
In-silico Optimisation of Mass Spectrometry
Fragmentation Strategies in Metabolomics -

Supplementary Materials

Joe Wandy1,‡, Vinny Davies2,‡, Justin J.J. van der Hooft3,
Stefan Weidt1, Rónán Daly1 and Simon Rogers2

1 Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom. 2 School of Computing

Science, University of Glasgow, Glasgow, United Kingdom. 3 Bioinformatics Group, Department

of Plant Sciences, Wageningen University, Wageningen, The Netherlands.

1 MS1 Simulations

Figure 1 shows the overall characteristics of m/z, RT and intensity values from running
XCMS peak picking on the resulting simulated mzML file and 4 multi-beer samples for
comparison (labelled multi-beer-1, ..., multi-beer-4 ). It can be observed from Figure 1 that all
m/z and RT boxplots show similar profiles between the 4 randomly selected real beer samples
and the simulated sample from ViMMS. We explain the slightly higher intensity distribution
in Figure 1c due to the fact that in our sampling scheme, a chemical having high sampled
maximum intensity values could be assigned a large ROI that spans a big RT range. During
peak picking, these potentially-noisy ROIs are detected as multiple high-intensity peaks by
XCMS, resulting in an upward shift in the intensity distribution of detected MS1 features
from the simulated mzML file. Improving the regions of interest detection scheme to address
this issue is a future work.

(a) m/z (b) RT (c) Log Intensity

Figure 1: A figure showing boxplots of the simulated data and some of the multi-beer samples.

1



(a) Real (b) Simulated

Figure 2: ToppView visualisation of mz range (100 - 400) ppm and RT range (400 - 800)s
for a Top-10 DDA fragmentation strategy in ToppView for (a) a multi-beer sample and (b)
for the same file generated using ViMMS

2 Top-N Simulations

From the actual multi-beer-1 fragmentation mzML, we extracted 512,540 ROIs across all
scans using a 10 ppm tolerance that determines when peaks should be grouped under one
ROI. Only ROIs with at least one peak above the minimum intensity threshold of 1.75E5
are kept. This results in 10,190 ROIs, which are converted into chemical objects in ViMMS,
having their corresponding normalised chromatographic peak shapes derived from the ROIs.
Simulated Top-10 DDA fragmentation was performed using the same fragmentation param-
eters used to generate the actual beer1 data (N=10, DEW=15s). Simulation took approxi-
mately 2 minutes in ViMMS running on an Intel Core i9 laptop. The generated mzML file
and simulator state were loaded into ToppView and Jupyter Notebook for further analysis.

Visual inspection of the resulting spectra in ToppView shows that the mzML files from
ViMMS and the multi-beer-1 data look broadly similar (Figure 2). Comparing the number
of scans, we obtained a total of 9,891 scans from the simulator to 9,406 scans in the actual
beer mzML, resulting in 3,027 fewer MS1 features that can be picked by XCMS from the
generated mzML file (Table 1).

To evaluate these differences quantitatively, we matched precursor ion information from
the real multi-beer 1 mzML to the generated mzML from ViMMS. 6,757 out of 7,655 (88%)
precursor ions can be matched from the actual multi-beer 1 file to the generated file when
matching up to 2 decimal places for the m/z values and using 15s tolerance window for
retention time. It can be seen from Figure 3 that fragmentation events from both the real
and simulated files are in close proximity to each other.

2



Figure 3: Locations of precursor peaks extracted from MS/MS scans in original multi-beer-1
data that could be matched to the generated mzML data in ViMMS. The colours indicate
where the MS/MS occurred in close proximity to an MS/MS in the real beer data (blue for
matched fragmentation events and red for unmatched ones). Scans were performed in both
cases using a Top-10 DDA fragmentation strategy.

Table 1: Table showing XCMS peak picking results on the real vs simulated files for the
original beer data.

Generated mzML Real mzML

Number of MS1 scans 1,267 1,751
Number of MS2 scans 8,624 7,655

Number of peaks picked by XCMS 12,801 15,828

3 Alternative scenario: varying Ns when both full-scan

and Top-N data are available.

Consider a scenario where within an experimental batch, full-scan and Top-N data are ac-
quired. In a typical analysis of this scenario, the MS1 peaks detected by XCMS from the
full-scan MS1 file serve as the ground truth of peaks we wish to fragment. To compute
performance in this scenario, XCMS’ CentWave peak detection is performed on the full-
scan input files mzML files, resulting in the number of ground truth MS1 features shown in
Table 2.

3



Table 2: Table showing the number of ground truth MS1 features from XCMS peak picking
for the two full-scan (MS1-only) multi-beer and multi-urine data in the Top-N experiments.

Number of ground truth MS1 features

multi-beer-1 9,198
multi-beer-2 9,805
multi-urine-2 7,188
multi-urine-3 7,664

For evaluation, we provide the following definition of positive and negative instances
(illustrated in Figure 4):

True Positives (TP): peaks from ground truth (found in full-scan files) that are frag-
mented above the minimum intensity threshold.

False Positives (FP): peaks from ground truth that are not fragmented + peaks from
ground truth that are fragmented below the minimum intensity threshold.

False Negatives (FN): peaks not from ground truth that are fragmented above the
minimum intensity threshold.

FP

Full-scan data Fragmented

TP FN

Figure 4: Definition of True Positives (TP), False Positives (FP) and False Negatives (FN)
for performance evaluation of Top-N DDA fragmentation strategy (Scenario 1). The blue
circle in the Venn diagram refers to all peaks that are fragmented above the minimum MS1
intensity threshold, while the green circle refers to all ground truth peaks (MS1 features)
found by XCMS’ CentWave from the full-scan files.

The results in this experiment shows that increasing N results in lower precision (Fig-
ure 5a), while recall increases with N initially but flattens (Figure 5b). Assessing the F1

score (Figure 5c), which is the harmonic average of precision and recall, we see that the best
fragmentation performance (as represented by the F1 score) is reached between N from 10
to 20 and plateaus after 20, suggesting that no further performance gain is obtained from
increasing the number of precursor ions to fragment.

4



(a) Precision

(b) Recall

(c) F1

Figure 5: Figures showing (a) precision, (b) recall and (d) F1 score for peak picking per-
formance as N changes in Top-N DDA experiments in ViMMS based on the classification
specifications given in Figure 4.

5



4 Varying Multiple Parameters in the Top-N Simula-

tions

Figure 6 shows boxplots comparing the F1-scores (representative of fragmentation perfor-
mance) of all parameter combinations from the real and simulated data. The results from
our simulator generally match the results from the real data, although with a slightly greater
spread in the simulated fragmentation performance. Exploring the results in detail, we see
that the best fragmentation performance is obtained at N = 20 and DEW = 30 for both
datasets and the worst at N = 1 and DEW = (15, 30, 60) (Table 3). We explain our findings
by the fact that the best performance is obtained at the parameter combinations with the
lowest trade-off between fragmentation performance and MS2 peak picking quality. The poor
results came about from when both N and DEW are too small. In the former, not enough
unique MS1 peaks are fragmented due to dynamic exclusion effect, whereas in the latter
case, the quality of peak picking from fragmentation files decrease significantly, affecting the
number of true positives obtained.

Figure 6: Distributions of F1-scores for all parameter combinations for the real and simulated
BeerQCB data.

Table 3: The highest and lowest fragmentation performance for real and simulated results.

Rank
Real Simulated

N DEW Prec Rec F1 N DEW Prec Rec F1
1 20 30 0.820 0.147 0.250 20 30 0.799 0.166 0.274
2 10 30 0.722 0.135 0.228 20 60 0.761 0.158 0.262
3 15 30 0.769 0.132 0.226 15 30 0.739 0.157 0.258

-1 1 15 0.771 0.030 0.058 1 15 0.793 0.024 0.046
-2 1 30 0.757 0.039 0.074 1 30 0.743 0.033 0.062
-3 1 60 0.738 0.048 0.091 1 60 0.741 0.046 0.087

6



5 Implementation Details

ViMMS is implemented in Python (Van Rossum et al., 2007), with numerical and matrix
computations performed on top of the NumPY (Van Der Walt et al., 2011), SciPy (Jones
et al., 2001) and Scikit-learn (Pedregosa et al., 2011) libraries. Prototyping as well as running
interactive examples of ViMMS functionalities are performed in Jupyter Notebook environ-
ment (Kluyver et al., 2016). For DsDA, we re-use the original script from DsDA (Broeckling
et al., 2018) available in the R programming language (Ihaka and Gentleman, 1996) to per-
form the prioritisation and scoring process. mzML files are read using the pymzML library
(Kösters et al., 2018) and written using the psims library (Klein and Zaia, 2019).

References

Broeckling, C. D., E. Hoyes, K. Richardson, J. M. Brown, and J. E. Prenni (2018). Com-
prehensive tandem-mass-spectrometry coverage of complex samples enabled by data-set-
dependent acquisition. Analytical Chemistry 90 (13), 8020–8027.

Ihaka, R. and R. Gentleman (1996). R: a language for data analysis and graphics. Journal
of computational and graphical statistics 5 (3), 299–314.

Jones, E., T. Oliphant, P. Peterson, et al. (2001). Scipy: Open source scientific tools for
python.

Klein, J. and J. Zaia (2019). psims-a declarative writer for mzml and mzidentml for python.
Molecular & Cellular Proteomics 18 (3), 571–575.

Kluyver, T., B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier, J. Frederic, K. Kelley,
J. B. Hamrick, J. Grout, S. Corlay, et al. (2016). Jupyter notebooks-a publishing format
for reproducible computational workflows. In ELPUB, pp. 87–90.

Kösters, M., J. Leufken, S. Schulze, K. Sugimoto, J. Klein, R. Zahedi, M. Hippler, S. Leidel,
and C. Fufezan (2018). pymzml v2. 0: introducing a highly compressed and seekable gzip
format. Bioinformatics 34 (14), 2513–2514.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, et al. (2011). Scikit-learn: Machine learning in
python. Journal of machine learning research 12, 2825–2830.

Van Der Walt, S., S. C. Colbert, and G. Varoquaux (2011). The numpy array: a structure
for efficient numerical computation. Computing in Science & Engineering 13 (2), 22.

Van Rossum, G. et al. (2007). Python programming language. In USENIX annual technical
conference, Volume 41, pp. 36.

7


