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Abstract: Background: Colorectal cancer is one of the leading causes of cancer deaths worldwide.
The detection and removal of the precursors to colorectal cancer, adenomatous polyps, is
the key for screening. The aim of this study was to develop a clinically scalable (high
throughput, low cost, and high sensitivity) mass spectrometry (MS)-based urine metabolomic
test for the detection of adenomatous polyps. Methods: Prospective urine and stool samples
were collected from 685 participants enrolled in a colorectal cancer screening program to undergo
colonoscopy examination. Statistical analysis was performed on 69 urine metabolites measured by
one-dimensional nuclear magnetic resonance spectroscopy to identify key metabolites. A targeted MS
assay was then developed to quantify the key metabolites in urine. A MS-based urine metabolomic
diagnostic test for adenomatous polyps was established using 67% samples (un-blinded training
set) and validated using the remaining 33% samples (blinded testing set). Results: The MS-based
urine metabolomic test identifies patients with colonic adenomatous polyps with an AUC of 0.692,
outperforming the NMR based predictor with an AUC of 0.670. Conclusion: Here we describe a
clinically scalable MS-based urine metabolomic test that identifies patients with adenomatous polyps
at a higher level of sensitivity (86%) over current fecal-based tests (<18%).

Keywords: colorectal cancer; adenomatous polyps; metabolomics; metabolite; urine; diagnostic test;
MS; NMR

1. Introduction

Colorectal cancer (CRC) is a major public health concern. Globally, it is ranked as the third most
frequent form of cancer with an age-standardized incidence rate of 17.2 per 100,000 population making
it responsible for almost 8.5% of all deaths due to cancer [1]. CRC is also the third leading cause of
cancer-related deaths in the Western world [2]. CRC is largely preventable through population-based
and individual-based screening programs that aim to detect adenomatous polyps, the precursor to
CRC, as more than 95% of CRC develops from adenomatous polyps [3]. Colonoscopy is the gold
standard for identifying both CRC and polyps. In an ideal world, every at-risk subject would receive
a colonoscopy, since the cost of a colonoscopy (~CDN $1200) is significantly lower for the health
industry than the expected cost of treating the possible colon cancer (~CDN $20,000) [4]. However,
the cost of colonoscopy and its associated morbidity and mortality precludes it as a cost-effective
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population-based screening test. Currently, non-invasive, fecal-based testing is the foundation to
most screening programs. Fecal-based testing is only used to determine which individuals should
receive a colonoscopy [5], the definitive test for identifying and removing adenomatous polyps.
Unfortunately, there are several factors that limit the effectiveness of the fecal-based testing as a
screening method. The first is that relatively few individuals complete the standard fecal-based
testing, including those known to be at above-average risk for CRC [6]. Second, the fecal-based
diagnostic tests have low sensitivity [7]. The guaiac-based fecal test, which tests for hemoglobin, has
a sensitivity of approximately 3% for detecting any adenoma and 10–30% for detecting advanced
(>10 mm) adenomatous polyps [8]. Newer fecal immunochemical tests, which use antibodies to
hemoglobin, have reported sensitivities of 13–26% for any adenomatous polyps [9] and 20–67% for
advanced adenomatous polyps [10]. Third, the interpretation of these fecal-based test is subjective as
the result is a colorimetric change, which means it can be difficult to determine whether the test is truly
positive or not. A better, more accurate, more patient compliant and much less expensive “Colonoscopy
Predictor” (i.e., a test that can accurately predict whether a patient has an adenomatous polyp and
should receive a colonoscopy) would serve as the ideal population-based CRC screening test.

Metabolomics is a new “omics” science that focuses on characterizing low molecular weight
compounds generated by metabolism. Metabolomics offers a dynamic portrait of the metabolic status
of living systems [11]. There are more than 40,000 metabolites known to be in the human body [12],
and their specific concentrations provide a snapshot of an individual’s current state of health. Urine
has long been a “favored” biofluid among metabolomics researchers. It is sterile, easy-to-obtain in
large volumes, largely free from interfering proteins or lipids and chemically complex. More than
2650 metabolites have been identified, to date, in human urine samples [13]. These include amino
acids, nucleic acids, carbohydrates, organic acids, vitamins, lipids, minerals, food additives, drugs,
toxins, pollutants, and other chemicals (with a molecular weight < 2000 Da) that humans ingest,
metabolize, catabolize, or come into contact with [12]. With respect to adenomatous polyps and
CRC, metabolomics has demonstrated the capacity to detect not only dysplastic cellular changes of
the human mucosa [14], but also changes in the intestinal microflora [15]. To date, one systematic
review [16] and ten pilot studies have examined how metabolomics can be used to identify CRC but
only two studies explored metabolomics for detection of adenomatous polyps [17,18]. Haili Wang and
Richard Fedorak, et al. have recently developed a metabolomic based urine test for the detection of
adenomatous polyps, the precursor to CRC [18]. Through the metabolic profiling by one-dimensional
nuclear magnetic resonance spectroscopy (NMR) of nearly 1000 urine samples at the University of
Alberta (Edmonton, AB, Canada), 14 metabolites were found to be significant metabolites to separate
individuals with polyps from those without polyps. A prototypic diagnostic test for the detection of
adenomatous polyps was established using the concentration of the 14 urinary metabolites along with
clinical features (e.g., age, sex, smoking history). Using the colonoscopy results as a gold standard, the
NMR-based urine metabolomic test was able to detect colonic adenomatous polyps with a sensitivity
of 88.9%, a specificity of 50.2%, and an area under curve (AUC) of 0.7524 [18]. This urine metabolomic
diagnostic test was shown to have a higher sensitivity than the Fecal Guaiac HemII, Fecal Immune
ICT, and Fecal Immune MagSt tests, which are currently in use. However, further refinement and
development was needed to bring this prototypic urine-based metabolomic test to clinical use for the
following reasons: (1) NMR is a relatively expensive and large piece of equipment. It requires a high
level of expertise to maintain and operate. Currently, it is mostly used in research domain, but not
readily available for clinical usage. So, there is a need here to transfer the test from NMR platform to
a cheaper and readily available analytical platform in clinical settings for easy adoption; (2) For the
prototypic NMR test, it takes 6 min per sample to for instrument running and 20 min per sample for
metabolite quantification. We aim to develop a metabolomic based urine test that would be suitable
for a population-based CRC screening tool. High throughput and low cost are key factors here.

The aim of this study was to develop and validate a clinically scalable (high throughput, low
cost, and high sensitivity) diagnostic test for the detection of adenomatous polyps, which would be
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suitable for population-based CRC screening. This was accomplished by the development of a targeted
liquid chromatograph (LC)-MS/MS method for the quantification of key metabolites in 685 urine
samples. The metabolites identified and quantified by MS were then compared with those identified
and quantified by NMR. Using the MS-derived metabolite concentration data we built a predictor
that determines whether a patient requires a colonoscopy for adenomatous polyp removal. The AUC
was calculated for the newly developed MS-based test and compared to the NMR test. The sensitivity
and specificity of this high-throughput MS-based urine diagnostic test was also compared with
commercially available fecal-based tests.

2. Materials and Methods

2.1. Study Participants and Sample Collection

This study used 685 urine samples (collected from April 2008 to October 2009) that were obtained
as part of a regional colon cancer screening program, in Edmonton, Canada (SCOPE®, Stop Colorectal
Cancer through Prevention and Education) [7,9,18,19]. Study participants of average CRC risk
(50–75 years 50–75 years of age and no personal or first-degree family history of CRC or polyps)
or increased CRC risk ((40–75 years of age with a personal or first-degree family history of CRC or
polyps) were recruited. On day of entry, participants provided informed consent, a midstream urine
sample, and completed a demographic survey. No dietary collection or activity modification was
required before the urine collection. Within 1 week of providing the urine sample, all participants
provided a fecal sample to undergo fecal occult blood testing using three commercially available tests.
The Hemoccult II (Beckman Coulter, Mississauga, ON, Canada) test (non-rehydrated) was positive if
at least one test window displayed a blue color within 60 s of developer. The Hemoccult ICT (Beckman
Coulter) was positive if a pink line appeared in the test area within 5 min of buffer. The MagStream
HemSp/HT (Fujirebio Diagnostics, Malvern, PA, USA) was positive at a level of 467 mg hemoglobin/g
stool. Colonoscopy was performed 2–6 weeks after the urine and stool collections as the reference
standard. Participants were excluded if they had findings of colonic or ileal disease at the time of
colonoscopy. All subjects gave their informed consent for inclusion before they participated in the
study. The study was conducted in accordance with the Declaration of Helsinki, and the protocol
was approved by the Health Research Ethics Board at the University of Alberta (Project identification
number: Pro00000514). The www.ClinicalTrials.gov identifier is NCT01486745.

2.2. NMR Analysis

This study used NMR spectra of 685 urine samples previously obtained [18]. NMR spectra
were collected on a 600 MHz NMR spectrometer equipped with a VNMRS two-channel console
(Varian Inc., Palo Alto, CA, USA). Additional NMR acquisition details can be found elsewhere [18].
The metabolite quantification was first performed in 2010 using the targeted profiling techniques
of Chenomx NMR Suite v7.7 (Chenomx Inc., Edmonton, AB, Canada) [18] and then re-profiled in
2013 using the same protocol but with different operators to investigate the consistency of metabolite
determination from NMR spectra over time and between operators [19]. For this study, we used the
metabolite quantification results generated in 2013.

2.3. Mass Spectrometry Analysis

A targeted LC-MS/MS method was developed to quantify three key metabolites (succinic acid,
ascorbic acid, and carnitine identified from the previous NMR studies) in urine samples using multiple
reaction monitoring (MRM) on an Agilent 1290 UHPLC/AB Sciex 4000 Qtrap system.

2.4. Standards

Succinic acid (BioXtra, ≥99.0%), L-Ascorbic acid (BioXtra, ≥99.0%, crystalline), and L-Carnitine
(synthetic, ≥98%) were purchased from Sigma-Aldrich (Oakville, ON, Canada). Succinic acid (D4, 98%),
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L-Ascorbic acid (1-13C, 99%), and L-Carnitine (Trimethyl-D9, 98%) were purchased from Cambridge
Isotope Laboratories (Tewksbury, MA, USA). Stock solutions of individual compounds were made
by dissolving proper amounts of each standard in MS grade water. Targeted NMR analysis on stock
solutions of unlabeled standards were also performed to confirm the standard quality. Calibrant
solutions (Cal1-Cal8) at concentrations of 5 µM, 10 µM, 100 µM, 200 µM, 400 µM, 600 µM, 800 µM, and
1000 µM were prepared by mixing the stock solutions of unlabeled succinic acid, ascorbic acid, and
carnitine in water. An internal standard solution (ISTD) with 100 µM of succinic acid-D4, 200 µM of
ascorbic acid-13C, and 100 µM of Carnitine-D9 was prepared by mixing the stock solutions of isotopic
labeled internal standards in MS grade water. Calibrant solutions and the internal standard solution
were aliquoted and stored at −80 ◦C until used.

2.5. Sample Processing

All urine samples were processed in a 96-well plate format. Each plate consisted of 1 blank
solution, 1 ISTD, 8 calibration solutions (Cal1-Cal8), 6 quality control (QC) samples and 80 urine
samples. Laboratory-generated pooled urine samples from 6 healthy individuals served as the QC
samples. A simple approach of dilution and filtration was used for sample preparation. Urine samples
and calibration solutions were left to thaw on ice and centrifuged at 10,000 g for 3 min. 10 µL of each
urine supernatant or calibration solution was added to the corresponding well in each plate. 10 µL of
the ISTD was added to each well on the plate, except the blank well (A1). This was done to account for
matrix effects and to facilitate absolute quantification of the metabolite concentrations. The mixture
was extracted with 200 µL of extraction solvent (water with 10 mM ammonium formate, pH3) and
filtered through a 0.45 µm member filter before LC-MS injection.

2.6. LC-MS Analysis

LC-MS spectra were acquired on an AB Sciex 4000 Qtrap paired to an Agilent UHPLC 1290. An
isocratic LC separation of the targeted metabolites (succinic acid, ascorbic acid, and carnitine) was
performed using a Waters ACQUITY UPLC BEH C18 column (2.1 mm × 150 mm, 1.7 µm) with 95:5
water:acetonitrile (10 mM Ammonium formate, pH3) as mobile phase and a flowrate of 0.3 mL/min.
The injection volume was 5 µL and the overall LC run time was 3 min. MRM detection was under
optimal parameters for each of the analytes. Metabolite quantification was achieved using the AB
Sciex Analyst® software version 1.6.2. During quantification, each metabolite was identified using the
internal standard and quantified using the established calibration curve.

2.7. Statistical Analysis

In the development of the test, we wanted to evaluate the performance in the strictest way possible
and in real world situations, where the test is required to predict labels for new un-labeled instances.
As such we followed the standard machine learning methodology [20,21] of using an external data set
to evaluate our predictor. Our general analysis workflow is outlined in Figure 1. Figure 1a outlines
our analysis workflow on the NMR data. Initially, we split the NMR dataset into training data (2/3,
n = 457) and testing data (1/3, n = 228). These two data sets were balanced for age, sex, and class
distribution. This training data was then used to identify important metabolites. These identified
key metabolites were used in conjunction with our clinical features (age, sex, smoking status) to train
a NMR predictor. This was then evaluated on the testing data set. Figure 1b outlines our analysis
workflow on MS predictor. We matched the training and testing splits of the samples to the NMR
splits in the NMR analysis. A MS predictor was developed using identified key metabolites by LC-MS
in conjunction with three clinical features (age, sex, smoking status) of the training set and further
validated by the testing set.

For both the NMR and MS predictors, machine learning algorithms were used to generate
an optimal diagnostic predictor from the measured concentration data. All code was written in R
(version 3.2.0). SVM, SVMRBF, RF, LASSO, NB, C5.0, PLSDA, SVM-Tune, SVM-Cost, Logistic, and
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KNN [22] were evaluated and best prediction result from LASSO was reported. For LASSO [23], we
used the glmnet R library (version 2.0-2). Optimization of the lambda parameter was done using
the cv.glmnet function in the glmnet package. For other evaluated algorithms, details can be found
elsewhere [7]. Both the NMR and the MS metabolite quantification results were log-transformed.
Metabolite concentrations that were below the lower limit of detection (LLOD) were replaced by half
of the limit of detection for statistical analysis.
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3. Results

3.1. Participant Characteristics

Of the 685 participants selected for this study, colonoscopy results partition the subjects into one
of four outcomes (from least severe to most severe): subjects that have (i) no abnormality (Normal,
n = 446); (ii) only hyperplastic polyps (Hyperplastic, n = 84); (iii) adenomatous polyps (Adenoma,
n = 154); or (iv) colorectal cancer (CRC, n = 1); see Table 1. As the goal of this study is to develop a
test that can be used for population based CRC screening, subjects with no abnormality and only
hyperplastic polyps were classified as “Normal”, while subjects with adenomatous polyps and CRC
were classified as “Polyp”. The characteristics of three important clinical features, age, sex, and
smoking history are also shown in Table 1.

Table 1. Participant characteristics of the 685 participants for this study.

Label Colonoscopy Results Age Sex Smoker

Normal Normal (n = 446) µ = 56.1 F = 308 Yes = 50
n = 530 Hyperplastic (n =84) σ = 8.2 M = 222 Ex-Smoker = 12

No = 449
Unknown = 19

Polyp Adenoma (n = 154) µ = 59.9 F = 60 Yes = 26
n = 155 CRC (n = 1) σ = 7.4 M = 95 Ex-Smoker = 4

No = 119
Unknown = 6

3.2. Key Metabolite Identification

The metabolite quantification by NMR on the 685 urine samples was first performed in 2010
using the targeted profiling techniques of Chenomx NMR Suite v7.7 (Chenomx, Inc., Edmonton, AB,
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Canada) [18]. In a later consistency study, re-quantification was carried out using the same NMR
spectra and same protocol, but by different operators and at different time points [19]. The authors
compared the analyzed concentration data among operators and time. Interestingly, the consistency of
the analyzed NMR results is dependent on the metabolite identity with the more difficult to profile
metabolites being more inconsistent. The spectral analysis team categorized each of the identified
69 metabolites into one of four consistency groups: Excellent, Good, Fair, and Poor. To ensure greater
consistency and to remove any batch effects, we removed 13 of the 69 metabolites that were rated
“Poor”. Further, any metabolites that were zero for more than 20% of the sample set were not considered
(e.g., 3-hydroxymandelic acid). Important features that could distinguish those with adenomatous
polyps from those without, were identified using the reliable metabolite abundance information.
The NMR dataset were split into training data (2/3, n = 457) and testing data (1/3, n = 228). These
two data sets were balanced for age, sex, and class distribution. This training data was then used to
identify important metabolites. After further data processing (scaling and normalization), metabolites
were ranked using their p-value (via the Wilcoxon signed-rank test), as listed in Table 2. The three key
metabolites that had a p-value less than 0.05 were: succinic acid, ascorbic acid, and carnitine.

Table 2. Top 10 p-values for metabolites in NMR data using the Wilcoxon signed-rank test.

P-Value Metabolite

0.0059 Succinic acid
0.0100 Ascorbic acid
0.0280 Carnitine
0.0595 Creatine
0.0739 Citric acid
0.0861 Methylamine
0.0945 Pantothenic acid
0.1198 Fumaric acid
0.1346 1-Methylnicotinamide
0.1703 Trigonelline

4. LC-MS Measurements

LC-MS acquisition. MS parameter optimization was performed on an AB Sciex 4000 Qtrap for
each metabolite using a standard solution of 5 µM of the compound in a 1:1 water:acetonitrile
buffer with 0.1% formic acid. For each compound, two of the most abundant MRM pairs were
chosen and the corresponding MS parameters, such as De-clustering Potential (DP), Collision Energy
(CE) and Collision Cell Exit (CXP) were optimized. All of the MS parameters are summarized
in Table S1 (Supplemental Data). Succinic acid and ascorbic acid were monitored in the negative
mode, while carnitine was monitored in the positive mode. MRM pair 1 (e.g., succinic acid 1) was
used for quantification analysis, MRM pair 2 (e.g., succinic acid 2) was monitored for identification.
A representative LC-MS chromatograph of one of the calibration solutions (Calibrant 6) is shown in
Figure S1 (Supplemental Data) to illustrate the level of LC separation achieved with this protocol.
Succinic acid and ascorbic acid are clearly baseline separated.

LC-MS assessment. 685 urine samples were randomized and run through the developed LC-MS
method with a 96 well plate format. Each plate contains 1 blank, 1 ISTD, 8 Calibrants, 6 QCs (laboratory
generated pooled urine samples), and 80 urine samples from the study participants. A representative
plate map is shown in Figure S2 (Supplemental Data). A total of 9 plates were run.

Method assessment and validation was performed according to Clinical and Laboratory Standards
Institute (CLSI) C62A guidelines [24]. LC-MS analysis was done on non-spiked urine, spiked urine,
and post-spiked urine samples in triplicate. Extraction recoveries and accuracies were calculated for
each metabolite and summarized in Table S2 (Supplemental Data). All metabolites were within the
range of 90–110%. For each plate, a set of calibration curves was generated and used. Linear regression
coefficients (R2) for the 3 measured metabolites were > 0.99 for all plates. 6 QC samples were put
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into each plate to access the coefficient of variation (CV%) with the plate and across the 13 different
plates. The CV% of the QC samples for each metabolite within each plate was calculated as ratio of
the standard deviation to the mean value, summarized in the Table S3 (Supplemental Data). Notably,
the CV% for each metabolite with the plate was < 15%. The average concentration of the measured
metabolite in QC samples were also listed in Table S3 (Supplemental Data). The concentrations of
succinic acid, ascorbic acid, and carnitine were consistent across the 9 plates within acceptable ranges.

4.1. Development and Validation of the MS Based Test

Since we were focused on how well our predictor could predict labels for new un-labeled
instances, we followed the standard machine learning methodology [20,21] of using an external
data set to evaluate our predictor. The dataset was divided into 2/3 training data and 1/3 testing
data. These two datasets were balanced for age, sex, and class distribution. The MS quantifications
were log-transformed and were used in conjunction with three clinical features (age, sex, and smoking
status) along with a label (specifically, “Polyp” or “Normal”) to train a predictor using the LASSO
algorithm. The LLOQ for the LC-MS/MS assay was set to be the lowest calibrant point at 5 µM.
Metabolite concentrations that were below the LLOQ were replaced by half of the lower limit of
detection to facilitate further statistical analysis. The trained predictor was then evaluated on the
testing data set using sensitivity, specificity and AUC of the Receiver Operating Characteristic (ROC)
curve. Figure 2a,b show the ROC curves of our predictor’s performance on the training and testing
data, respectively. An AUC of 0.687 was achieved on the training set and an AUC of 0.692 was achieved
on the testing set.
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Figure 2. Performance of MS-based predictor using 3 metabolites and 3 clinical features on (a) the
training data; and (b) the testing data, including the performance of the fecal based tests.

One of the advantages of our algorithm is that the prediction threshold is adjustable, allowing one
to vary the tradeoff between sensitivity and specificity. To examine how confidently we can specify the
predictive performance of the MS-based metabolomics test to given physician recommendations, we
picked several prediction thresholds on the training data results (along the ROC curve), and evaluated
on the testing data using the same prediction threshold. The results are summarized in Table 3 at
several intuitive thresholds: sensitivities at 70%, 80%, and 90%, and specificities at 70%, 80%, and 90%.
The results show that this protocol for picking a threshold generalizes well to the testing set. This
is probably due to the nature of the LASSO linear predictor. For more complex predictors, such as
Random Forests, this threshold selection does not generalize well.



Metabolites 2017, 7, 32 8 of 12

Table 3. The performance of MS-based urine tests for the detection of adenomatous polyp on both
training set and testing set, along with the performance of three fecal based tests. When picking a
threshold on the training set, the performance on the testing set with the same threshold produces
similar performance.

Training Set Testing Set

Threshold
Criteria Sensitivity Specificity PPV NPV Sensitivity Specificity PPV NPV

Urine tests

Sens = 90%
(95% CI *)

90.3%
(84.6–96.0%)

20.9%
(16.7–25.1%) 24.9% 88.0% 92.2%

(84.8–99.5%)
19.2%

(13.3–25.1%) 25.3% 89.2%

Sens = 80%
(95% CI)

79.6%
(71.8–87.4%)

42.1%
(36.9–47.2%) 28.6% 87.7% 82.4%

(71.9–92.8%)
36.0%

(28.9–43.2%) 27.6% 87.3%

Sens = 70%
(95% CI)

69.9%
(61.0–78.8%)

59.0%
(53.9–64.2%) 33.2% 87.1% 66.7%

(53.7–79.6%)
55.2%

(47.8–62.7%) 30.6% 84.8%

Spec = 70%
(95% CI)

59.2%
(49.7–68.7%)

70.1%
(65.3–74.8%) 36.5% 85.5% 56.9%

(43.3–70.5%)
70.9%

(64.1–77.4%) 35.4% 84.7%

Spec = 80%
(95% CI)

46.6%
(37.2–56.2%)

80.0%
(75.8–84.1%) 40.3% 83.7% 49.0%

(35.3–62.7%)
80.8%

(74.9–86.7%) 43.1% 84.2%

Spec = 90%
(95% CI)

31.1%
(22.1–40.0%)

88.1%
(84.8–91.5%) 43.2% 81.4% 43.1%

(29.5–56.7%)
91.3%

(87.1–95.5%) 59.5% 84.4%

Fecal Tests

Guaiac HemII 2.0% 98.8% 33.3% 77.5% 3.8% 99.4% 66.7% 77.1%
Immune ICT 10.9% 97.1% 52.4% 78.7% 17.6% 97.0% 64.3% 79.6%

Immune MagSt 15.8% 95.4% 50.0% 79.5% 21.2% 91.7% 44.0% 79.1%

* CI: confidence intervals. They were estimated based on based on binomial distribution.

We also ran permutation tests [25] to determine whether the MS-based predictor was indeed
finding useful patterns. This involved randomizing the labels in the training set, then running the
training/testing workflow. The result of this analysis is expected to be worse than the performance of
our predictor, as the labels of the patients were nonsense. This was repeated 100 times. Of 100
permutation tests, none of the AUCs were better than of the value 0.692 based on the original
un-permuted data. This supports our findings that the predictor performance is not due to random
chance—i.e., the chance of the null hypothesis (that we would see this 0.692 AUC performance, by
chance alone) is p < 0.01.

4.2. Comparison of the MS-Based Metabolomics Test with NMR-Based Test

The concentration values of 685 samples measured by LC-MS were compared with the NMR
quantifications using Passing and Bablok regression [26,27]. The correlation plots between MS
quantifications and NMR quantifications for each of the three metabolites are shown in Figures
S3–S5 (Supplemental Data). For all three metabolites, there was a strong positive correlation of MS data
with the NMR data (R > 0.8, P < 0.01). The regression line equation for ascorbic acid is y = 2.50 + 1.12x;
95% CI for intercept 2.50 to 2.50 and a slope of 1.06 to 1.19 indicated by the small constant and small
proportional difference. The regression line equation for carnitine is y = 1.73 + 0.99x; 95% CI for
intercept 0.77 to 2.50 and a slope of 0.96 to 1.02 indicated by the small constant and no proportional
difference. The regression line equation for succinic acid is y = 4.17 + 1.32x; 95% CI for intercept 2.72
to 5.33 and a slope of 1.26 to 1.38, indicated by the small constant and small proportional difference.
For all three metabolites, within the 95% CI, the two methods were not identical, however the values
measured from both methods were comparable. For the test performance comparison, a NMR predictor
was also built and evaluated using the same analysis workflow as the MS predictor. The AUC of the
NMR test is 0.670 which is slightly lower than the AUC of MS based test at 0.692. This might be due to
the fact MS is more sensitive in the lower concentration range for these three metabolites.

4.3. Comparison of the MS-Based Urine Metabolomics Test with Commercially Available Fecal-Based Tests

The diagnostic accuracies of our developed MS-based test for colonic adenomatous polyps were
compared with the three fecal-based (one fecal-guaiac and two fecal-immune) tests. Figure 2a,b
show how the performances of these three fecal-based tests compared to the MS-based urine test.
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Since none of the fecal tests (which measure only a single marker) have an adjustable threshold, each
test corresponds to a point in the ROC space. All three fecal tests lie on or below our urine-based
predictor’s ROC curve, which indicates that the MS-based urine test always outperforms the fecal tests.
The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for
each test for adenomatous polyp detection on the same training set and testing set are calculated and
summarized in Table 3. The overall sensitivities for polyp detection on the total 685 samples by Fecal
Guaiac HemII®, Fecal Immune ICT®, and Fecal Immune MagSt® are 2.6%, 13.2%, and 17.6%, with
specificities of 99.0%, 97.1%, and 94.2%, respectively. Although these tests are currently used to screen
for colonoscopies, they focus on colon cancer detection, not polyp detection. All three fecal-based tests
offer high specificity for polyps but a very low sensitivity (<18%) which makes their use for polyp
detection and early cancer screening highly questionable. For the MS-based urine test, a sensitivity of
43.1% and a specificity of 91.3% was achieved for adenomatous polyp detection. At this threshold,
the MS-based urine demonstrates a much higher sensitivity (43.1%) compared to all three fecal based
tests (sensitivities < 18%), while maintaining the high specificity. For a population-based CRC early
screening tool, a highly sensitive test may be demanded. While at another threshold, a sensitivity of
82.4% and a specificity of 36.0% was achieved for adenomatous polyp detection for the MS-based
urine test. The MS-based urine metabolomic test designed for adenomatous polyp detection at high
sensitivity would serve as a better population based screening tool for CRC.

5. Discussion

The metabolites and clinical features used in the algorithm for the MS-based urine test are
summarized in Table 4. Correlations were calculated by encoding those patients who are likely to
have adenomatous polyps and require colonoscopy as “1” and those that do not as “0”. Higher
concentrations of the 3 metabolites were inversely correlated with the presence of adenomatous polyps
(e.g., lower concentrations of each metabolite indicate the patient is more likely to have adenomatous
polyps and require colonoscopy). Since the sex feature was encoded with males as being 1, and females
0, a patient being male is positively correlated with the presence of adenomatous polyps and the need
for colonoscopy. Age is also positively correlated, with older patients more likely to have adenomatous
polyps present and need a colonoscopy. Finally, the fact that a patient smokes is directly correlated with
the need for colonoscopy (i.e., smokers are more likely to develop polyps). These correlation findings
of clinical features with the adenomatous polyps align with many previous findings for correlation of
these clinical features with CRC [28,29]. Although none of the correlations associated with each feature
has a large absolute value, the linear combination of multiple features can yield a strong correlation for
adenomatous polyps.

Table 4. Further Information about features used in the algorithm for MS-based urine test.

Feature PubChem CID HMDB Correlation

Smoker N/A N/A 0.09
Age N/A N/A 0.13
Sex N/A N/A 0.17

Succinic Acid 1110 HMDB00254 −0.16
Ascorbic Acid 54670067 HMDB00044 −0.15

Carnitine 2724480 HMDB00062 −0.13

Carnitine (HMDB00062) and succinic acid (HMDB00254) have previously been found to be
associated with colorectal cancer [30]. Additionally, ascorbic acid (HMDB00044) has been linked to
other kinds of cancers [31]. Carnitine is necessary for fatty acid oxidation and transporting fatty acids
from the cytosol to the mitochondria, where it is broken down via the citric acid cycle to release
energy. In humans, most of the carnitine in the body comes from dietary sources such as red meat and
dairy products. About 25% of carnitine is synthesized in the liver, kidney, and brain from the amino
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acids lysine and methionine [32]. Interestingly, the final step of carnitine synthesis pathway occurs as
4-trimethylammoniobutanoic acid is transformed into carnitine via the enzyme gamma-butyrobetaine
dioxygenase where ascorbic acid acts as coenzyme and succinic acid gets produced. Succinic acid is
a dicarboxylic acid. The anion, succinate, is a component of the citric acid cycle capable of donating
electrons to the electron transfer chain. Oxidizing succinate links succinate dehydrogenase (SDH) to
the fast-cycling Krebs cycle portion where it participates in the breakdown of acetyl-CoA throughout
the whole Krebs cycle [33]. Succinic acid is also involved in ketone body metabolism and butyrate
metabolism. Succinic acid is produced in carnitine synthesis, oxidation of branched chain fatty acids,
glutamate metabolism, citric acid cycle, arginine and proline metabolism, and valine, leucine and
isoleucine degradation [34]. Ascorbic acid is considered an antioxidant and functions as a reducing
agent and a coenzyme in several metabolic pathways. The biologically active form of ascorbic acid is
vitamin C which cannot be produced in the human body and must be obtained in food. Ascorbic acid
is an electron donor for enzymes involved in collagen hydroxylation, biosynthesis of carnitine and
norepinephrine, tyrosine metabolism, and the amidation of peptide hormones [12].

This work has leveraged urine metabolomics and patient medical histories to predict whether a
person has adenomatous polyps and so should receive a colonoscopy. We have successfully transferred
a NMR-based assay to a MS-based assay with improved performance. Mass spectrometers are
commonly used in clinical environments which makes this MS-based test easy to adopt for clinical
use. In fact, Metabolomic Technologies Inc. has launched the MS-based urine test, PolypDx™, in
the USA through collaborating with the Clinical Laboratory Improvement Amendments (CLIA)
certified laboratories. This MS-based urine test performs better than fecal-based tests, and offers
additional advantages with regard to patient compliance, ease of sample collection, and performance
tunability. It is also one of the first true metabolomic (i.e., multi-metabolites) tests to be brought into
the clinical environment.

Supplementary Materials: The following are available online at www.mdpi.com/2218-1989/7/3/32/s1.
Figure S1. A representative LCMS of Calibrant 6; Figure S2. A representative plate map. LCMS sequence runs
vertically; Figure S3. Passing and Bablok regression analyses of MS-quantified on NMR-quantified data for Succinic
acid, N = 685; concentration range 0–362 µmol/L; Pearson correlation coefficient r = 0.862, P < 0.0001; Figure S4.
Passing and Bablok regression analyses of MS-quantified on NMR-quantified data for Ascorbic acid, N = 685;
concentration range 0–13,368 µmol/L; Pearson correlation coefficient r = 0.800, P < 0.0001; Figure S5. Passing
and Bablok regression analyses of MS-quantified on NMR-quantified data for Carnitine, N = 685; concentration
range 0–948 µmol/L; Pearson correlation coefficient r = 0.921, P < 0.0001; Table S1. Optimized MS parameters for
each compound. MRM pair 1 is used for quantitation and MRM pair 2 is for qualification; Table S2. Extraction
recoveries and accuracies for each metabolite; Table S3. CV% of QC samples for each metabolite within each plate.

Acknowledgments: The authors wish to acknowledge the funding support from Mitacs and the Industrial
Research Assistance Program (IRAP) from the National Research Council of Canada.

Author Contributions: Lu Deng co-designed and performed the majority of the experiments, developed the
LCMS assay, analyzed the data and wrote the manuscript. David Chang co-designed and supervised all the
experiments, and edited the manuscript. Rae R. Foshaug and Victor K. Tso coordinated the clinical samples,
provided technical assistance and participated in manuscript drafting and review. Roman Eisner performed the
statistical analysis and participated in manuscript drafting and review. David S. Wishart supervised the LCMS
development and edited the manuscript. Richard N. Fedorak co-designed the experiments, oversaw all activities,
and edited the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ferlay, J.; Soerjomataram, I.; Ervik, M.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.;
Bray, F. Globocan 2012 v1.0, Cancer Incidence and Mortality Worldwide: Iarc Cancerbase No. 11; International
Agency for Research on Cancer: Lyon, France, 2013.

2. Parkin, D.M.; Bray, F.; Ferlay, J.; Pisani, P. Global cancer statistics, 2002. CA Cancer J. Clin. 2005, 55, 74–108.
[CrossRef] [PubMed]

3. From Polyp to Cancer. Available online: http://www.hopkinscoloncancercenter.org/CMS/CMS_Page.aspx?
CurrentUDV=59&CMS_Page_ID=0B34E9BE-5DE6-4CB4-B387-4158CC924084 (accessed on 20 August 2016).

www.mdpi.com/2218-1989/7/3/32/s1
http://dx.doi.org/10.3322/canjclin.55.2.74
http://www.ncbi.nlm.nih.gov/pubmed/15761078
http://www.hopkinscoloncancercenter.org/CMS/CMS_Page.aspx?CurrentUDV=59&CMS_Page_ID=0B34E9BE-5DE6-4CB4-B387-4158CC924084
http://www.hopkinscoloncancercenter.org/CMS/CMS_Page.aspx?CurrentUDV=59&CMS_Page_ID=0B34E9BE-5DE6-4CB4-B387-4158CC924084


Metabolites 2017, 7, 32 11 of 12

4. Maroun, J.; Ng, E.; Berthelot, J.M.; Le Petit, C.; Dahrouge, S.; Flanagan, W.M.; Walker, H.; Evans, W.K.
Lifetime costs of colon and rectal cancer management in canada. Chron. Dis. Can. 2003, 24, 91–101.

5. Leddin, D.J.; Enns, R.; Hilsden, R.; Plourde, V.; Rabeneck, L.; Sadowski, D.C.; Signh, H. Canadian association
of gastroenterology position statement on screening individuals at average risk for developing colorectal
cancer: 2010. Can. J. Gastroenterol. 2010, 24, 705–714. [CrossRef] [PubMed]

6. Taylor, D.P.; Cannon-Albright, L.A.; Sweeney, C.; Williams, M.S.; Haug, P.J.; Mitchell, J.A.; Burt, R.W.
Comparison of compliance for colorectal cancer screening and surveillance by colonoscopy based on risk.
Genet. Med. 2011, 13, 737–743. [CrossRef] [PubMed]

7. Eisner, R.; Greiner, R.; Tso, V.; Wang, H.; Fedorak, R.N. A machine-learned predictor of colonic polyps based
on urinary metabolomics. Biomed. Res. Int. 2013, 2013, 303982. [CrossRef] [PubMed]

8. Allison, J.E.; Tekawa, I.S.; Ransom, L.J.; Adrain, A.L. A comparison of fecal occult-blood tests for
colorectal-cancer screening. N. Engl. J. Med. 1996, 334, 155–159. [CrossRef] [PubMed]

9. Wong, C.K.; Fedorak, R.N.; Prosser, C.I.; Stewart, M.E.; van Zanten, S.V.; Sadowski, D.C. The sensitivity
and specificity of guaiac and immunochemical fecal occult blood tests for the detection of advanced colonic
adenomas and cancer. Int. J. Colorectal Dis. 2012, 27, 1657–1664. [CrossRef] [PubMed]

10. Whitlock, E.P.; Lin, J.S.; Liles, E.; Beil, T.L.; Fu, R. Screening for colorectal cancer: A targeted, updated
systematic review for the u.S. Preventive services task force. Ann. Intern. Med. 2008, 149, 638–658. [CrossRef]
[PubMed]

11. Claudino, W.M.; Quattrone, A.; Biganzoli, L.; Pestrin, M.; Bertini, I.; Di Leo, A. Metabolomics: Available
results, current research projects in breast cancer, and future applications. J. Clin. Oncol. 2007, 25, 2840–2846.
[CrossRef] [PubMed]

12. Wishart, D.S.; Jewison, T.; Guo, A.C.; Wilson, M.; Knox, C.; Liu, Y.; Djoumbou, Y.; Mandal, R.; Aziat, F.;
Dong, E.; et al. Hmdb 3.0—The human metabolome database in 2013. Nucleic Acids Res. 2013, 41, D801–D807.
[CrossRef] [PubMed]

13. Bouatra, S.; Aziat, F.; Mandal, R.; Guo, A.C.; Wilson, M.R.; Knox, C.; Bjorndahl, T.C.; Krishnamurthy, R.;
Saleem, F.; Liu, P.; et al. The human urine metabolome. PLoS ONE 2013, 8, e73076. [CrossRef] [PubMed]

14. Yoshie, T.; Nishiumi, S.; Izumi, Y.; Sakai, A.; Inoue, J.; Azuma, T.; Yoshida, M. Regulation of the metabolite
profile by an apc gene mutation in colorectal cancer. Cancer Sci. 2012, 103, 1010–1021. [CrossRef] [PubMed]

15. Shen, X.J.; Rawls, J.F.; Randall, T.; Burcal, L.; Mpande, C.N.; Jenkins, N.; Jovov, B.; Abdo, Z.; Sandler, R.S.;
Keku, T.O. Molecular characterization of mucosal adherent bacteria and associations with colorectal
adenomas. Gut Microbes 2010, 1, 138–147. [CrossRef] [PubMed]

16. Wang, H.; Tso, V.K.; Slupsky, C.M.; Fedorak, R.N. Metabolomics and detection of colorectal cancer in humans:
A systematic review. Future Oncol. 2010, 6, 1395–1406. [CrossRef] [PubMed]

17. Wang, W.; Feng, B.; Li, X.; Yin, P.; Gao, P.; Zhao, X.; Lu, X.; Zheng, M.; Xu, G. Urinary metabolic profiling of
colorectal carcinoma based on online affinity solid phase extraction-high performance liquid chromatography
and ultra performance liquid chromatography-mass spectrometry. Mol. Biosyst. 2010, 6, 1947–1955.
[CrossRef] [PubMed]

18. Wang, H.; Tso, V.; Wong, C.; Sadowski, D.; Fedorak, R.N. Development and validation of a highly sensitive
urine-based test to identify patients with colonic adenomatous polyps. Clin. Transl. Gastroenterol. 2014, 5,
e54. [CrossRef] [PubMed]

19. Tso, V.; Eisner, R.; Macleod, S.; Ismond, K.P.; Foshaug, R.R.; Wang, H.; Joseph, R.; Chang, D.; Taylor, N.;
Fedorak, R.N. Consistency of metabolite determination from nmr spectra over time and between operators.
Metabolomics 2015, 5, 151.

20. Hastie, T.; Tibshirani, R.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and
Prediction: With 200 Full-Color Illustrations; Springer: New York, NY, USA, 2001; pp. xvi, 533.

21. Spratlin, J.L.; Serkova, N.J.; Eckhardt, S.G. Clinical applications of metabolomics in oncology: A review.
Clin. Cancer Res. 2009, 15, 431–440. [CrossRef] [PubMed]

22. Cherkassky, V. The nature of statistical learning theory. IEEE Trans. Neural Netw. 1997, 8, 1564. [CrossRef]
[PubMed]

23. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B Met. 1996, 58, 267–288.
24. Lynch, K.L. Clsi c62-a: A new standard for clinical mass spectrometry. Clin. Chem. 2016, 62, 24–29. [CrossRef]

[PubMed]

http://dx.doi.org/10.1155/2010/683171
http://www.ncbi.nlm.nih.gov/pubmed/21165377
http://dx.doi.org/10.1097/GIM.0b013e3182180c71
http://www.ncbi.nlm.nih.gov/pubmed/21555945
http://dx.doi.org/10.1155/2013/303982
http://www.ncbi.nlm.nih.gov/pubmed/24307992
http://dx.doi.org/10.1056/NEJM199601183340304
http://www.ncbi.nlm.nih.gov/pubmed/8531970
http://dx.doi.org/10.1007/s00384-012-1518-3
http://www.ncbi.nlm.nih.gov/pubmed/22696204
http://dx.doi.org/10.7326/0003-4819-149-9-200811040-00245
http://www.ncbi.nlm.nih.gov/pubmed/18838718
http://dx.doi.org/10.1200/JCO.2006.09.7550
http://www.ncbi.nlm.nih.gov/pubmed/17502626
http://dx.doi.org/10.1093/nar/gks1065
http://www.ncbi.nlm.nih.gov/pubmed/23161693
http://dx.doi.org/10.1371/journal.pone.0073076
http://www.ncbi.nlm.nih.gov/pubmed/24023812
http://dx.doi.org/10.1111/j.1349-7006.2012.02262.x
http://www.ncbi.nlm.nih.gov/pubmed/22380946
http://dx.doi.org/10.4161/gmic.1.3.12360
http://www.ncbi.nlm.nih.gov/pubmed/20740058
http://dx.doi.org/10.2217/fon.10.107
http://www.ncbi.nlm.nih.gov/pubmed/20919825
http://dx.doi.org/10.1039/c004994h
http://www.ncbi.nlm.nih.gov/pubmed/20617254
http://dx.doi.org/10.1038/ctg.2014.2
http://www.ncbi.nlm.nih.gov/pubmed/24646506
http://dx.doi.org/10.1158/1078-0432.CCR-08-1059
http://www.ncbi.nlm.nih.gov/pubmed/19147747
http://dx.doi.org/10.1109/TNN.1997.641482
http://www.ncbi.nlm.nih.gov/pubmed/18255760
http://dx.doi.org/10.1373/clinchem.2015.238626
http://www.ncbi.nlm.nih.gov/pubmed/26430075


Metabolites 2017, 7, 32 12 of 12

25. Arboretti, R.; Bordignon, P.; Corain, L.; Palermo, G.; Pesarin, F.; Salmaso, L. Statistical tests in medical
research: Traditional methods vs. Multivariate npc permutation tests. Urologia 2015, 82, 130–136. [CrossRef]
[PubMed]

26. Bilic-Zulle, L. Comparison of methods: Passing and bablok regression. Biochem. Med. (Zagreb) 2011, 21,
49–52. [CrossRef] [PubMed]

27. Passing, H.; Bablok, W. A new biometrical procedure for testing the equality of measurements from two
different analytical methods. Application of linear regression procedures for method comparison studies in
clinical chemistry, part I. J. Clin. Chem. Clin. Biochem. 1983, 21, 709–720. [PubMed]

28. Giovannucci, E.; Colditz, G.A.; Stampfer, M.J.; Hunter, D.; Rosner, B.A.; Willett, W.C.; Speizer, F.E.
A prospective study of cigarette smoking and risk of colorectal adenoma and colorectal cancer in US
Women. J. Natl. Cancer Inst. 1994, 86, 192–199. [CrossRef] [PubMed]

29. Fuchs, C.S.; Giovannucci, E.L.; Colditz, G.A.; Hunter, D.J.; Speizer, F.E.; Willett, W.C. A prospective study of
family history and the risk of colorectal cancer. N. Engl. J. Med. 1994, 331, 1669–1674. [CrossRef] [PubMed]

30. Ni, Y.; Xie, G.; Jia, W. Metabonomics of human colorectal cancer: New approaches for early diagnosis and
biomarker discovery. J. Proteom. Res. 2014, 13, 3857–3870. [CrossRef] [PubMed]

31. Rai, B.; Kharb, S.; Jain, R.; Anand, S.C. Salivary vitamins e and c in oral cancer. Redox Rep. 2007, 12, 163–164.
[CrossRef] [PubMed]

32. Wishart, D.S.; Tzur, D.; Knox, C.; Eisner, R.; Guo, A.C.; Young, N.; Cheng, D.; Jewell, K.; Arndt, D.;
Sawhney, S.; et al. Hmdb: The human metabolome database. Nucleic Acids Res. 2007, 35, D521–D526.
[CrossRef] [PubMed]

33. Wishart, D.S.; Knox, C.; Guo, A.C.; Eisner, R.; Young, N.; Gautam, B.; Hau, D.D.; Psychogios, N.; Dong, E.;
Bouatra, S.; et al. Hmdb: A knowledgebase for the human metabolome. Nucleic Acids Res. 2009, 37,
D603–D610. [CrossRef] [PubMed]

34. Frolkis, A.; Knox, C.; Lim, E.; Jewison, T.; Law, V.; Hau, D.D.; Liu, P.; Gautam, B.; Ly, S.; Guo, A.C.; et al.
Smpdb: The small molecule pathway database. Nucleic Acids Res. 2010, 38, D480–D487. [CrossRef] [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.5301/uro.5000117
http://www.ncbi.nlm.nih.gov/pubmed/25907894
http://dx.doi.org/10.11613/BM.2011.010
http://www.ncbi.nlm.nih.gov/pubmed/22141206
http://www.ncbi.nlm.nih.gov/pubmed/6655447
http://dx.doi.org/10.1093/jnci/86.3.192
http://www.ncbi.nlm.nih.gov/pubmed/8283491
http://dx.doi.org/10.1056/NEJM199412223312501
http://www.ncbi.nlm.nih.gov/pubmed/7969357
http://dx.doi.org/10.1021/pr500443c
http://www.ncbi.nlm.nih.gov/pubmed/25105552
http://dx.doi.org/10.1179/135100007X200245
http://www.ncbi.nlm.nih.gov/pubmed/17623524
http://dx.doi.org/10.1093/nar/gkl923
http://www.ncbi.nlm.nih.gov/pubmed/17202168
http://dx.doi.org/10.1093/nar/gkn810
http://www.ncbi.nlm.nih.gov/pubmed/18953024
http://dx.doi.org/10.1093/nar/gkp1002
http://www.ncbi.nlm.nih.gov/pubmed/19948758
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Participants and Sample Collection 
	NMR Analysis 
	Mass Spectrometry Analysis 
	Standards 
	Sample Processing 
	LC-MS Analysis 
	Statistical Analysis 

	Results 
	Participant Characteristics 
	Key Metabolite Identification 

	LC-MS Measurements 
	Development and Validation of the MS Based Test 
	Comparison of the MS-Based Metabolomics Test with NMR-Based Test 
	Comparison of the MS-Based Urine Metabolomics Test with Commercially Available Fecal-Based Tests 

	Discussion 

