Supplementary Materials: Enhanced Isotopic Ratio Outlier Analysis (IROA) peak detection and identification with ultrahigh resolution GC-Orbitrap/MS: Potential Application for Investigation of Model Organism Metabolomes

Yunping Qiu, Robyn D. Moir, Ian M. Willis, Suresh Seethapathy, Robert C. Biniakewitz and Irwin J. Kurland

Figure S1. Mass spectra of 10 typical CI-IROA peak pairs with fragments obtained from GC-Orbitrap/MS (on the top of each panel) and GC-TOF/MS (at the bottom of each panel). The reagent gas for both is a low concentration of ammonia in methane, which for the GC-TOF/MS was 5% ammonia in methane, and 10% ammonia in methane for GC-Orbitrap/MS.

Figure S2. Elucidation of the fragmentations for tri-silylated glutamine for positive chemical ionization with methane, ammonia or the ammonia/methane mixture as the reagent gas. Pure methane as the reagent gas generated a larger intensity MH-CH4 fragment ion (m/z = 347.1638 for tri-silylated glutamine), as well as a high intensity of the fragment with m/z of 273.1451, due to cleavage of an oxygen group with the silylation group attached to it. The mass spectra generated by pure ammonia and 10% ammonia in methane showed a higher relative intensity molecular ion peak (m/z 363.195), and a dominant fragment of m/z 291.155 (due to cleavage one silylation group from the molecular ion).

Figure S3. Demonstration of the lack of saturation for GC-Orbitrap/MS *vs.* Waters GC-TOF/MS when metabolites at high concentration (5-oxoproline) are present in the sample. To detect a greater number of lower abundance metabolites, 5 fold more extracted yeast material was used for the GC-Orbitrap/MS as compared with GC-TOF/MS. Even with a lower amount of starting material, saturation was observed in the molecular ion (m/z 274)

in GC-TOF/MS (lower) spectrum. The same IROA PCI fragments (5 carbon m/z 258/263, and m/z 202/207, and 4 carbon m/z 156/160, and m/z 230/234) were observed in both GC-TOF/MS and GC-Orbitrap/MS spectrum.

Figure S4. IROA peak pairs for tri-silylated glutamic acid detected in GC-TOF/MS (top in red color), and in GC-Orbitrap/MS (middle in green color). The [MH]⁺ peak pairs are 364 to 369 m/z (5 carbons). BSTFA_d9 derivatization revealed 3 silylations in glutamic acid with a 27 Da difference between BSTFA_d9 and unlabeled BSTFA derivatization (m/z 364–> m/z 391, bottom panel in purple), validating CFG predictions in Figure 2.

Figure S5. Representations of isomeric metabolites (seven found) with chemical formula of $C_{14}H_{34}O_4S_{13}$ in the NIST library.

Figure S6. Top 10 hits using CFM-ID with the EI spectrum from the 12C IROA example (YU1130_351, see CI-IROA library in Supplemental section of reference [10]). Settings in CFM-ID: Spectra type: EI; choose a database: HMDB derivative; Parent ion mass: 350.1906; scoring function: DotProduct; with 50 ppm mass tolerance.

Figure S7. EI in silico fragmentation spectra of the metabolites with chemical formula of $C_{14}H_{34}O_4S_{13}$ in the CFM-ID. Note that the dominant theoretical EI peak of m/z 131 is evident is the 2,3-dihydroxyisovaleric acid seen in Figure 4.