Supplementary Material

Quantitative ¹H NMR Metabolomics Reveal Distinct Metabolic Adaptations in Human Macrophages Following Differential Activation

Amanda L. Fuchs *, Sage M. Schiller, Wyatt J. Keegan, Mary Cloud B. Ammons †, Brian Eilers, Brian Tripet and Valérie Copié *

Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; sageschiller2@gmail.com (S.M.S.); wjkeegan@msn.com (W.J.K.); marycloud.ammonsanderson@va.gov (M.C.B.A.); bjeilers@gmail.com (B.E.); brian.tripet@gmail.com (B.T.)

⁺ Current Address: Boise Veterans Medical Center, Idaho Veterans Research and Education Foundation, Boise, ID, 83702 USA

* Correspondence: afuchs03143@gmail.com (A.L.F.); vcopie@montana.edu (V.C.); Tel.: 406-946-2073 (A.L.F.); 406-994-7244 (V.C.);

Received: 5 September 2019; Accepted: 22 October 2019; Published: 24 October 2019

Amanda L. Fuchs et al., Figure S1

Figure S1. 1D ¹H NMR spectra acquired on MSU's Bruker 600 MHz (¹H Larmor frequency) NMR spectrometer on intra-(**A**) and extracellular (**B**) metabolite extracts from M0 MΦs. Abbreviations denote: AMP, adenosine monophosphate; ADP, adenosine diphosphate; BCAA, branched chain amino acids.

Amanda L. Fuchs et al., Figure S2

Figure S2. PCA loadings plots for intra- (A) and extracellular (B) $M\Phi$ metabolite extracts.

Amanda L. Fuchs et al., Figure S3

Figure S3. Metabolism of mannose for N-glycan biosynthesis **(A)** and fold change expression of *Gmppa, Gmppb, Pmm1,* and *Pmm2* in bone marrow-derived murine MΦs upon differential stimuli **(B)**. Data has been derived from Zhang *et al.* to generate these plots [39]. Abbreviations denote: GDP, guanosine diphosphate; *Gmppa,* GDP-mannose pyrophosphorylase A; *Gmppb,* GDP-mannose pyrophosphorylase B; GTP, guanosine triphosphate; IFN-γ, interferon-γ; IL-4, interleukin-4; LPS, lipopolysaccharide; M1P, mannose 1-phosphate; M6P, mannose 6-phosphate; *Pmm1,* phosphomannomutase 1; *Pmm2,* phosphomannomutase 2.

Amanda L. Fuchs et al., Figure S4

Figure S4. Fold change expression of *Bdh1* (mMR028403), *Bdh1** (mMC011803), *Oxct1*, and *Oxct2* in bone marrow-derived murine MΦs upon differential stimuli. Data has been derived from Zhang *et al.* to generate these plots [39]. Abbreviations denote: *Bdh1*, 3-hydroxybutyrate dehydrogenase 1; IFN-γ, interferon-γ; IL-4, interleukin-4; LPS, lipopolysaccharide; *Oxct1/2*, 3-oxoacid Co-A transferase 1/2.

Figure S5. Generation of glycine from **(A)** choline or **(B)** glutamate, serine, and alanine. **(C)** Fold change expression of *Agxt2* in bone marrow-derived murine MΦs upon differential stimuli. Data has been derived from Zhang *et al.* to generate this plot [39]. **(D)** Quantitative levels of corresponding metabolites detected in intra- and extracellular MΦ metabolite extracts (mean ± SD). Statistical significance (*p*) was measured using two-tailed unpaired parametric *t*-tests with Welch's correction, whereby *, *p* < 0.05; **, *p* < 0.01; ***, *p* < 0.001; ****, *p* < 0.0001. Abbreviations denote: 5,10-MTHF, 5,10-methylenetetrahydrofolate; *α*-KG, *α*-ketoglutarate; A, acceptor; AH₂, reduced acceptor; *ALDH7A1*, betaine aldehyde dehydrogenase; *AGXT*, alanine-glyoxylate aminotransferase; *BHMT*, betaine-homocysteine S-methyltransferase; *CHDH*, choline dehydrogenase; *DMGDH*, dimethylglycine dehydrogenase; FP, electron-transfer flavoprotein; IFN-γ, interferon-γ; IL-4, interleukin-4; LPS, lipopolysaccharide; NAD⁺, nicotinamide adenine dinucleotide; NADH, reduced nicotinamide

adenine dinucleotide; *PIPOX*, sarcosine oxidase; rFP, reduced electron-transfer flavoprotein; *SARDH*, sarcosine dehydrogenase; *SHMT*, serine hydroxymethyltransferase; THF, tetrahydrofolate.

Amanda L. Fuchs *et al.*, Figure S6

Figure S6. Fold change expression of *Chka*, *Chk* β , *Etnk1*, *Pcyt1a*, and *Pcyt2* in bone marrow-derived murine MΦs upon differential stimuli. Data has been derived from Zhang *et al.* to generate these plots [39]. Abbreviations denote: *Chka*, choline kinase α ; *Chk* β , choline kinase β ; *Etnk1*, ethanolamine kinase 1; IFN- γ , interferon- γ ; IL-4, interleukin-4; LPS, lipopolysaccharide; *Pcyt1a*, phosphate cytidylyltransferase 1 α ; *Pcyt2*, phosphate cytidylyltransferase 2.

Figure S7. Purity of isolated monocytes. Representative histogram of purified CD14⁺ monocytes (left) and pooled data from 5 independent experiments, mean ± SEM (right).

Amanda L. Fuchs et al., Figure S8

Figure S8. Phenotype of primary human monocyte-derived macrophages (MoMΦs). **(A)** Gating strategy for FACS analysis of MoMΦs; **(B)** Dot plots of CD68, CD80, and CD163 expression by M0, M1, and M2a MoMΦs; **(C)** Normalized mean fluorescence intensity (MFI) of CD68, CD80, and CD163 expression by M0, M1, and M2a MoMΦs.

Amanda L. Fuchs et al., Table S1

Table S1. 1D ¹H NMR intra- and extracellular metabolite limit of detection (LOD) values.¹

Extract	Metabolite	LOD (µM)	
	Arginine	3	
Intracellular	ATP	1	
	Betaine	1	
	Glucose-1-phosphate	1	
	NAD+	0.5	
	Niacinamide	1	
	Quinolinate	1	
Extracellular	Fumarate	1	

¹LOD values were established by evaluation of signal to noise ratios in our experimental 1D ¹H NMR spectra, Chenomx NMR Suite software, and its accompanying Chenomx 600 MHz metabolite library. Abbreviations denote: ATP, adenosine triphosphate; NAD⁺, nicotinamide adenine dinucleotide.

Amanda L. Fuchs *et al.*, Table S2

Table S2. Discriminatory metabolites in intracellular extracts associated with M1 vs. M2a MΦ activation.¹

	M1 vs. M2a MФs			
Metabolite	FC	<i>p</i> -value		
Acetate	1.27	**		
ADP	-1.36	***		
AMP	-1.83	****		
Aspartate	-1.32	**		
ATP	9.142	****		
Betaine	2.16	***		
Choline	1.91	****		
Creatine	-1.46	*		
Creatine phosphate	1.32	***		
Fumarate	-1.86	****		
Glucose	-1.47	*		
Glutamate	-2.19	***		
Glutamine	1.36	**		
GSH	-1.34	**		
GTP	-1.49	***		
myo-Inositol	-4.57	****		
NAD ⁺	-4.06	****		
NADPH	-3.20	****		
Niacinamide	5.19 ²	****		
O-phosphocholine	-9.51	***		
O-phosphoethanolamine	2.03	***		
Proline	-1.39	*		
Propionate	1.39	**		
Quinolinate	25.90 ²	****		
Serine	1.49	**		
Succinate	1.48	*		
Taurine	1.45	***		
UMP	-1.61	****		
Valine	1.18	*		

¹Metabolites were selected based upon fold change (FC) and statistical significance of intracellular metabolite concentrations between M1 and M2a MΦs; (nmol/mg protein; calculated from metabolite spectral fitting using the Chenomx NMR Suite software and the standard Chenomx 600 MHz metabolite library). Fold changes were calculated

relative to M2a M Φ s, whereby increases are shown as positive values and decreases are shown as negative values. Statistical significance (*p*) was measured using two-tailed unpaired parametric *t*-tests with Welch's correction, whereby *, *p* < 0.05; **, *p* < 0.01; ***, *p* < 0.001; ****, *p* < 0.0001. Abbreviations denote: ADP, adenosine diphosphate; AMP, adenosine monophosphate; ATP, adenosine triphosphate; GSH, reduced glutathione; GTP, guanosine triphosphate; NAD⁺, nicotinamide adenine dinucleotide; NADPH, reduced nicotinamide adenine dinucleotide phosphate; UMP, uridine monophosphate. ² Fold change (FC) was calculated using limit of detection (LOD) values (see Table S1) for M Φ activation state in which a given metabolite was not detected.

Amanda L. Fuchs et al., Table S3

Table S3. Relative fold change expression of select genes in bone marrow-derived murine MΦs upon differential stimuli.¹

Gene	Stimuli	Time (hr)			
		2	6	12	24
Agxt2	IFN-γ	-1.03	-1.24	-1.27	1.18
	IL-4	1.05	-1.05	1.23	-1.39
U	LPS	1.01	1.28	1.56	1.17
	IFN-γ	-1.37	-1.93	-1.47	-1.56
Bdh1	IL-4	-1.01	-1.17	1.12	1.02
	LPS	1.06	1.03	-1.68	1.18
	IFN-γ	1.47	1.21	1.25	1.27
Bdh1*	IL-4	1.08	-1.02	1.04	-1.08
	LPS	1.23	-1.07	-1.05	1.16
Chka	IFN-γ	2.25	1.05	-1.39	-1.49
	IL-4	-1.55	-1.14	-1.54	1.42
	LPS	-2.22	-1.78	-1.88	-1.08
	IFN-γ	-1.25	-1.37	-1.54	-1.54
Chkβ	IL-4	1.04	-1.43	-1.15	-1.15
	LPS	-1.22	-1.74	-2.19	-2.03
	IFN-γ	3.16	3.60	2.13	3.47
Etnk1	IL-4	1.55	2.08	1.82	-1.03
	LPS	1.44	2.37	2.58	1.55
	IFN-γ	1.12	-1.37	-1.20	1.01
Gmppa	IL-4	1.30	-1.18	1.14	1.51
	LPS	1.19	-1.10	-1.57	1.12
	IFN-γ	1.24	1.10	2.89	2.09
Gmppb	IL-4	-1.48	-1.20	1.64	1.11
	LPS	1.55	1.31	2.32	2.44
	IFN-γ	1.19	1.15	1.58	-1.44
Oxct1	IL-4	1.08	1.86	2.17	2.03
	LPS	-1.29	-1.35	-1.41	-1.46
Oxct2	IFN-γ	1.27	1.55	1.18	1.24
	IL-4	1.26	1.44	1.25	-1.45
	LPS	1.05	1.13	1.06	1.10
Pcyt1a	IFN-γ	-1.68	-1.37	-1.66	-2.22
	IL-4	1.33	1.59	1.26	1.24
	LPS	-1.47	-2.59	-2.63	-2.85
	IFN-γ	1.87	-1.54	-1.71	1.15
Pcyt2	IL-4	2.36	1.08	1.55	3.07
	LPS	1.24	-1.54	-1.31	-1.17
Pmm1	IFN-γ	-1.12	-2.74	-3.45	-3.66
	IL-4	1.40	2.06	1.77	1.22
	LPS	1.11	-1.54	-3.83	-1.63
Pmm2	IFN-γ	2.71	1.63	1.27	2.41
	IL-4	1.90	2.29	1.76	2.20
	LPS	1.43	1.07	1.39	1.63

¹Fold changes were calculated using supplementary microarray data for *Agxt2*, *Bdh1*, *Bdh1**, *Chkα*, *Chkβ*, *Etnk1*, *Gmppa*, *Gmppb*, *Oxct1*, *Oxct2*, *Pcyt1a*, *Pcyt2*, *Pmm1*, and *Pmm2* genes, with UNIQIDs of mMA035026, mMR028403, mMC011803, mMC011615, mMA034846, mMR029849, mMR028432, mMC009282, mMC013095, mMC019363, mMC002638, mMC007591, mMC004009, and mMA034923, respectively, relative to control MΦs (data derived from Zhang *et al.*)[39]. Increases are shown as positive values and decreases are shown as negative values. Abbreviations denote: *Agxt2*, alanine-glyoxylate aminotransferase 2; *Bdh1*, 3-hydroxybutyrate dehydrogenase 1; *Chkα*, choline kinase *α*; *Chkβ*, choline kinase *β*; *Etnk1*, ethanolamine kinase 1; *Gmppa*, GDP-mannose pyrophosphorylase A; *Gmppb*, GDP-mannose pyrophosphorylase B; IFN-γ, interferon-γ; IL-4, interleukin-4; LPS, lipopolysaccharide; *Ocxt1/2*, 3-oxoacid Co-A transferase 1/2; *Pcyt1a*, phosphate cytidylyltransferase 1*α*; *Pcyt2*, phosphate cytidylyltransferase 2; *Pmm1*, phosphomannomutase 1; *Pmm2*, phosphomannomutase 2.