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Abstract: Metabolomics uses quantitative analyses of metabolites from tissues or bodily fluids to
acquire a functional readout of the physiological state. Complex diseases arise from the influence
of multiple factors, such as genetics, environment and lifestyle. Since genes, RNAs and proteins
converge onto the terminal downstream metabolome, metabolomics datasets offer a rich source of
information in a complex and convoluted presentation. Thus, powerful computational methods
capable of deciphering the effects of many upstream influences have become increasingly necessary.
In this review, the workflow of metabolic marker discovery is outlined from metabolite extraction
to model interpretation and validation. Additionally, current metabolomics research in various
complex disease areas is examined to identify gaps and trends in the use of several statistical
and computational algorithms. Then, we highlight and discuss three advanced machine-learning
algorithms, specifically ensemble learning, artificial neural networks, and genetic programming,
that are currently less visible, but are budding with high potential for utility in metabolomics research.
With an upward trend in the use of highly-accurate, multivariate models in the metabolomics
literature, diagnostic biomarker panels of complex diseases are more recently achieving accuracies
approaching or exceeding traditional diagnostic procedures. This review aims to provide an overview
of computational methods in metabolomics and promote the use of up-to-date machine-learning and
computational methods by metabolomics researchers.

Keywords: metabolomics; complex diseases; biomarker discovery; machine learning;
feature selection; classification; ensemble learning; artificial neural networks; genetic programming

1. Introduction

Over the past decade, the metabolome has been deemed the final frontier for broad, biochemical
databases of organismal information among the well-established fields of genomics, transcriptomics,
and proteomics [1]. Metabolomics is the study of quantifying metabolites and mapping their complex
interactions within this domain, which is comprised of the total set of small molecules (<1500 Da)
present in cells, tissues, organs and biological fluids [2,3]. It is the final downstream component of the
biochemical stages, involving genes, RNA, proteins and environmental factors, ultimately yielding
phenotypic changes in an organism [2]. Since metabolism crucially involves important physiological
processes that diseases often alter, metabolomics analyses can be used to detect disease-driven changes
from the levels of thousands of metabolites, allowing for enhancements in current diagnostic methods
and discoveries of specific, perturbed metabolic networks. The advantage of using metabolomics is
therefore derived from its provision of a functional readout of the physiological state of an organism.
This is because metabolites act as direct signatures of biochemical activity, whereas genes and proteins
may be affected by epigenetic regulation and post-translational modifications. In other words,
genomics reveals what may have occurred, whereas metabolomics reflects what certainly occurred.
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Importantly, metabolomics may hold the key to tackling the challenges associated with complex
diseases, which are caused by an intricate interplay between an individual’s genes, environment and
lifestyle [4]. Interestingly, most diseases lie under this umbrella term, which include, but are not limited
to cancer, cardiovascular disease, diabetes, arthritis, obesity and dementia. It is well known that the
classical Mendelian patterns of inheritance are not observed within these illnesses. Rather, expression
of certain correlational genes may increase risk of contraction, but does not guarantee incidence;
instead, toxins from the environment, drugs consumed over one’s lifetime, poor diet and lack of
exercise in combination with such genes would likely lead to disease onset. Therefore, researchers of
complex diseases must identify methods to overcome the challenges of deciphering the quantitative
influence of risk-associated genes in comparison to non-genetic factors. Metabolomics offers a
solution to this by allowing the individual influences of genetics, environment and lifestyle to
converge onto the metabolome as a terminal downstream domain of products. This holistic approach
allows metabolomics researchers to discover biomarker signatures that capture the multiple major
factors driving the complex disease. Ultimately, these panels can help to diagnose at-risk complex
disease patients in the clinic and even predict onset years before symptoms arise using prodromal
metabolomes [5]. In addition to the clinical benefits, it grants researchers a useful visualization
of how the complex metabolic networks differ with and without disease influence. Research for
metabolic marker discovery spans a fast-growing array of prevalent disease areas, such as breast
cancer, osteoarthritis and Alzheimer’s [5-7].

Although rich quantitative datasets may contain valuable information, the extents of their
utilities are limited by the appropriateness of the selected statistical and computational methods
of analysis. Since these datasets contain hundreds of features, the value of an appropriate method
would be derived from its ability to account not only for the effects of each metabolite in isolation,
but in a multivariate manner with consideration of interaction-based effects. Thus, while recent
advancements in analytical chemistry techniques, such as nuclear magnetic resonance (NMR) and
mass spectrometry (MS), have made it possible to quantify hundreds of metabolites within a reasonable
time frame, these techniques must be coupled with fitting statistical and computational algorithms
to translate the data into a practical application in the clinic [8]. Unfortunately, the majority of
metabolomics studies historically have not employed optimal methods for biomarker discovery,
perhaps due to a lack of statistical and computational expertise among metabolomics researchers,
which has spurred the publication of instructional and guideline-setting papers in the field [9-12].
Today, the Human Metabolome Database reports the existence of over 100,000 metabolites in the human
body [13]. As analytical methods improve with regard to their discriminatory ability and efficiency,
the quantifiable metabolome and its associated datasets will continue to grow, raising the relevance of
powerful, heuristic computational methods to the forefront and placing a greater importance on their
delineation to biological researchers.

The aims of this review are three-fold. First, we will outline a general workflow of the steps
required from a biological question to metabolic marker discovery. Second, the current authors
will provide an overview of current metabolomics research within prominent complex diseases
to identify gaps and trends in computational methods” use. Third, this review will discuss the
benefits and costs of using different computational methods and highlight more recently-applied,
promising machine-learning algorithms, including ensemble learning, artificial neural networks and
genetic programming.

2. Metabolic Marker Discovery

The general workflow of metabolic marker discovery (Figure 1) typically involves forming the
biological questions, extracting metabolites from cells, tissues or organs, quantifying metabolites
using NMR or MS, preprocessing data to remove irrelevant biases, selecting a biomarker panel and
constructing a predictive model through feature selection and classification, typically using machine
learning algorithms.
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Figure 1. General workflow of the metabolic marker discovery process. Metabolite extraction often can
be performed from cells, tissues, organs and fluids, including blood and urine. Metabolite quantification
is performed using analytical chemistry techniques, such as LC-MS, GC-MS and NMR, which provide
concentration values for each metabolite in solution. Biomarker selection and model construction are
conducted using various machine learning algorithms.

There are generally two types of metabolomics studies: targeted and non-targeted. In non-targeted
studies, the global metabolic profile is assessed. Thus, all detected metabolites in a sample are given
the opportunity to be included in the biomarker panel. Hypotheses are not tested in this approach,
but rather formed. In contrast, targeted studies focus on a selective group of metabolites to enhance
specificity, precision and accuracy in testing a specific hypothesis. Furthermore, a targeted approach
is useful in validating results from a global metabolic profiling (non-targeted) study [14]. It is worth
noting that quantifying the data in a non-targeted manner is far from a reality due to the limitations of
NMR and MS and the broad diversity of metabolite structures. However, today’s technology provides
sufficient data for powerful, multivariate computational algorithms to classify people for current and
future disease states with accuracies approaching or exceeding current diagnostic measures in various
disease areas [5,15,16].

The two most common metabolite quantification techniques used in metabolomics are MS and
NMR spectroscopy. In MS, the metabolite is ionized before analysis. Using charged ion modes, the ion
signal is converted into mass spectra. By examining the resulting peaks, molecular mass is determined
with the mass-to-charge ratio. There is a diversity of MS techniques that exist for complementary
purposes, such as gas chromatography MS (GC-MS) and liquid chromatography MS (LC-MS). Each
type takes advantage of certain physicochemical properties of the assessed metabolites to separate
samples into their constituents. Metabolites with low molecular weights are analysed using GC-MS,
whereas LC-MS is capable of evaluating a higher weight range. MS is able to provide quantitative data
with high sensitivity and selectivity. In contrast, NMR spectroscopy employs a magnetic field to exploit
angled spins and properties of atoms in the molecule of interest, which consequently absorb and re-emit
electromagnetic radiation. Detectors on the NMR device use this signal to produce results that are
comparably more quantifiable and reproducible and do not destroy measured samples. Furthermore,
although MS can detect a broader range of metabolites, it is less time efficient in comparison to NMR;
however, both methods are used to examine a combined, wider range of metabolites [14].

Data preprocessing is the general preparatory stage of the data, which ensures that the resulting
dataset can be analysed without major issues. Each step of the process contributes to an overall removal
of biases and incomplete features. For reference, patients in a metabolomics study belong broadly
to the category of samples (or rows), whereas metabolites are classified under features (or columns).
First, normalization is one critical step in this process and includes various variable types such
as sample normalization, probabilistic quotient normalization, and quantile normalization [17,18].
Sample normalization simply requires tying all samples to a standard value for one particular
metabolite in an attempt to resolve significant discrepancies across entire samples due to varying
fluid dilution levels. Second, filtering is notably valuable for its ability to eliminate metabolites
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that have an excessive percentage of missing values across samples and a concentration constancy
independent of group classification. A tolerable percentage of present data would typically be 80%,
and the maximum relative standard deviation for constancy evaluation would be approximately
15% [9]. Regarding transformation, it is common to observe replacement of all values with their
logarithmic outputs (i.e., x becomes log(x)). The logarithmic transformation improves the normality
of the data distribution, since metabolomics data have been shown to mostly follow a log-normal
distribution [17]. This also conveniently provides the benefit of working with values within a much
narrower range, improving pattern visualization and interpretability for datasets containing extremely
large values. Finally, scaling provides a way to address large differences in metabolite levels across
patients through standardization down each feature. Typically, the sample mean is subtracted from
each data point and divided by the sample standard deviation, removing potential biases related to
absolute quantities [9]. Upon completion of the appropriate preprocessing methods, metabolomics
researchers may proceed to statistical and computational analysis.

Population-based metabolomics looks for metabolic markers that can provide the best
discriminating power between the diseased cases and healthy controls. These metabolic markers
in turn can help us develop highly-cost-efficient and effective drugs that target enzymes involved in
key processes for better disease treatments, as well as construct a computational model to predict the
clinical outcome for new patients [9,19-21]. Biomarker discovery in omics science usually follows a
three-step scheme. In the following text, we discuss the objectives, most commonly-used methodologies
and the challenges of each step.

The first step is biomarker selection, or attribute selection, where only the most relevant
bio-attributes are identified. The necessity of attribute selection is due to the high-dimensionality
of most omics data, where hundreds to a million attributes can be considered for their potential
association with diseases. Removing irrelevant attributes reduces the computational overhead of
downstream analyses, simplifies the learned model and guides the search for biomarkers since the
true signal in the data will be more predominant after the noise is removed [22,23].

For attribute selection in omics, most existing studies use univariate tests, such as Wilcoxon,
Kruskal-Wallis tests, or additive multivariate analyses, such as logistic regression, least squares
regression (LSR) or discriminant analysis. Attributes are examined separately or combined additively
for their association with the disease outcome, and only those with significant main effects are usually
selected. Such analyses inherently overlook the synergistic non-linear interactions among multiple
attributes. Given the complexity of human diseases, it is more plausible that multiple factors interact
synergistically, and one factor’s effect on the disease depends on others’. However, looking for
combinations of attributes exposes us to an enormous search space since the total number of all
possible combinations with all orders for n attributes is 2". Even a small number of n = 10 translates
to 1023 subsets of attributes to be tested. For n = 1000, enumerating all combinations of only the
orders of two and three (i.e., pairwise and three-way synergy) requires 499,500 and 166,167,000 tests,
respectively. If we used all the computers currently known on this planet, it would still be impossible
to exhaustively enumerate and test all possible combinations of attributes of all orders by a meaningful
deadline. Therefore, powerful heuristic search algorithms are needed [24,25].

The second step is model construction. This step uses identified important biomarkers to construct
a classification model that can predict a new subject with a high or low risk of developing the disease.
Model construction is usually carried out using machine-learning algorithms through a training
process on population-based omics data [9]. Although biomarker selection and model construction
depend on each other since only the selection of the most relevant attributes can yield an accurate and
general prediction model, they are usually done separately. A filter method is usually employed to
select the attributes, and the subsequent classification algorithm for model construction is independent
of the filter method. These two steps can also be wrapped in an iterative process to further refine their
results. That is, a heuristic search algorithm provides a subset of attributes, and model construction
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trains a model and feeds back to attribute selection in the next round. However, such an iterative
method imposes a large computational cost due to repetition.

The third step in biomarker discovery is biological interpretation and validation of the discovered
biomarkers and the constructed predictive model. This is particularly challenging since many machine
learning algorithms produce a “black box” model, which can be uninformative for interpretation
and validation [26,27]. In many other data-rich fields, such as information technology and finance,
prediction accuracy alone may often be sufficient for decision making. However, model interpretation
would be particularly important in bioinformatics since the biological mechanisms underlying the
model must be understood for us to transfer knowledge to clinical applications.

Model validation in metabolomics typically involves a random splitting of metabolomics samples
into 80% training and 20% test sets; however, this ratio may depend on the number of patients and
metabolites available for analysis. Furthermore, cross-validation is a useful technique that repeats
this process multiple times with different training and test sets, ultimately utilizing the average of the
evaluated model validity measures. Additionally, it is important to be aware of the risk of achieving
a local optimum rather than the global, but the loss value of such an event may depend on the
complexity of the generated model (particularly in artificial neural networks) and may be mitigated
with cross-validation, ensemble learning and population-based model search [28]. Feature selection
and model construction use training datasets, and the evaluation of a predictive model should always
be reported using the unseen test set. This ensures the generalization of the trained model that can
translate to future incoming data. In addition to statistical validation, for bioinformatics research on
metabolic marker discovery, it is crucial to use independent data in order to replicate the findings and
to include follow-up biological experiments to further validate the mechanistic hypotheses generated
by the informatics studies.

3. Current Research in Metabolomics, Complex Diseases and Computational Methods

The current literature regarding the investigation of complex diseases using computational
methods in metabolomics is rapidly growing. Metabolites are small endogenous or exogenous
molecules that play a direct role in energy homoeostasis, macromolecule synthesis, waste elimination
and biological regulation [2,3]. These molecules exist in cells, tissues, organs and fluids,
including cerebrospinal fluid (CSF), blood and urine. Methods of metabolite extraction are especially
important for future clinical applications of metabolomics since safety and cost are likely to influence
the adoption of a new diagnostic test. Metabolomics offers a useful new entry in the world of
diagnostics, as acquiring blood or urine samples is minimally invasive to non-invasive. Furthermore,
metabolomics has a unique capacity to provide insights into an individual’s physiological state and
capture the multi-causal nature of a complex disease. Today, the majority of complex disease research
has shifted from univariate and additive multivariate techniques to newer, more powerful multivariate
methods. This review sets its focus on Alzheimer’s, breast cancer and osteoarthritis, as complex
diseases with substantial metabolomics research history and recent advancements in the application of
computational methods to the disease area.

3.1. Alzheimer’s Disease

Alzheimer’s disease (AD) is a neurodegenerative disorder that is characterized by progressive
cerebral atrophy and hypometabolism [29].  Clinical symptoms include memory deficits,
language challenges and personality changes. The AD population in the U.S. is projected to triple by
mid-century, highlighting the urgency and utility of having concrete developments toward an effective
treatment or cure [30]. Currently, amyloid beta (Af) plaques and neurofibrillary tau tangles are
believed to be the primary neuropathological substrates contributing to pathogenesis [31]. This leads
to a slow buildup of plaques and tangles over the course of the prodromal (20 years) and clinical phases
(8-10 years), ultimately ending in mortality [31]. However, recent clinical trials that have successfully
cleared Ap plaques from AD brains have failed to demonstrate symptomatic improvements [32].
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With only four non-curative FDA-approved drugs and an abysmal failure rate for clinical trials (i.e.,
99.6%), efforts to investigate the early disease stages and develop novel diagnostic measures for
preclinical prevention and management have become increasingly present and valued in the field [33].

One early study in AD metabolomics revealed that sulfatide species (a class of myelin-specific
sphingolipids) were reduced significantly in brain tissue lipid extracts from patients with mild AD [34].
Furthermore, ceramide levels were discovered to be increased three-fold in white matter. These findings
were determined using linear correlations and analysis of variance (ANOVA), which provided enough
information to support that there was an associative relationship between one particular class of species
and dementia severity score, but did not account for the combined effect of multiple metabolites.
Years later, Han et al. showed that it was possible to achieve a similar finding from a blood sample
quantification of over 800 different lipid species using shotgun lipidomics [35]. A metabolic signature
was formed using this “broad-stroke” method of metabolomics study. This analysis revealed the value
of analysing large datasets to establish a metabolic signature. Yet, Wilcoxon rank sum tests, a univariate
method, were used to uncover the significant differences between the AD and control groups amongst
the complex combinatorial and interactive possibilities of these hundreds of metabolites.

Wang et al., addressed this statistical limitation in their study, which examined a relatively
large cohort of 172 individuals with an additional third group of mild cognitive impairment (MCIL;
considered to be an early form of AD) patients [36]. The researchers quantified the concentrations
of 238 small-molecule core metabolites (including fatty acids, amino acids, nucleic acids and
carbohydrates) from plasma samples and subsequently employed several machine-learning methods
for multivariate analyses, such as logistic regression, principal components analysis (PCA) and partial
least-squares-discrimination analysis (PLS-DA) to determine that six metabolites, including arachidonic
acid, N,N-dimethylglycine, thymine, glutamine, glutamic acid and cytidine, accounted for the
differences between AD patients and controls. A similar analysis was performed for the MCI group
against the healthy controls, unveiling five important metabolites, three of which were shared for the
AD comparison. The area under the curve (AUC), a measure of classifier performance, yielded high
scores of one and 0.998 in a training set, for the AD and MCI groups against controls, respectively.
This study demonstrated the utility of an analysis that could capture the multi-factorial nature of AD
within a single computational model, leading to a more accurate biomarker panel.

Most recently, Varma et al. analysed serum samples from two longitudinal cohorts of
767 prodromal individuals from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and
207 preclinical AD samples from the Baltimore Longitudinal Study of Aging (BLSA) [5].
Two machine-learning methods, support vector machine (SVM) and random forest (RF), were used
to identify a 26-metabolite panel that performed with 83.33% accuracy, 86.67% sensitivity and 80%
specificity. The longitudinal nature of this study allowed for an evaluation of a host of metabolite
correlates with MRI measures of brain atrophy, AD pathology (i.e., A concentrations in CSF),
conversion risk to incident AD and cognitive performance over time. Enhanced blood levels of
sphingolipid species were found to be correlated with post-mortem AD pathological severity and
preclinical disease progression. Importantly, the uncovered 26-metabolites were involved in various
AD-related pathways, including tau phosphorylation, A metabolism, acetylcholine biosynthesis and
apoptosis. This was a multi-centre study with regard to collection and analysis, which allowed for the
acquisition of the largest sample size to date for an AD metabolomics study. The use of SVM and RF,
which are superior multivariate methods to PLS-DA and other additive algorithms when working
with large, highly-complex datasets, allowed these authors to extract more accurate information from
the ADNI and BLSA data [5].

Overall, AD research is trending in the direction of using computationally-robust,
multivariate methods to develop new diagnostic tests that are safer, more cost-efficient, and have
similar or greater accuracy rates than current neuropsychological and imaging techniques (which are
estimated at 77%) [37].
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3.2. Breast Cancer

Although cancer incidence in the U.S. has declined since 1991 by 26%, it continues to be one
of the 10 leading causes of death with an estimate of over 600,000 in 2018 [38]. Early detection of
cancer continues to be a viable prevention strategy, but has several issues. One particular problem
is that researchers must grapple with cancer’s paradoxical nature to occur commonly across a
lifetime, but rarely present itself at a single point in time, which magnifies the challenge of achieving
acceptable test performance [39]. Current biomarkers, such as prostate-specific antigen (PSA) and
carcinoembryonic antigen (CEA), have been less useful than expected either due to a low positive
predictive value (PPV) or lack of survival benefit [40,41]. With the complex array of contributors to
cancer, it would be prudent to consider a multivariate method for screening and diagnostic purposes.

Across cancers, metabolism, the intricate collection of intertwined pathways of energy substrates
and enzymatic regulation, is dramatically altered. The central shift involves a phenomenon
termed the Warburg effect, which represents the change toward the use of aerobic glycolysis
to generate adenosine 5'-triphosphate (ATP) and lactate, even though it is less efficient than
oxidative phosphorylation [42]. However, beyond this cellular shift, the hallmarks of cancer,
including selective growth and proliferative advantage, altered stress response favouring overall
survival, vascularization, invasion and metastasis, metabolic rewiring, an abetting microenvironment
and immune modulation, reveal a deeply physiological nature to the disease regardless of the cancer’s
origin [43]. With metabolomics at the forefront of data-driven physiological research, the field has
been an important area of research for cancer with notable developments in recent years.

In particular, breast cancer is the source of 25% of all cancer cases and causes over 500,000 deaths
annually [44]. Survival rates depend greatly on early detection, which is often times expensive with
imaging methods, such as mammography and magnetic resonance imaging (MRI) [45]. Furthermore,
mammography has been shown to miss approximately 15% of breast masses, and surgical biopsies
are necessary to confirm definitively the malignancy of the tissue [46]. Testing for metabolic markers
of breast cancer may allow for the development of less expensive, less invasive, and more accurate
diagnostic techniques.

Similar to AD, cancer research began with univariate statistical analyses during its early years
of biomarker discovery. Several studies used such techniques to infer biomarker significance,
examining only a handful of metabolites [47]. Furthermore, most of these studies do not provide
values supporting the utility of the biomarker, such as sensitivity, specificity and AUC [9]. As analytical
chemistry techniques have improved in scalability and efficiency over the years, more studies have
begun to utilize multivariate methods of analysis. In 2011, Hilvo et al. used ultra-performance LC-MS
to assess the lipids in normal breast tissues compared to those that were cancerous [48]. In particular,
the kernel-based orthogonal projections to latent structures (K-OPLS) method was used to generate a
predictive model for estrogen receptor (ER) status based on altered lipid concentrations. Furthermore,
a validation cohort was used showing similar results. The AUC was found to be 0.94 and 0.88 in
the training and validation sets, respectively. In 2015, Huang et al. utilized GC-MS to profile serum
samples from patients with malignant and benign breast tumour, as well as healthy controls. They then
employed random forests (RF), a machine-learning multivariate technique, to assess the quality of their
identified relevant serum metabolites [49]. The prediction accuracy, sensitivity and specificity between
malignant breast cancer patients and healthy controls were 100%, 97% and 98%, demonstrating the
assessed metabolites” high performance as predictors.

Perhaps one of the most computationally-forward-looking studies to date has been a recent study
published in 2018 on using deep learning, a subset of the neural network category of machine-learning
methods, to predict accurately estrogen receptor status in breast cancer samples [6]. In the study,
feed-forward networks, a framework utilizing deep learning, was compared to other machine learning
techniques, including RF, SVM, prediction analysis for microarrays (PAM), generalized boosted models
(GBM), recursive partitioning and regression trees (RPART) and linear discriminant analysis (LDA),
with data from 162 metabolites. The results demonstrated that deep learning with its AUC of 0.93 was
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superior to all other tested methods. Moreover, they were able to uncover eight pathways involved in
breast cancer, including central carbon and glutathione metabolism, which were not revealed from the
other analyses. Overall, these researchers showed that deep learning has utility within the scope of
medium-sized databases and can offer network knowledge between metabolites that other machine
learning techniques may lack the capability to provide.

Across research studies for breast cancer, there appears to be evidence of a shift toward more
computationally-powerful tools to understand large, complex cancer metabolomics databases. As one
of the primary recommendations of the current review, this shift is necessary to improve our current
biomarker panels and adapt to the rapidly-increasing number of metabolites and patients available for
analysis. Utilizing the latest algorithms, such as feed-forward networks and select heuristic techniques,
will promote the development of more representative models with greater potential for translation to
practical, clinical applications. In a field like cancer where early diagnosis may mean the difference
between a slim one-year survival rate and a simple surgical resection, advancements in metabolomics
and subsequent knowledge translation efforts in diagnostics will contribute notable differences to the
lives of those soon to be afflicted.

3.3. Osteoarthritis

Among the global population of individuals over the age of 60, osteoarthritis, a degenerative
disease of joint cartilage and underlying bone, has a notable prevalence of 10% [50]. It is the most
common type of arthritis and the leading form of disability in developed countries [51]. In particular,
knee osteoarthritis, which accounts for over 80% of the disease burden being the primary cause of
mobility-based disability, has doubled in prevalence in three generations [52]. Molecular theories
explaining the pathogenesis of osteoarthritis primarily involve the aging process in association
with inflammation, senescence, mitochondrial dysfunction and oxidative stress and changes in
energy metabolism and cell signalling [53]. Other important predictors include old age, female sex,
overweight status and obesity, muscle weakness, knee injury, frequent joint use, bone density and
possibly dietary factors [54]. Therefore, metabolomics can play an important role in quantifying the
multi-faceted character of osteoarthritis, especially since the combination of genetic markers and
epidemiological factors, such as age, sex and BMI, has been shown to produce a relatively low AUC
(i.e., 0.668) [55].

In 2014, Zhang et al. conducted a seminal study on the classification of osteoarthritis into subtypes
based on metabolomics data [56]. This study used synovial fluid samples in an effort to enhance the
connection between the analysed metabolome and physiological reality. With 80 osteoarthritis patients,
the researchers employed PCA, cluster analysis and PLS-DA to perform a multivariate analysis
on 168 quantified metabolites. These methods yielded results demonstrating that osteoarthritis was
actually composed of two distinct groups, as a result of differences in the levels of 86 unique metabolites.
This novel finding provides a deeper understanding of the disease phenotype, which could be further
investigated in physiological and cellular studies to identify differences in molecular targets and
ultimately improve drug specificity. The lack of curative drugs for the disease underscores this need
for more knowledge-building, data-driven investigations in contrast to drug development efforts.

Another study examined knee osteoarthritis, developing global serum profiles for 60 individuals
(including a control group) using a dataset of 106 metabolites [57]. With PCA and PLS-DA,
the researchers identified a 14-metabolite signature, involved in the metabolism of energy, purines,
amino acids, fatty acids, lipids and glycolysis. It was found to have an accuracy measure of 0.662.
One limitation of the study was the use of serum as opposed to synovial fluid, which may have
provided improved sensitivity and specificity values. However, providing evidence for the use of
serum may be beneficial since it has safety and cost benefits over other fluids, despite its potential
shortcomings in accurately reflecting the products of the disease process.

In 2018, Hu et al. demonstrated the utility of genetic programming (GP), a heuristic multivariate
evolutionary machine-learning technique, in osteoarthritis metabolic marker discovery [7,58].



Metabolites 2019, 9, 66 9of 18

The authors applied the process of evolution on computer models, generating hundreds of potential
models, selecting for the best-performing ones, breeding them together to produce children and
repeating the process. Iterating through hundreds of generations with a dataset of 389 samples and
167 metabolites ultimately led to the discovery of nine key metabolites, specifically arginine, C16, C18:1,
isoleucine, nitrotyrosine, ornithine, taurine, threonine and tyrosine, several of which had not been
reported previously in the literature. Furthermore, genetic programming was found to perform more
highly than logistic regression (a non-heuristic method) with AUC values of one and 0.91, respectively.

Overall, similar to other complex disease areas, osteoarthritis appears to be trending toward the
use of multivariate, heuristic approaches that are apt at generating high-performing predictive models
for the endless ways in which the upstream pathways of genes, RNA and proteins may converge.

4. Advanced Learning Methods for Metabolic Marker Discovery

The previous section delineated the use of more recent and advanced machine-learning methods,
revealing significant improvements on metabolic marker selection and predictive model construction
as a result. Table 1 summarizes the most commonly-applied classification algorithms for metabolic
marker discovery, as well as a set of less utilized, but potentially powerful methods that we will spend
more length explaining in this section.

Table 1. Machine-learning algorithms and their example applications to metabolic marker discovery.

Algorithm Description Examples

Use a logistic function to fit a regression model

Logistic regression (LR) for categorical outcome prediction.

[59]

Find a linear subspace of high-dimensional
Partial least squares-discriminant analysis (PLS-DA)  explanatory variables to maximize the covariance [60]
between the input variables and the class label.

Use various similarity measures of training samples
Support vector machine (SVM) (also known as kernel functions) to perform linear or [61]
non-linear separation of two classes.

Construct an ensemble of decision trees to
Random forest (RF) classify training samples, as well as [25]
to assess the variable importance in the classification.

Build an ensemble of decision trees
Gradient boosting machine (GBM) in a step-wise fashion using boosting [62]
and gradient descent algorithms.

Construct multi-layered networks of neurons
Artificial neural network (ANN) to learn highly non-linear functions that map [63,64]
the explanatory variables to the class label.

Use natural evolution mechanisms to
Genetic programming (GP) automatically search for the most relevant features [7,65]
and classification models.

Logistic regression (LR), partial least squares-discriminant analysis (PLS-DA) and recently support
vector machine (SVM) are among the most currently-used statistical tools for metabolic marker
discovery and predictive model training. This is likely a result of the extensive methodological
research on these methods and the abundant availability of analysis packages in various programming
languages including R and Python. The curation of large-volume, high-dimensional big data
across multiple disciplines has been driving the methodological development of machine-learning
algorithms [66,67]. Recent advanced learning algorithms have seen increasing applications to computer
vision, natural language processing, pattern recognition, social sciences and medicine. Their potential
has not been fully explored in the youngest member of omics, metabolomics, but they are very naturally
suited to tackling the metabolic marker discovery task, which can be easily formulated as a typical
feature selection and classification problem in machine learning. Here, we introduce three types of
advanced learning algorithms, including ensemble learning, artificial neural networks, and genetic
programming, and discuss their potential applications for metabolic marker discovery.
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4.1. Ensemble Learning

In more complex datasets, the trained predictive models are often found to have high instability,
a phenomena characterized by Breiman [68], where many distinct models involving different feature
subsets can achieve comparably good training or testing prediction accuracy. Ensemble learning was
proposed to address the issue by aggregating over a large set of competing base learners. Base learners
are predictive models trained separately or sequentially and are often weighted based on their prediction
performance. The final prediction is thus decided through majority voting for classification and
averaging for regression tasks.

Base learners are usually generated from training data by one or multiple learning algorithms,
resulting in a homogeneous or a heterogeneous ensemble. The learning algorithms can be
any classification or regression algorithm. In the most common ensemble learning algorithms,
a homogeneous ensemble is comprised of diverse classification and regression trees (CART) [69,70].
CART typically use internal nodes to represent features and use the best feature value cut-offs to spit
samples into branches to reach leaf nodes representing the class labels (for classification) or target
variable (for regression).

There are different mechanisms that can effectively construct the ensemble of base learners.
The most commonly-used ones are bagging and boosting. Bagging is short for bootstrap aggregating
and uses bootstrapped samples of the training data to train independent decision trees [69].
A bootstrapped training set is obtained by randomly sampling the training data with replacement.
Therefore, a training sample may have multiple copies or not be present in a bootstrapped training
set. Each bootstrapped training set is used independently to derive one decision tree. Bagging then
decides the final prediction/regression outcome by majority voting or averaging these decision
trees. The random forests (RF) algorithm is the most well-known ensemble learning method that
employs bagging.

Boosting, on the other hand, constructs an ensemble of base learners by deriving a new learner
through improving the previous one in a sequential fashion [71,72]. Boosting in fact refers to a class of
such iterative ensemble techniques, among which gradient boosting machine (GBM) is a very popular
and powerful boosting algorithm [73]. In GBM, at iteration i, a new decision tree approximation F;
is derived by adjusting the decision tree approximation F;_; using the gradient of the loss function
VL(y, Fi—1), where y is the expected outcome.

Ensemble learning has been reported to have stronger generalization abilities in comparison to
other machine-learning algorithms that use single predictive models [70]. The search for a single
optimal model might be imperfect especially for complex, noisy and incomplete training data, and thus,
using multiple separately trained or sequentially evolved models may give a good approximation of
the true nature of the data. Ensemble learning has seen increasing applications to a variety of machine
learning problems and could be a powerful analysis tool for metabolic marker discovery given the
complexity, high-dimensionality and incompleteness of metabolomic data.

4.2. Artificial Neural Networks

Artificial neural networks (ANN) refer to a collection of learning algorithms inspired by the
nervous systems and the human and animal brain. They loosely mimic how a large number of neurons
process information and communicate in a highly-parallel style [74,75]. Each neuron is a computing
unit that takes inputs (dendrites) from other neurons, and is “activated” if the aggregative inputs reach
a certain condition. An activated neuron sends information (activation signals) to others through the
connection (synapses) between its output (axon) and other neurons’ inputs.

In a typical ANN, neurons are organized into several layers with the first being the input and last
being the output layer. The input layer includes neurons that take explanatory inputs (e.g., metabolite
concentrations), and the output layer gives one or multiple prediction outcome (e.g., the disease risk).
The intermediate layers are called “hidden layers” that do not interact directly with the “environment”
(i.e., either input or output) and are used to construct complex relationships that combine input
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variables to compute the outcome. In general, more hidden layers lead to more complexity and more
accurate modelling [67].

ANN s are represented by directed graphs where each node denotes a neuron and directed
edges connecting neurons representing possible communication of activation signals. ANNSs typically
compute using a feed-forward mechanism, where neurons of a certain layer take outputs of the
predecessor layer, compute the aggregative signals and use the activation functions to generate their
own outputs that will be sent to the successor layer. ANNSs are usually initialized randomly and
then trained using an error-back-propagation mechanism. The current classification/regression error
of an ANN is calculated as the absolute discrepancy of the expected and the computed outcome.
The parameters of the ANN are then updated starting from the output layer to each predecessor layer
based on the gradient of the cost function.

ANNSs have seen much interest in research and applications in the past decades given their
superior abilities of highly-accurate function approximations [76,77]. They have been exceptionally
successful in tackling complex learning tasks in computer vision, natural language processing and
recently recommender systems. There is a variety of network structures proposed in order to
suit various learning problems, including convolutional neural networks [78], Boltzmann machine
networks [79] and generative adversarial networks [80], just to name a few.

ANN:s, especially deep ANNs that employ multiple hidden layers, can be powerful learning
tools to construct highly-accurate predictive models for metabolomic research on complex diseases.
However, they are often regarded as less “visible”, or more difficult to interpret, especially for
bioinformatics research, in terms of extracting mechanistic explanations from the learned complex
models [27]. Research on designing ANN structures that are more amenable for mechanistic
explanations is thus needed for a better utilization of this powerful and advanced machine-learning
algorithm.

4.3. Genetic Programming

Many well-known machine-learning algorithms gradually adjust predictive models using the
gradient of the cost function, typically defined as the prediction error (i.e., the distance of the expected
and actual output of a model). Genetic programming (GP) improves randomly-generated predictive
models using mechanisms borrowed from natural evolution. GP is located at the intersection of
machine learning and evolutionary computing and is a lesser known, but potentially powerful
algorithm for complex and incomplete modelling problems.

Evolutionary algorithms define a collection of meta-heuristic optimization and modelling
algorithms inspired by natural evolution [81-83], and have been applied to bioinformatics on
various optimization and modelling problems [23,24,84-90]. Evolutionary algorithms employ the
trial-and-error problem-solving strategy and borrow ideas from how living organisms adapt through
evolution. Various branches of evolutionary algorithms have been developed over the past decades,
and they encode the solution to a problem differently. Specifically, genetic algorithm (GA) and
evolution strategy (ES) solve optimization problems and typically represent candidate solutions using
binary strings or real-valued vectors. As a machine-learning algorithm, GP solves modelling problems
whose evolutionary individuals are regression or classification models, typically represented using
expression trees or imperative programs [91,92].

Figure 2 shows the general workflow of evolutionary algorithms. An evolutionary algorithm
maintains a population of diverse candidate solutions, or individuals, typically initialized randomly.
These candidate solutions are compared to the desired outcome, and a fitness value can be calculated
for each candidate solution based on how close it is to the desired outcome. Fitter candidate solutions
will have higher probabilities of being selected for reproduction. During the reproduction process,
slight and stochastic changes are applied to parent solutions, defined as mutations. Parents also
swap portions of their encodings to form related, but distinctive offspring, defined as recombination.
Fitter candidates survive to the next generation, and less fit ones die out. Then, through multiple
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generations of selection, variation and reproduction, the selection criterion (the relative distance from
the desired outcome) leads the population to produce increasingly fitter solutions.

Initialization Mating Selection

Population of . L
Candidate Solutions Mutation and Recombination

& N ¢

Termination Survivor Selection

Figure 2. General workflow of an evolutionary algorithm. Typically, a population of candidate solutions
to a problem is randomly initialized. Then, through the iterative evolution process, fitter solutions are
more likely to be picked for reproduction and survival. Similar to living systems, random changes can
be introduced to reproduction, such as mutation and recombination. The algorithm terminates once
satisfactory solutions are observed or the computational limit (e.g., the maximal number of generations)
has been reached.

In GP, candidate solutions are symbolic models, taking the form of a syntax tree (tree GP)
or a symbolic computer program (linear GP) [82,92] that map the input variables to the output.
Therefore, the fitness can be naturally characterized as the prediction accuracy of such a symbolic
model. Mutations can be the alteration of elements of a symbolic model, and recombination swaps
sections of two symbolic models in the hope of producing better child models. In the context of
metabolic marker discovery, a candidate classification model of GP takes a set of input metabolite
concentration values and outputs a prediction score of the disease risk.

GP can be a powerful addition to the metabolic marker discovery toolbox. Using arithmetic
and branching operators to construct predictive models allows GP to approximate highly non-linear
relationships that map the input metabolite concentrations to the disease risk assessment. Moreover,
given the stochastic nature of evolution, metabolic feature selection is embedded and is coevolved
as the model construction in the GP algorithm. Due to the symbolic forms, the evolved predictive
models are also more amenable for interpretation, in comparison to “black-box” models trained by
many machine-learning algorithms.

5. Conclusions

Metabolomics has an incredible amount of potential in human disease studies since today’s most
prominent diseases, including arthritis, diabetes, cardiovascular disease, obesity and Alzheimer’s,
have clear metabolic causes [93-96]. With rapidly-developing biological, analytical and computational
technologies, the concentrations of hundreds of metabolites in a biological sample can be detected
within minutes [97]. The comparison of their concentration levels in phenotypically-distinguished
populations (e.g., diseased and healthy subjects) can help identify pathways and biological processes
associated with a certain disease. This review fulfils three primary aims. First, a delineation of
the general workflow of a metabolomics study from a biological question to model validation was
provided. Following this, an overview of the historically- and currently-utilized computational
methods for metabolic marker discovery across prominent complex diseases, such as AD, breast cancer
and osteoarthritis, were discussed for the purpose of identifying notable trends in computational
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technique use. Lastly, three rising areas of machine-learning methods, including ensemble learning,
ANN and GP, were provided an introductory description and discussion regarding various advantages
and disadvantages of usage.

Overall, there has been a clear shift in computational methodologies used by metabolomics
researchers across complex disease areas. From univariate to multivariate analyses and linear
to non-linear relationship modelling, the field of metabolomics is rapidly adopting the use of
up-to-date machine learning algorithms to more appropriately match the intricate interplay of genetic,
environmental and lifestyle factors, which converge on an estimated 100,000 downstream metabolites in
the human body, in an attempt to better understand existing signalling theories and reduce significant
pathway knowledge gaps that may be contributing to our lack of curative drugs for nearly all complex
diseases. In the field of machine learning, improvements and innovations to these computational
methods are published frequently. The importance of the choice of computational method should
not be understated, as it can lead to dramatic improvements in biomarker panel performance in the
clinic [6,7]. Lower performance can mean higher rates of false positives and negatives, leading to
burdensome costs against the healthcare system and ultimately resulting in a reluctant phasing out
of the test [40,41]. Having an understanding of existing statistical techniques, as well as new and
upcoming computational methods to optimize the formation of accurate metabolic marker panels will
be critical for knowledge translation efforts down the road. Therefore, this review hopes to provide
researchers with an introduction to various methods for metabolomics research to advance the use of
newer, potentially rich computational methods.
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Abbreviations

The following abbreviations are used in this manuscript:

NMR nuclear magnetic resonance

MS mass spectrometry

LC-MS liquid chromatography-mass spectrometry

PLS-DA  partial least squares-discriminant analysis

K-OPLS  kernel-based orthogonal projections to latent structures

PCA principal component analysis

SVM support vector machine

RF random forest

GBM gradient boosting machine

ANN artificial neural networks

AUC area under the curve

ANOVA  analysis of variance

AB amyloid beta

AD Alzheimer’s disease

MCI mild cognitive impairment

ADNI Alzheimer’s Disease Neuroimaging Initiative
BLSA Baltimore Longitudinal Study of Aging
CSF cerebrospinal fluid

GA genetic algorithm

ES evolution strategy

EA evolutionary algorithm

Gp genetic programming

ATP adenosine 5 -triphosphate
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