between groups and the same is true for the separation 
between low Fuhrman grade (stage 1 and 2) and high Fuhrman grade (stage 3 and 4) (R2Y = 0.54; Q2 
= 0.36 Figure 2F), benign samples were distinguished from pT3 with much better metrics (R2Y = 0.72; 
Q2 = 0.68; Figure 2E). 

(A) (B) 

(C) 

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

P
LS

1

Number of Samples

B
T1

-3 SD

-2 SD

2 SD

3 SD

-6

-4

-2

0

2

4

6

0 2 4 6 8 10 12 14 16 18 20 22 24

P
L

S
1

Number of Samples

B
T3a

-3 SD

-2 SD

2 SD

3 SD

-4

-2

0

2

4

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

P
L

S
1

Number of Samples

FuhrmanL
FuhrmanH

-3 SD

-2 SD

2 SD

3 SD

Figure 2. Cont.



Metabolites 2017, 7, 6 5 of 17
Metabolites 2017, 7, 6 5 of 17 

 

(D) (E) 

(F) 

Figure 2. NMR orthogonal partial least squares discriminant analysis (OPLS-DA) models 
distinguishing between benign and cancer cases. OPLS-DA score scatter plots showing separation in 
the serum metabolic profile of (A) benign versus stage 1 cancer cases; (B) benign versus stage 3 cancer 
cases and (C) low grade (FuhrmanL–stages 1 and 2) versus High grade (FuhrmanH–stages 3 and 4) 
cancer; separation in urine metabolic profile (D) benign versus stage 1 cancer cases (E); benign versus 
stage 3 cancer cases (F); and low grade (FuhrmanL–stages 1 and 2) versus High grade (FuhrmanH–
stages 3 and 4) cancer along their orthogonal partial least squares (OPLS1) and partial least squares 
components (PLS1). 

Permutation tests were carried out to confirm the stability and robustness of the supervised 
OPLS-DA models presented in this study. Figure 3 shows (A) the scatter score plot and (B) 
permutation plot of the first model (B vs. pT1) with a Q2 intercept of −0.27, models with negative Q2 
intercept are more robust and confirm the stability of the models. 

-6

-4

-2

0

2

4

6

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

P
L

S
1

Number of Samples

B
T1

-3 SD

-2 SD

2 SD

3 SD

-6

-4

-2

0

2

4

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

P
L

S
1

Number of Samples

B
T3

-3 SD

-2 SD

2 SD

3 SD

-4

-2

0

2

4

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

P
LS

1

Number of Samples

FuhrmanL
FuhrmanH

-3 SD

-2 SD

2 SD

3 SD

Figure 2. NMR orthogonal partial least squares discriminant analysis (OPLS-DA) models distinguishing
between benign and cancer cases. OPLS-DA score scatter plots showing separation in the serum
metabolic profile of (A) benign versus stage 1 cancer cases; (B) benign versus stage 3 cancer cases
and (C) low grade (FuhrmanL–stages 1 and 2) versus High grade (FuhrmanH–stages 3 and 4) cancer;
separation in urine metabolic profile (D) benign versus stage 1 cancer cases (E); benign versus stage 3
cancer cases (F); and low grade (FuhrmanL–stages 1 and 2) versus High grade (FuhrmanH–stages 3 and 4)
cancer along their orthogonal partial least squares (OPLS1) and partial least squares components (PLS1).

Permutation tests were carried out to confirm the stability and robustness of the supervised
OPLS-DA models presented in this study. Figure 3 shows (A) the scatter score plot and (B) permutation
plot of the first model (B vs. pT1) with a Q2 intercept of −0.27, models with negative Q2 intercept are
more robust and confirm the stability of the models.
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Figure 3. OPLS-DA model differentiating benign (B) from stage 1 (pT1) patients; (A) scores scatter plot;
and (B) permutation plot from 999 permutation tests with Q2 intercept of −0.27 (the more negative the
Q2 intercept, the more valid the model).

There were 102 metabolic features detected in the serum profile analyzed by GCMS and up to 200
in urine samples. Only 52 serum features and 58 urine features were identified as known metabolites.
After data reduction by relative standard deviation (RSD), metabolites with RSD < 50% were subjected
to OPLS-DA analysis. Serum metabolites with VIP values > 1 were considered significant. OPLS-DA
distinguished patients with benign renal lesions from those with renal masses assigned pT3 (R2Y = 0.63;
Q2 = 0.48; Figure 4A). Furthermore, patients with pT1 disease were separated from those with more
advanced RCC pT3 (R2Y = 0.70; Q2 = 0.54; Figure 4B) with minimal overlap between the groups.
Figure 4D shows that in GCMS analyzed urine samples, patients with benign renal lesions could be
distinctively distinguished from those with pT3 disease (R2Y = 0.87; Q2 = 0.70). Figure 4C,E shows
separation between low Fuhrman grade cancer (1 and 2) and high Fuhrman grade cancer (3 and 4) in
serum (R2Y = 0.60; Q2 = 0.47) and between benign and high Fuhrman grade urine samples (R2Y = 0.84;
Q2 = 0.62), respectively.
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Figure 4. GCMS orthogonal partial least squares discriminant analysis (OPLS-DA) models
distinguishing between benign and cancer cases. OPLS-DA score scatter plots showing separation in
the serum metabolic profile of (A) stage 1 versus stage 3 cancer cases; (B) benign versus stage 3 cancer
cases; (C) low grade (FuhrmanL–stages 1 and 2) versus High grade (FuhrmanH–stages 3 and 4) cancer
along their orthogonal partial least squares (OPLS1) and partial least squares components (PLS1);
(D) OPLS-DA score scatter plots depicting the urine metabolic signature distinguishing benign subjects
from stage 3; and (E) benign cases from high grade (FuhrmanH–stages 3 and 4), (ellipsoid: Hotelling’s
T2, 95% confidence interval).

2.4. Integrative 1H NMR and GCMS Data Analysis

The combined dataset consists of 141 serum and 286 urine metabolites/metabolic features,
16 of which are common to both analytic platforms for serum and urine alike. In serum, 58 and 83
metabolites/metabolic features were contributed by 1H NMR and GCMS, respectively. Urine, however,
had many more metabolites/metabolic features—62 and 224 from NMR and GCMS, respectively.
For metabolites that were quantified using both NMR and GCMS platforms, including glutamate,
pyruvate, lactate and citrate, the stage-wise trends were consistent. Table 2 shows the statistical metrics
and permutation results of all OPLS-DA models, and the more negative the Q2 intercept, the better
the validity of the model. The integrated serum OPLS-DA (Supplementary Figure S2A) distinguished
patients with benign renal lesions from those with pT1 disease (R2Y = 0.53; Q2 = 0.28). Furthermore,
benign patients were distinctively separated from those with renal masses assigned pT3 (R2Y = 0.51;
Q2 = 0.40) S2 B. The integrated urine OPLS-DA, showed better separation between benign renal lesions
and pT1 disease and between benign and pT3 disease than OPLS-DA models of individually analyzed
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NMR and GCMS observed (R2Y = 0.94; Q2 = 0.58; R2Y = 0.92; Q2 = 0.73, respectively (Supplementary
Figure S2C,D)).

Table 2. Statistical metrics of individually analyzed and Integrated NMR and GCMS orthogonal partial
least squares discriminant analysis (OPLS-DA) models (B = Benign).

Model Type R2 Q2 CV Anova p-Value Q2 Intercept

NMR serum

B vs. pT1 0.46 0.28 3. 4 × 10−3 −0.27
B vs. pT3 0.58 0.37 1.6 × 10−2 −0.32

FuhrmanL vs. FuhrmanH 0.37 0.23 8.7 × 10−3 −0.24

NMR urine

B vs. pT1 0.50 0.37 4.9 × 10−4 −0.28
B vs. pT3 0.72 0.68 2.6 × 10−5 −0.41

FuhrmanL vs. FuhrmanH 0.54 0.36 8.6 × 10−4 −0.29

GCMS serum

B vs. pT1 0.63 0.48 3.2 × 10−3 −0.28
pT1 vs. pT3 0.70 0.54 4.1 × 10−5 −0.45

FuhrmanL vs. FuhrmanH 0.60 0.47 1.0 × 10−5 −0.26

GCMS urine

B vs. pT3 0.87 0.70 3.4 × 10−4 −0.43
B vs. FuhrmanH 0.84 0.62 1.1 × 10−3 −0.46

2.5. Differential Metabolites

Differential metabolites distinguished benign from cancerous cases and between stages of R
CC as identified by the metabolomics platforms used (Table 3). The group of metabolites found to
be differential in serum varied considerably from those detected in urine based on individual and
integrated data analysis. Nonetheless, glycolytic and TCA cycle intermediates, amino acids and their
derivatives were the most significant metabolites identified as potentially useful variables. In serum
and urine samples, pyruvate and lactate differentially increased in cancerous cases compared to benign
cases, while levels of succinate and citrate were reduced. Glutamate levels differentially increased in
both biofluids while glutamine reduced in serum. Threonine and taurine levels depleted in cancer
compared to benign, while increased trigonelline, tryptophan, and isoleucine levels were seen in
malignancy compared to benign states. The levels of urinary glycine, creatinine and phenylalanine
dropped in response to cancer development.

Urine and serum samples were further analyzed for their lipid content and association with
disease using GCMS. There were no significant fatty acids detected in urine samples. However,
several significant fatty acids were found in serum (Supplementary Table S1). Regression coefficient
of variation plots (Supplementary Figure S4 and S5) were calculated for all of the NMR and GCMS
models presented to show the most differential metabolites between the groups compared and potential
biomarkers of interest.
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Table 3. Differential metabolites linked to cancer in 1H NMR and GCMS analysis of serum and urine (significant metabolites are shown with p < 0.05).

Metabolomics Platform Decrease in Cancer vs. Benign Increase in Cancer vs. Benign

Serum p-Value (<0.05) Urine p-Value (<0.05) Serum p-Value (<0.05) Urine p-Value (<0.05)

1H NMR Metabolites

Citrate Citrate 0.039 2-oxoisocaproate Pyruvate 0.040
Methanol Succinate 0.004 Lactate 0.049

Threonine Glycine Glycine 0.047 Creatine Oxypurinol

Histidine Taurine 3-hydroxybutyrate Creatinine Isoleucine 0.041 Gluconate
Hypoxanthine

Glutamine 2-aminoisobutyrate 0.008 Glutamate 0.003 Malonate
Phenylalanine 0.025 Ornithine 0.048 Betaine

Tryptophan
Methylhistidine 0.017 Trigonelline

Dimethylamine

GCMS Metabolites

5-methylcytosine 0.049 Acetate Threonine Glutamate
Tyrosine Glucose 0.001

Eicosanoate 0.003 Gluconate Octadecanoate Erythritol 0.011
Thymine Galactose 0.030 2-oxoglutarate 0.032
Mannitol Pyruvate 0.018 Myo-inositol 0.040

Citrate Lactate 0.018
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2.6. Internal Validation and AUC

Receiver Operating Characteristic (ROC)curves were constructed for all GCMS and NMR models
using Metz-ROC (University of Chicago, Chicago, IL, USA) (Supplementary Figure S3.) except for the
pT1 versus pT3 GCMS model, which comprise of two diseased groups. The serum and urine GCMS
models had AUC values of 0.93 and 0.98, respectively, and AUC values for NMR models ranged from
0.83 to 0.98.

3. Discussion

Most patients with RCC are diagnosed incidentally and metabolomics presents a platform that
may potentially allow for a non-invasive means to discriminate between benign and malignant
lesions [25]. In general, metabolomics relies on a “biopattern” representing a set of metabolites that
is influenced by the disease in a specific and coordinated manner rather than a single metabolite.
This comprehensive approach can be achieved by combining data obtained through complementary
analytical platforms, such as 1H NMR spectroscopy and various forms of mass spectrometry, e.g.,
GCMS or LC-MS.

In this study, we have evaluated the feasibility of serum and urine metabolomics for identifying
malignant renal masses and distinguishing stages of RCC. Overall, we found that NMR and GCMS
coupled with multivariate statistical analysis (OPLS-DA) can distinguish between malignant and
benign renal masses with up to 98% specificity and sensitivity. We also found that integrating NMR and
GCMS datasets revealed better discriminatory power and higher predictive ability. The discriminatory
power of GCMS and multivariate statistical analysis and their application to RCC urine analysis has
been demonstrated in other studies as well [26].

Our study gives a comprehensive overview of the metabolic signature of RCC biofluids. It is well
known that RCC features a metabolic shift towards aerobic glycolysis (Warburg effect) [27,28], and this
is mirrored in our study by decreased levels of Krebs’s cycle intermediates: citrate and succinate
and increased levels of glycolytic products; pyruvate and lactate in RCC samples relative to controls.
While some studies have obtained similar results with comparison between healthy controls and RCC
samples [8,9,13], our novel findings demonstrate interesting metabolic differences between benign and
cancer cases.

Lactate levels particularly increased significantly in these studies [9,29], this may be indicative
of increased glycolytic activity and inefficient production of ATP via glucose shunt to lactate rather
than through the TCA cycle. This characteristic inadvertently results in decreased levels of TCA cycle
intermediates: citrate and succinate. Deregulation of these metabolites is common in other types of
cancer [30,31] and has previously been reported in RCC [10,32]. A truncated Kreb’s cycle seems to
be a metabolic feature that is associated with metabolic derangement even in non-malignant type 2
diabetes cases [33].

Given that 70%–90% of clear cell RCC cases (the majority histology type in this study) are found
to be associated with loss of the von Hippel Lindau (VHL) gene, and, consequently, an activation of
HIF, the resulting metabolic profile is to be expected [34]. Specifically, the role of HIF in the regulation
of cellular glucose flux and shunting of pyruvate from the TCA cycle towards lactate production
in renal cancer cells becomes apparent. The inactivation or loss of the VHL tumour suppressor is
the main molecular trigger for altered metabolism in ccRCC. Protein interaction studies revealed
that VHL belongs to the E3 ubiquitin family of ligases and forms a stable complex with elongin B,
elongin C and cullin 2 [34]. In normoxia, the VHL complex binds the hydroxylated α-subunit of HIF-1,
thereby labelling it for proteasomal degradation. With the loss of VHL in ccRCC, hydroxylated HIF-α
“escapes” degradation, becomes stabilized and translocates to the nucleus where it dimerizes with
HIF-β. The HIF-1 complex then binds the hypoxia response element (HRE) motif of target genes
to induce or repress transcription [35]. The result of this process includes the regulation of glucose
transporters and expression of glycolytic enzymes, regulation of oxidative phosphorylation via TCA
cycle and lipogenesis in VHL-lacking RCC patients [36,37].
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Furthermore, the role of substitute glucose utilization pathways including pentose phosphate
pathway in the tumorigenesis of RCC has been elucidated, and it is suggested that ccRCC reprograms
the cells energy metabolism for biomolecule assemblage by diverting metabolic intermediates for
anabolic purposes [38], and this phenomenon becomes more apparent as the disease progresses [10].
Cross-platform molecular analyses of mRNA, miRNA, DNA methylation and protein conducted
on ccRCC nephrectomy samples have shown that alteration in molecular metabolism, which stem
from the diversion of intermediates towards pentose phosphate pathway, downregulated Krebs cycle
enzymes and reduced AMPK along with the upregulation of glutamine flux was associated with
unfavorable prognostic outcome in ccRCC patients [39].

Differential lipid metabolites identified in our serum GCMS results (Supplementary Table S1)
further highlight the role of altered metabolism in RCC. Like the forms of metabolic deviations
mentioned above, altered fatty acid metabolism seems to be associated with higher grade RCC, which
is a pointer to the shift in energy reliance from glycolysis to other sources as the disease progresses.
Neoplastic cells are known to satisfy their high metabolic needs through mechanisms that include fatty
acid breakdown and other non-glycolytic metabolism [13] and acquire most of their fatty acid quota
from de novo synthesis. Hence, altered lipogenesis is characteristic of cancer [40,41].

There is overwhelming evidence that supports the dependence of cancer cells on the
glutamine/glutamate pathway [42,43]. Glutamine is an alternative source of energy for living cells
which is converted to glutamate and fed into the TCA cycle via α-ketoglutarate for energy and biomass
production [44], most dividing cells in turn utilize glutamate in nucleotide synthesis.

In the present study, we considered the apparent alterations in glutamate and glutamine
concentration of our samples. We recorded an increase in glutamate levels in RCC cases relative to
controls, which corroborates findings in similar studies [8,10] and further strengthens the proposition
that increased glutamate levels may indicate increased glutaminolysis for biosynthetic purposes in
RCC. Taken together, this sequence of biological events further re-iterates the role and importance of
metabolic remodeling in RCC tumorigenesis. Hence, therapeutic alternatives focused on extenuating
these biological loopholes may improve the clinical outcome of RCC patients.

Increased levels of trigonelline and reduced 3-hydroxybutyrate in patient urine may be associated
with smoking in these individuals. This connection has been previously reported in an unmatched
RCC patient cohort study that exposed possible confounders [16].

The AUC values calculated in this study exceeded 0.8. This indicates excellent predictive ability
of these metabolomics platforms and shows that they can reliably distinguish between benign and
malignant renal masses and identify different stages of RCC. The AUC values computed for the GCMS
analysis are considerably higher than the NMR values, which may be because of the higher sensitivity
associated with GCMS. The urine samples also seem to be better predictors of RCC stages than the
serum samples, especially in the integrated dataset where both R2 and Q2 metrics and AUC were
substantially improved.

In this preliminary study, fatty acid assessment of RCC samples also provided insight into the
influence of lipid metabolites on the disease. While there was no significant fatty acid detected in
the urine samples, most of the statistically significant ones found in serum are of food origin and are
linked to the fatty acid biosynthetic pathway and beta-oxidation of fatty acid, which may be implicated
in energy production and cell membrane synthesis, as well as cell signaling and growth processes that
are crucial to tumor progression.

This study is limited by a small sample size and the lack of an external validation cohort at the
time of the study. The internal cross-validation and permutation tests were helpful in validating the
OPLS-DA results; this intriguing initial observation, however, requires external validation. Hence, it is
imperative that further studies be conducted to replicate these results using a larger and more diverse
patient cohort.
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4. Materials and Methods

4.1. Study Population

This study received approval by our institutional review board, and study participants signed
an informed consent. Blood samples were drawn from fasting patients the morning of surgery and
collected in buffer free containers. After centrifugation, the serum was stored at −80 ◦C until the time
of analysis. Urine samples were obtained from fasting patients immediately prior to surgical removal
of enhancing masses suspected for RCC. Benign lesions were determined by post-operative pathology
and compared to pathologically confirmed RCC.

4.2. 1H NMR Analysis

Samples from both groups, 75% of which are of clear cell (ccRCC) histology type were prepared
and analyzed according to a previously described protocol with minor modifications [45]. Briefly,
53 serum and urine samples (200 µL each) were thawed on ice and filtered in prewashed 3 kDa
NanoSep microcentrifuge filters to remove protein and other large impurities. Protein filtered from
serum samples were washed with an additional 100 µL of D2O. The filtrates (volume ranging from
100–150 µL) were then transferred to clean microcentrifuge tubes and the final volume brought to
400 µL by the addition of 80 µL of phosphate buffer (0.5 M NaH2PO4 buffer solution at pH 7.0)
containing 2.5 mM 2,2-dimethyl-2- silapentane-5-sulfonate (DSS, final concentration 0.5 mM), 10 µL of
1M sodium azide to prevent bacterial growth, and D2O. The final concentration of DSS (0.5 mM for
each sample) was used for NMR chemical shift reference and concentration calibration. The pH of each
sample was adjusted to 7.00 ± 0.04. Untargeted one-dimensional proton 1H NMR analysis was carried
out on a Bruker Avance 600 NMR spectrometer (Milton, ON, Canada) operating at 600.22 MHz and
298 K and equipped with a 5-mm TXI probe and an automated NMR case sample changer. NMR data
collection measured all detectable compounds between 0–10 ppm and was devoid of any metabolite
pre-selection. To confirm chemical shift assignments, two-dimensional NMR experiments including
Total Correlated Spectroscopy (2D 1H–1H TOCSY) and Heteronuclear Single Quantum Correlation
(2D 1H–13C HSQC) were performed on the last two samples of every batch. High resolution 1H NMR
spectra were collected using a standard Bruker pulse sequence program (pr1d_noesy) that features
water suppression, with 1024 transient acquisitions, and these spectra recorded from 0–10 ppm were
processed using the TopSpin software (Bruker, ON, Canada).

Using the Processor module of the Chenomx NMR Suite 7.5 software (Chenomx Inc. Edmonton,
Canada), a line broadening of 0.2 Hz was applied to all spectra followed by phase correction, water
region deletion, baseline correction and reference deconvolution with DSS peak calibration. Using
the Chenomx Profiler module, the NMR peaks were assigned to their corresponding metabolites and
quantified in a “targeted” approach where about 95% of the peaks in the serum spectrum (about 60%
in urine) were accounted for [46]. We only used the metabolites that were confidently identified and
quantified by the Chenomx Profiler for further analyses, to better focus on the parts of the metabolomic
profile whose biological significance and roles have been previously described.

The Chenomx Suite is equipped with reference libraries that contain numerous pH-sensitive
compound models that are identical to the spectra of pure compounds obtained under similar
experimental conditions. The underlying spectral libraries have been developed using a combination
of mathematical algorithms and actual NMR measurements collected at a variety of pH conditions.
During targeted profiling, these models are automatically calibrated by adjusting compound line
shapes, peak widths, and chemical shifts, to better match the sample conditions.

Variation between metabolites’ concentrations warranted spectral normalization using the
Probabilistic Quotient Normalization (PQN) approach where the calculated median of all samples was
used as the reference spectrum [47]. This normalized dataset was then used for further analyses.
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4.3. GCMS Analysis

Metabolite extraction was performed according to previously described methods [48]. A biphasic
mixture of chloroform and methanol was added to each sample and the separated aqueous
fraction was vacuum-dried (SpeedVac, Eppendorf, Germany) and stored at −20 ◦C pending
derivatization. The dried aqueous samples were then re-suspended in 50 µL of 20 mg/mL
Methoxylamine-hydrochloride/pyridine at 37 ◦C for 2.5 h during derivatization and a silylating
agent; N-Methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA; Sigma-Aldrich, Oakville, ON, Canada)
was added. Each sample was diluted with 500 µL of Hexane containing (1 ug naphthalene-d8/ml) and
centrifuged at 13,200 rpm (Eppendorf 5415) for 4 minutes to remove particles that may interfere with
subsequent analyses. GCMS vials with glass inserts filled with 200 µL of sample supernatant before
insertion into the Waters GCT mass spectrometer-coupled Agilent chromatograph 7890A (Agilent
Technologies Canada Inc, Mississauga, Ontario, Canada) equipment, which employs the GC-TOF-MS
procedure for analysis. Mass spectra of the aqueous and fatty acid fractions were processed using
Metabolite Detector software (version 2.1N-2012-03-02, Technische Universität Carolo-Wilhelmina zu
Braunschweig, Braunschweig, Germany) and MET-IDEA (version 2.08 2012-05-03, The Samuel Roberts
Noble Foundation, Inc., Ardmore, OK, USA), respectively. The Golm metabolome database (GMD) was
used for metabolite identification [48]. Compounds in the aqueous fraction were normalized by the
PQN method, after features with more than 50% relative standard deviation (RSD) were removed [47].
All compounds were used for further analysis using an untargeted and comparative approach.

4.4. Statistical Analysis

Normalized NMR and GCMS data were imported to SIMCA-P+ 12.0.1 software (Umetrics, Umea,
Sweden) where log transformation, centering and unit variance scaling were performed. Individual
and integrated (combined NMR and GCMS data) analyses of the data sets were also performed, and
the mean values of metabolites common to both analytic platforms were calculated and included in
the integrated dataset. Models of unsupervised principal component analysis (PCA) were initially
constructed to identify potential outliers and groups of observations that may form distinct patterns.
Using supervised orthogonal partial least squares-discriminant analysis (OPLS-DA), statistical models,
in which two of the three groups were compared per time, were built. R2Y and Q2 metrics which
describe the explained variation within the data set and the predictability of the model, respectively,
were calculated based on the averages of the sevenfold cross-validation. R2Y and Q2 values range
between 0–1, and the closer these metrics are to 1, the higher the variance explained by the model and
the more reliable the predictive power of the model. PLS-DA models were built for each comparison
and were found to have metrics similar to their OPLS-DA counterparts. The problem of OPLS-DA
analysis being prone to overfitting is therefore ruled out in this dataset. Furthermore, Variable Influence
on Projection (VIP) values of OPLS-DA models were used to extract the most influential metabolites
contributing to group separation, and only metabolites with VIP scores > 1 were considered potentially
relevant. Statistically significant metabolites were further determined by Student paired t-test (p > 0.05).
A 999 times permutation test assessed the validity and non-randomness of the OPLS-DA models [49].
The permutations Q2 intercepts that were calculated are shown alongside the model statistics in Table 2.
The Q2 intercept validates the reproducibility and robustness of a model and the more negative the
value, the better the validity of the model, as it is an indication that the model metrics get progressively
worse with every permutation introducing mislabeled variables [50,51]. The relationship between
the groups and the differential metabolites are shown in regression coefficients of variation plots
(Supplementary Figures S4 and S5).

Metz-ROC (University of Chicago, City, IL, USA) was used to calculate AUC. The specificity
and sensitivity were calculated for sample class predictions made by a 7-fold cross-validation process
(Y-predcv, predictive Y variables; SIMCA-P+ software). In this internal validation method, the data are
divided into 7 portions and each 1/7th is sequentially excluded until all data is analyzed. The average
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predicted group values were used to create receiver-operating characteristic (ROC) curves for each
comparison and to calculate the area under the curve (AUC).

5. Conclusions

In conclusion, serum and urine based metabolomics can distinguish RCC from benign renal
masses, as well as pT1 from pT3 RCC. These tools can be potentially employed clinically to identify
renal neoplastic transformation in asymptomatic individuals.

Supplementary Materials: The following are available online at www.mdpi.com/2218-1989/7/1/6/s1, Table S1.
Fatty acids detected in serum RCC samples analyzed by GCMS; Figure S1. Characteristic NMR spectra of serum
samples obtained from (A) benign (control) (B) RCC patients 0: 2-hydroxybutyrate, 1: leucine, 2: valine, 3:
3-hydroxybutyrate, 4: lactate, 5: alanine, 6: lysine (merged with DSS) 7: lysine, 8: glutamine, 9: citrate, 10: DSS, 11:
lysine 12: glucose. 13: creatinine, 14: lactate, 15: glucose, *—deleted water region, 16: glucose, 17, 19: tyrosine,
18, 21: histidine, 20: phenylalanine; Figure S2. Integrated NMR and GCMS orthogonal partial least squares
discriminant analysis (OPLS-DA) models distinguishing between benign and cancer cases. OPLS-DA score scatter
plots showing separation in the serum and urine metabolic profile of (A) benign versus stage 1 cancer cases (B)
benign versus stage 3 cancer cases (C) benign versus stage 1 cancer cases (D) benign versus stage 3 cancer cases,
respectively, along their orthogonal partial least squares (OPLS1) and partial least squares components (PLS1);
Figure S3. ROC curves depicting the predictive ability of the constructed models in each group comparison in
serum and urine. (A) ROC curves illustrating the performance of the GCMS models in distinguishing between
benign and stage 3 disease. (B) ROC curve illustrating the performance of the NMR models in distinguishing
between benign and stage 3 disease. (C) ROC curve for the NMR models distinguishing between benign and stage
1 disease. AUROC–area under the ROC curve; TPF–true positive fraction (Sensitivity); FPF–false positive fraction
(1–Specificity); Figure S4. OPLS-DA regression coefficient plot of NMR analyzed serum and urine. Positive
coefficient values (upper portion of the plot) indicate increased serum metabolite concentrations in (A) stage 1
versus benign, (B) stage 3 versus benign, (C) Fuhrman high versus Fuhrman low; urine metabolite concentrations
in (D) stage 1 versus benign, (E) stage 3 versus stage 1 (F) Fuhrman high versus Fuhrman low, while negative
values (the lower part of diagram) show a decrease in metabolite concentrations; Figure S5. OPLS-DA regression
coefficient plot of GCMS analyzed serum and urine. Positive coefficient values (upper portion of the plot) indicate
increased serum metabolite concentrations in (A) stage 3 versus benign, (B) stage 3 versus stage 1, (C) Fuhrman
high versus Fuhrman low; urine metabolite concentrations in (D) stage 3 versus benign, (E) Fuhrman high versus
benign, while negative values (the lower part of diagram) show a decrease in metabolite concentrations.
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