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Abstract: We revisit the role of the cosmological constant Λ in the deflection of light by means of
the Schwarzschild–de Sitter/Kottler metric. In order to obtain the total deflection angle α, the time
transfer function approach is adopted, instead of the commonly used approach of solving the geodesic
equation of photon. We show that the cosmological constant does appear in expression of the deflection
angle, and it diminishes light bending due to the mass of the central body M. However, in contrast to
previous results, for instance, that by Rindler and Ishak (Phys. Rev. D. 2007), the leading order effect
due to the cosmological constant does not couple with the mass of the central body M.
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1. Introduction

The cosmological constant problem is the old one concerning closely the general theory of
relativity (See reviews by, e.g., [1,2]). After establishing the general theory of relativity by Einstein
in 1915–1916, he introduced the cosmological constant Λ to describe the static universe since the
original Einstein equation cannot represent the picture of static universe. Though the discovery of the
cosmic expansion by Hubble made a denial of Einstein’s first purpose, the cosmological constant is
realized again because of the find of accelerating expansion of the Universe [3–5], and it is popularly
considered that the cosmological constant Λ or dark energy generally has the highest potential for
explaining the observed accelerating expansion of the Universe. However, its details are still far from
clear; therefore, this hypothesis must be verified through not only cosmological observations but also
other astronomical/astrophysical measurements.

Among such efforts, the most straightforward approach is to investigate the role of Λ in the
classical tests of general relativity, such as the perihelion advance of planetary orbits and the bending
of light rays. Thus far, it was found that the cosmological constant Λ contributes to the perihelion shift
in principle even though this contribution is presently difficult to detect because of its very small effect
(See [6–8] and the references therein, and corresponding topic to perihelion advance [9–12]).

While in the case of bending of light under the Schwarzschild–de Sitter/Kottler spacetime (see
Equation (12)), contrary to the expectation, the second-order geodesic equation of a photon does not
contain Λ,

d2u
dφ2 = −u +

3
2

rgu2, rg =
2GM

c2 , u =
1
r

(1)

then, as a consequence, it is considered that the deflection angle in the Schwarzschild–de Sitter or
Kottler metric coincides with that of Schwarzschild case. However, recently, Rindler and Ishak [13]
reported that Λ does affect the bending of light by means of the Schwarzschild–de Sitter or Kottler
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metric and the invariant formula for the cosine. Subsequently, many authors have argued its
appearance in many different ways and the generality of these arguments advocated the appearance
of Λ in the deflection angle α. Nevertheless, presently, it seems that a conclusion has not yet been
reached, for instance, on whether the leading order effect due to Λ is coupled with the mass of the
central body M or not. See [14] for a review and also [15–25]. In addition, for the cosmological constant
and cosmological lensing equation, see, e.g., [17,18,26,27].

As we assess the circumstances, the origin of confusion, e.g., the appearance/disappearance of Λ
or the coupling/uncoupling with the mass of the central body M, is essentially attributable to the use
of the standard geodesic equation of a photon to obtain light deflection due to Λ, because Λ does not
appear. Therefore, it is worthy to revisit this problem using another theoretical approach.

In this paper, we will revisit the role of the cosmological constant Λ in terms of the time transfer
function recently proposed in [28,29], which is originally related to Synge’s world function Ω(xA, xB)

and which enables us to circumvent the integration of the null geodesic equation. In Section 2, we will
briefly summarize the time transfer function method. In Section 3, the effect of Λ on light deflection
will be re-investigated. Section 4 is devoted to a short summary of this paper.

2. Outline of the Time Transfer Function

Before calculating the light deflection due to the cosmological constant Λ, let us briefly summarize
the time transfer function method presented in [28,29].

Synge’s world function is defined by [30]

Ω(xA, xB) ≡
1
2
(λB − λA)

∫ λB

λA

gµν
dxµ

dλ

dxν

dλ
dλ (2)

where gµν is a metric tensor of spacetime; xA = (x0
A = ctA, xi

A =~xA) and xB = (x0
B = ctB, xi

B =~xB) are
the coordinates of the two end-points A and B, respectively, on the geodesic world-line; and λ is the
affine parameter. Then, the world function Ω(xA, xB) is defined as the half length of the world-line
between A and B.

It is generally difficult to acquire the form of the world function concretely. Nonetheless, in the
case of the Minkowskian flat spacetime, the world function is easily obtained using the parameter
equation x(λ) = (xB − xA)λ + xA and by setting λA = 0 and λB = 1 [28,30],

Ω(0)(xA, xB) =
1
2

ηµν(x
µ
B − xµ

A)(x
ν
B − xν

A) (3)

where xµ (µ = 0, 1, 2, 3) are the Minkowskian coordinates with respect to the Minkowski metric
ηµν = diag(−1, 1, 1, 1).

For the null geodesic, the world function Ω(xA, xB) satisfies the condition

Ω(xA, xB) = 0 (4)

because ds2 = 0. Hence, from Equations (3) and (4), the travel time between A and B, namely tB − tA,
in the Minkowskian flat spacetime becomes

c2(tB − tA)
2 = δij(xi

B − xi
A)(x

j
B − xj

A) = R2
AB (5)

where δij is Kronecker’s delta, and c is the speed of light in vacuum. The time transfer function starts
from Equation (5), and the weak-field approximation is developed recursively with respect to the
gravitational constant G.

If the metric has the form

gµν = ηµν + hµν, |hµν| � 1 (6)
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where hµν is a perturbation to ηµν, the time transfer functions that yield the travel time of the light ray
are formally expressed as follows:

tB − tA = Te(tA,~xA,~xB) =
1
c
[RAB + ∆e(tA,~xA,~xB)] (7)

= Tr(~xA, tB,~xB) =
1
c
[RAB + ∆r(~xA, tB,~xB)] (8)

where Te(tA,~xA,~xB) is the emission time transfer function for the spatial coordinates~xA,~xB and signal
emission time tA; Tr(~xA, tB,~xB) is the reception time transfer function for the spatial coordinates~xA,~xB
and signal reception time tB; RAB = |~xB −~xA|; and ∆e and ∆r are called the emission time delay
function and reception time delay function, respectively. ∆e and ∆r characterize the gravitational
time delay. RAB in Equations (7) and (8) comes from Equation (5). Henceforth, A corresponds to the
emission and B corresponds to the reception.

In general, the time transfer function depends on either the emission time tA or reception time
tB, and this dependence feature is applied to obtain the gravitational time delay in the McVittie
spacetime [31]. However, if the spacetime is static, the first order formulae reduce to

∆(1)(~xA,~xB) = −
RAB

2

∫ 1

0

[
g00
(1) − 2Ni

ABg0i
(1) + Ni

ABN j
ABgij

(1)

]
dµ (9)

where ~NAB = Ni
AB = (xi

B − xi
A)/RAB. The above equation is integrated along the parameter equation

~x(µ) =~xA +µ(~xB−~xA) on the Minkowskian spacetime. From Equation (9), the time delay is calculated
with the remaining form of the metric gµν, though the weak-field approximation is presumed.

Once the time transfer function T is determined, the direction of the light ray can be obtained by

(k0)A = −1, (ki)A = −c
∂T
∂xi

A
(10)

(k0)B = −1, (ki)B = c
∂T
∂xi

B
(11)

Equations (10) and (11) enable us to calculate light deflection directly from the time transfer
function T .

We note that Equations (9)–(11) have an opposite sign with respect to the corresponding equations
given in [28,29], as we now adopt the signature of Minkowski metric as (−,+,+,+) and because of
which, the time transfer function should essentially be a positive value, T > 0.

3. Effect of the Cosmological Constant on Light Deflection

Now, let us revisit the contribution of Λ to the light deflection with consideration of the time
transfer function T . To this end, we adopt the Schwarzschild–de Sitter or Kottler metric [32];

ds2 = −
(

1−
rg

r
− Λ

3
r2
)

c2dt2 +

(
1−

rg

r
− Λ

3
r2
)−1

dr2 + r2dΩ2

= −
(

1−
rg

r
− Λ

3
r2
)

c2dt2

+

(
1 +

rg

r
+

Λ
3

r2 +O(r2
g, Λ2)

)
dr2 + r2dΩ2 (12)

where rg = 2GM/c2 is the Schwarzschild radius, dΩ2 = dθ2 + sin2 θdφ2, and the dr2 component is
linearized from the first line to the second.

Here, we consider the validity and limitation of weak-field approximation supposed in Equation (12),
The bending of light due to the point mass M is characterized by rg/r; on the other hand, the bending
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due to the cosmological constant Λ is derived from Λr2/3 term. Therefore, it may be suitable to
estimate the validity of approximation by

Λ
3

r2 <
rg

b
,

rg

b
� 1 (13)

where b is the impact parameter. Then, r should range b < r < d and d is estimated from the relation
rg/b ∼ Λd2/3. As an example of a deflector or lens object, let us choose the Sun (M ≈ M� =

2.0× 1030 [kg], b ≈ R� = 7.0× 108 [m]) and the galaxy (M ≈ 1012M�, b ≈ Rgalaxy ≈ 105 [ly]); it
is found that d ∼ 1023 [m] ∼ 10 [Mpc] in both cases (we assumed Λ ≈ 10−52 [m−2]). This value is
comparable with the distance from our galaxy to the Virgo Cluster but one or two orders of magnitude
smaller than the distance from our galaxy to quasars, the typical range of which is from 100 [Mpc] to
1000 [Mpc].

It is beneficial to transform the spherical coordinates into rectangular ones since it is easy to set up
the rectilinear line as the first approximation of the light path (straight line in flat spacetime). However,
it is difficult to transform the standard Schwarzschild–de Sitter/Kottler metric into the isotropic form;
hence, employing the approach used in [33], we recast Equation (12) in rectangular form. By the
coordinate transformation,

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ (14)

Equation (12) is rewritten as

ds2 = −
(

1−
rg

r
− Λ

3
r2
)

c2dt2

+

[
δij +

(
rg

r
+

Λ
3

r2
)

xixj

r2 +O(r2
g, Λ2)

]
dxidxj (15)

in which indices i, j run from 1 to 3 (spatial coordinates). We presume that the light travels in x-y
plane; that is,~xA = (xA, yA),~xB = (xB, yB), and from Equations (9) and (15), the time transfer function
T (~xA,~xB) can be obtained as

T =
1
c
(RAB + ∆T ) (16)

∆T =
rg

2
ln

RB +~xB · ~NAB

RA +~xA · ~NAB

+
1
2

[
(Nx

AB)
2(xB − xA)

2 + 2Nx
ABNy

AB(xB − xA)(yB − yA) + (Ny
AB)

2(yB − yA)
2
]

×
{

rg

[
1

R2
AB

ln
RB +~xB · ~NAB

RA +~xA · ~NAB

−
(~xA · ~NAB)[2~xA ·~xB − RA(RA + RB)]− RABR2

A
RB{[~xA · (~xB −~xA)]2 − R2

ABR2
A}

]
+

Λ
9

}
+
[
(Nx

AB)
2xA(xB − xA) + 2Nx

ABNy
AB(xByA + xAyB − 2xAyA) + (Ny

AB)
2yA(yB − yA)

]
×RAB

[
rg

~xA · (~xB −~xA)RA(RB − RA)

RB
{
[~xA · (~xB −~xA)]2 − R2

ABR2
A
} +

Λ
6

]
+
[
(Nx

AB)
2x2

A + 2Nx
ABNy

ABxAyA + (Ny
AB)

2y2
A

]
×RAB

2

[
rg
(RB − RA)[~xA · (~xB −~xA)]− R2

ABRA

RARB
{
[~xA · (~xB −~xA)]2 − R2

ABR2
A
} +

Λ
3

]
(17)
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in which RA = |~xA|, RB = |~xB|, ~NAB = (Nx
AB, Ny

AB). The slightly complicated expression in

Equation (17) originates from gij
(1) in Equation (15). We are interested in how Λ modulates the total

deflection angle in the Schwarzschild case, αGR = 4GM/(c2b), where b is the impact parameter. Then,
in order to extract the influence of Λ on the bending angle of light rays, let us re-define the coordinate
system in such a way that the emission point A and the reception point B have the same value of the y
coordinate, namely, yA = yB = b. Further, let us assume that the source and the observer are at rest
with respect to the lens (deflector), the light is emitted at xA and received at xB and that xA < xB holds,
then Nx

AB = 1, |~xB −~xA| = xB − xA > 0, and so on. Then, Equation (17) reduces to a simple form,

T =
1
c
(RAB + ∆TGR + ∆TΛ) (18)

∆TGR =
GM
c2

2 ln
xB +

√
x2

B + b2

xA +
√

x2
A + b2

−

 xB√
x2

B + b2
− xA√

x2
A + b2

 (19)

∆TΛ =
Λ
18

[
2(x3

B − x3
A) + 3b2(xB − xA)

]
(20)

From Equations (18)–(20), the direction of light at the emission point A and reception point B are
computed using Equations (10) and (11).

Since we are now choosing the emission point A and reception point B as being located upon
the line y = b and xA < xB, then RAB = |~xB −~xA| = xB − xA, ~NAB = ((xB − xA)/RAB, 0) = (1, 0);
the photon may travel along this straight-line with the minimum value of the coordinate r = b (the
impact parameter) if the light ray were un-deflected in the absence of central mass M and cosmological
constant Λ. Thus, let us define the angle θA as that between ~NAB and~kA and angle θB as that between
~NAB and~kB. Further, we suppose that θA and θB have a small value, θA � 1, θB � 1, then the direction
vectors~kA and~kB can be expressed by the following form

~kA =

(
cos θA
sin θA

)
'
(

1
θA

)
= ~NAB + δ~kA =

(
1
0

)
+

(
δkxA
δkyA

)
(21)

~kB =

(
cos θB
sin θB

)
'
(

1
θB

)
= ~NAB + δ~kB =

(
1
0

)
+

(
δkxB
δkyB

)
(22)

Hence, we may obtain θA and θB from the y components of δ~kA and δ~kB, namely, δkyA and
δkyB, respectively.

Let us take the deflection angle α in such a way that α > 0. As a consequence, the deflection angle
α is given by

α ≡ θA − θB = αGR + αΛ +O(r2
g, Λ2) (23)

αGR =
GM
c2 b

 2

xA

√
x2

A + b2 + x2
A + b2

− 2

xB

√
x2

B + b2 + x2
B + b2

+
xA√

x2
A + b2

3 −
xB√

x2
B + b2

3

 (24)

αΛ = −2Λ
3

b(xB − xA) (25)

Again, we note xB > xA in our case. The Equation (25) is similar and comparable with previous
results, that is, the third term of Equation (13) in [20], and the fourth term of Equation (25) in [22].
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The reason why O(mΛ) term disappear in our result comes from the fact that present calculation
is first (linear) order with respect to ε ∼ rg ∼ Λ, see Equations (9) and (15). If we extend to second
order O(ε2), O(mΛ) terms appear. See, e.g., Equation (41) in [29].

In the case of Schwarzschild spacetime, the total deflection angle αGR is obtained for the limit
r → ∞; however, in the case of Schwarzschild–de Sitter/Kottler spacetime, we cannot impose this
limit since the term (1− rg/r−Λr2/3)−1dr2 in Equation (12) diverges at r =

√
3/Λ and the coordinate

value r does not range r >
√

3/Λ (here we assume rg/r� 1). Then we shall define the total deflection
angle due to Λ, αΛ, in such a way that xA = −

√
3/Λ and xB =

√
3/Λ. Hence, inserting these values

into Equation (25), we have,

αΛ = −4
√

3Λ
3

b (26)

We note that the transformation from coordinate distance into angular distance is discussed, e.g.,
in [34].

It is worthwhile to show that Equation (24) can result in αGR = 4GM/(c2b) when Λ = 0.
Equation (24) is rewritten as

αGR =
GM
c2b

[
2(cos φB − cos φA) + sin2 φB cos φB − sin2 φA cos φA

]
(27)

where we introduced

sin φA =
b√

x2
A + b2

, cos φA =
xA√

x2
A + b2

(28)

sin φB =
b√

x2
B + b2

, cos φB =
xB√

x2
B + b2

(29)

For φA → π (the emission point A is located at −∞) and φB → 0 (the reception point B is located
at +∞), Equation (29) gives

αGR =
4GM
c2b

(30)

thus replicating the light deflection in the Schwarzschild case.
It should be mentioned that the time transfer function Equation (9), which is used to determine

the defection, is justified as long as the zeroth-order straight line that joins~xA and~xB does not intersect
an event horizon such as the Schwarzschild horizon. This implies that |φB − φA| < π is a necessary
condition to apply the method. However, this condition may be violated if~xA and/or~xB are sufficiently
far from the mass center. To avoid this difficulty, it may be a much more satisfactory procedure to
introduce the periapsis~xP of the light ray, calculate the defection angle between~xA and~xP as well as
that between~xP and~xB, and finally add these two contributions.

4. Summary

We revisited the effect of the cosmological constant Λ on light deflection by means of the
Schwarzschild–de Sitter or Kottler metric. To obtain the deflection angle α, we adopted the time
transfer function approach, instead of solving the geodesic equation of photon. We showed that the
cosmological constant appears in the deflection angle α, and it diminishes the light bending due to the
mass of the central body M.

We list in Table 1 the expressions of bending angle due to the cosmological constant
previously obtained [14–25], and estimate the numerical value using c = 3.0 × 108 [m/s],
G = 6.674× 10−11 [m3 · kg−1 · s−2], Mass of galaxy M ≈ 1012M� = 2.0× 1042 [kg], Λ ≈ 10−52 [m−2],
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b, R, r0, B ∼ 105 [ly] ∼ 1021 [m] (typical radius of galaxy), rs, ro, dOL, dLS, rS, robs, xB,−xA ∼ 10 [Mpc] ∼ 1023 [m].
R1 in [24] is calculated 1/R1 = 2GM/c2B2 + 15π(GM)2/8c4B3. The underline indicates the leading
order term.

Table 1. Comparison with previous results.. We estimate the numerical value using c = 3.0× 108 [m/s],
G = 6.674× 10−11 [m3 · kg−1 · s−2], Mass of galaxy M ≈ 1012 M� = 2.0× 1042 [kg], Λ ≈ 10−52 [m−2],
b, R, r0, B ∼ 105 [ly] ∼ 1021 [m] (typical radius of galaxy), rs, ro, dOL, dLS, rS, robs, xB,−xA ∼
10 [Mpc] ∼ 1023 [m]. R1 in [24] is calculated 1/R1 = 2GM/c2B2 + 15π(GM)2/8c4B3. The underline
indicates the leading order term.

Authors Deflection Due to Λ Numerical Value [rad]

Rindle & Ishak [13,14] − c2ΛR3

6GM −1.1× 10−5

Park [15] Not contribute -
Khriplovich & Pomeransky [16] Not contribute -
Sereno [17,18] + 2GMbΛ

3c2 + b3Λ
6

(
1
rs
+ 1

ro

)
+3.3× 10−13

Simpson et al. [19] Not contribute -
Bhadra et al. [20] 2GMΛb

3c2 − Λb
6 (dOL + dLS) +

Λb3

6

(
1

dOL
+ 1

dLS

)
−3.3× 10−9

Miraghaei et al. [21] −
√

2Λ
3 R −8.2× 10−6

Biressa et al. [22] + 2GMbΛ
3c2 − bΛ

6 (rS + robs)

− b3Λ
12

(
1
rS

+ 1
robs

)
+ GMb3Λ

6c2

(
1
r2
S
+ 1

r2
obs

)
−3.3× 10−9

Arakida & Kasai [23] Not contribute -

Hammad [24] −
√

2
3 Λ

√
GMR3

1
c2 −1.1× 10−5

Batic et al. [25] − 2√
3

r0
√

Λ− 2
√

Λ√
3

2GM
c2 −

√
3Λ
4

(2GM)2

c4r0
− 5
√

Λ
8
√

3
(2GM)3

c6r2
0

−1.1× 10−5

Present Paper − 2Λ
3 b(xB − xA) −1.3× 10−8

Our result seems to be similar and comparable with the third term of Equation (13) in [20], and
the fourth term of Equation (25) in [22]. Also, as [13,14,20–22,24,25], the cosmological constant leads to
diminishing the bending angle due to the mass of the central body M.

However, contrary to previous results such as [13,14,17,18,20,22,24,25], in our case the bending
angle due to Λ does not couple with the mass of the central body M. As mentioned in Section 3,
it comes from the fact that our calculation is first (linear) order with respect to ε ∼ rg ∼ Λ, (see
Equations (9) and (15)), then if we extend to second order O(ε2), the coupling term O(mΛ) appears.
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