
Article

Charged and Electromagnetic Fields from Relativistic
Quantum Geometry

Marcos R. A. Arcodía 2 and Mauricio Bellini 1,2,*
1 Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del

Plata, Funes 3350, C.P. 7600 Mar del Plata, Argentina
2 Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones

Científicas y Técnicas (CONICET), C.P. 7600 Mar del Plata, Argentina; marcodia@mdp.edu.ar
* Correspondence: mbellini@mdp.edu.ar

Academic Editors: Lorenzo Iorio and Elias C. Vagenas
Received: 3 May 2016; Accepted: 7 June 2016; Published: 21 June 2016

Abstract: In the recently introduced Relativistic Quantum Geometry (RQG) formalism, the
possibility was explored that the variation of the tensor metric can be done in a Weylian integrable
manifold using a geometric displacement, from a Riemannian to a Weylian integrable manifold,
described by the dynamics of an auxiliary geometrical scalar field θ, in order that the Einstein tensor
(and the Einstein equations) can be represented on a Weyl-like manifold. In this framework we
study jointly the dynamics of electromagnetic fields produced by quantum complex vector fields,
which describes charges without charges. We demonstrate that complex fields act as a source of
tetra-vector fields which describe an extended Maxwell dynamics.
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1. Introduction

The consequences of non-trivial topology for the laws of physics has been a topic
of perennial interest for theoretical physicists [1], with applications to non-trivial spatial
topologies [2] like Einstein-Rosen bridges, wormholes, non-orientable spacetimes, and
quantum-mechanical entanglements.

Geometrodynamics [3,4] is a picture of general relativity that studies the evolution of the
spacetime geometry. The key notion of the Geometrodynamics was the idea of charge without charge.
The Maxwell field was taken to be source free, and so a non-vanishing charge could only arise
from an electric flux line trapped in the topology of spacetime. With the construction of ungauged
supergravity theories it was realised that the Abelian gauge fields in such theories were source-free,
and so the charges arising therein were therefore central charges [5] and as consequence satisfied a
BPS bound [6] where the embedding of Einstein-Maxwell theory into N = 2 supergravity theory was
used. The significant advantages of geometrodynamics, usually come at the expense of manifest local
Lorentz symmetry [7]. During the 70s and 80s decades a method of quantization was developed in
order to deal with some unresolved problems of quantum field theory in curved spacetimes [8–10].

In a previous work [11] the possibility was explored that the variation of the tensor metric must
be done in a Weylian integrable manifold using a geometric displacement, from a Riemannian to a
Weylian integrable manifold, described by the dynamics of an auxiliary geometrical scalar field θ, in
order that the Einstein tensor (and the Einstein equations) can be represented on a Weyl-like manifold.
An important fact is that the Einstein tensor complies with the gauge-invariant transformations
studied in a previous work [12]. This method is very useful because can be used to describe, for
instance, nonperturbative back-reaction effects during inflation [13]. Furthermore, the relativistic
quantum dynamics of θ was introduced by using the fact that the cosmological constant Λ is a
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relativistic invariant. In this letter, we extend our study to complex charged fields that act as the
source of vector fields Aµ.

2. RQG Revisited

The first variation of the Einstein-Hilbert (EH) action I (Here, g is the determinant of the
covariant background tensor metric gµν, R = gµνRµν is the scalar curvature, Rα

µνα = Rµν is the
covariant Ricci tensor and Lm is an arbitrary Lagrangian density which describes matter. If we
deal with an orthogonal base, the curvature tensor will be written in terms of the connections:
Rα

βγδ = Γα
βδ,γ − Γα

βγ,δ + Γε
βδΓα

εγ − Γε
βγΓα

εδ).

I =
∫

V
d4x

√
−g
[

R
2κ

+ Lm

]
(1)

is given by

δI =
∫

d4x
√
−g
[
δgαβ

(
Gαβ + κTαβ

)
+ gαβδRαβ

]
(2)

where κ = 8πG, G is the gravitational constant and gαβδRαβ = ∇αδWα, where δWα = δΓα
βγgβγ −

δΓε
βεgβα = gβγ∇αδΨβγ. When the flux of δWα that cross the Gaussian-like hypersurface defined in

an arbitrary region of the spacetime, is nonzero, one obtains in the last term of Equation (2), that
∇αδWα = δΦ(xα), such that δΦ(xα) is an arbitrary scalar field that takes into account the flux
of δWα across the Gaussian-like hypersurface. This flux becomes zero when there are no sources
inside this hypersurface. Hence, in order to make δI = 0 in Equation (2), we must consider
the condition: Gαβ + κTαβ = Λ gαβ, where Λ is the cosmological constant. Additionally, we must
require the constriction δgαβΛ = δΦ gαβ. Then, we propose the existence of a tensor field δΨαβ,
such that δRαβ ≡ ∇βδWα − δΦ gαβ ≡ �δΨαβ − δΦ gαβ = −κ δSαβ (We have introduced the tensor
Sαβ = Tαβ − 1

2 T gαβ, which takes into account matter as a source of the Ricci tensor Rαβ), and
hence δWα = gβγ∇αδΨβγ, with ∇αδΨβγ = δΓα

βγ − δα
γδΓε

βε. Notice that the fields ¯δWα and ¯δΨαβ are
gauge-invariant under transformations:

¯δWα = δWα −∇αδΦ, ¯δΨαβ = δΨαβ − δΦ gαβ (3)

where the scalar field δΦ complies �δΦ = 0. On the other hand, we can make the transformation

Ḡαβ = Gαβ −Λ gαβ (4)

and the transformed Einstein equations with the equation of motion for the transformed gravitational
waves, hold

Ḡαβ = −κ Tαβ, (5)

� ¯δΨαβ = −κ δSαβ (6)

with �δΦ(xα) = 0 and δΦ(xα) gαβ = Λ δgαβ. The Equation (5) provides us the Einstein equations
with cosmological constant included, and Equation (6) describes the exact equation of motion for
gravitational waves with an arbitrary source δSαβ on a closed and curved space-time. A very
important fact is that the scalar field δΦ(xα) appears as a scalar flux of the tetra-vector with
components δWα through the closed hypersurface ∂M. This arbitrary hypersurface encloses the
manifold by down and must be viewed as a 3D Gaussian-like hipersurface situated in any region of
space-time. This scalar flux is a gravitodynamic potential related to the gauge-invariance of δWα and
the gravitational waves ¯δΨαβ. Another important fact is that since δΦ(xα) gαβ = Λ δgαβ, the existence
of the Hubble horizon is related to the existence of the Gaussian-like hypersurface. The variation of
the metric tensor must be done in a Weylian integrable manifold [11] using an auxiliary geometrical
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scalar field θ, in order to the Einstein tensor (and the Einstein equations) can be represented on
a Weyl-like manifold, in agreement with the gauge-invariant transformations Equation (3). If we
consider a zero covariant derivative of the metric tensor in the Riemannian manifold (we denote
with ”; ” the Riemannian-covariant derivative): ∆gαβ = gαβ;γ dxγ = 0, hence the Weylian covariant
derivative gαβ|γ = θγ gαβ, described with respect to the Weylian connections (To simplify the notation
we shall denote θα ≡ θ,α).

Γα
βγ =

{
α

β γ

}
+ gβγθα (7)

will be nonzero
δgαβ = gαβ|γ dxγ = −

[
θβgαγ + θαgβγ

]
dxγ (8)

2.1. Gauge-Invariance and Quantum Dynamics

From the action’s point of view, the scalar field θ(xα) is a generic geometrical transformation that
leads invariant the action

I =
∫

d4x
√
−ĝ

[
R̂
2κ

+ L̂
]
=
∫

d4x
[√
−ĝe−2θ

] {[ R̂
2κ

+ L̂
]

e2θ

}
(9)

where we shall denote with a hat, ˆ, the quantities represented on the Riemannian manifold. Hence,
Weylian quantities will be varied over these quantities in a Riemannian manifold so that the dynamics
of the system preserves the action: δI = 0, and we obtain

− δV
V

=
δ
[

R̂
2κ + L̂

]
[

R̂
2κ + L̂

] = 2 δθ (10)

where δθ = −θµdxµ is an exact differential and V =
√
−ĝ is the volume of the Riemannian manifold.

Of course, all the variations are in the Weylian geometrical representation, and assure us gauge
invariance because δI = 0. Using the fact that the tetra-length is given by S = 1

2 xνÛν and the
Weylian velocities are given by

uµ = Ûµ + θµ
(

xεÛε
)

(11)

can be demonstrated that

uµuµ = 1 + 4S
(

θµÛµ − 4
3

Λ S
)

(12)

The components uµ are the relativistic quantum velocities, given by the geodesic equations

duµ

dS
+ Γµ

αβuαuβ = 0 (13)

such that the Weylian connections Γµ
αβ are described by Equation (7). In other words, the

quantum velocities uµ are transported with parallelism on the Weylian manifold, meanwhile Ûµ

are transported with parallelism on the Riemann manifold. The quantum velocities uµ (given by
Equation (11)), must be considered as nondeterministic because they depend on θµ, so that the
only quantity that has classical sense is its quantum expectation value on the classical Riemannian
background manifold:

〈B|uµ|B〉 = Ûµ + 〈B|θµ|B〉
(
xεÛε

)
(14)

If we require that uµuµ = 1, we obtain the gauge

∇̂µ Aµ = 4
dΦ
dS

=
2
3

Λ2 S(xµ) (15)
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where Aµ is given by [11,12]

Aµ =
δWα

δS
=

δΓα
βγ

δS
gβγ −

δΓε
βε

δS
gβα (16)

Hence, we obtain the important result

dΦ =
1
6

Λ2 S dS (17)

or, after integrating

Φ(xµ) =
Λ2

12
S2(xµ) (18)

such that dΦ(xµ) = −Λ
2 dθ(xµ). Hence, from Equation (9) we obtain that the quantum volume is

given by
Vq =

√
−ĝ e−2θ =

√
−ĝ e

1
3 ΛS2

(19)

where ΛS2 > 0. This means that Vq ≥
√
−ĝ, for S2 ≥ 0, Λ > 0 and θ < 0. This implies a signature

for the metric: (−,+,+,+) in order for the cosmological constant to be positive and a signature
(+,−,−,−) in order to have Λ ≤ 0. Finally, the action Equation (9) can be rewritten in terms of both
quantum volume and the quantum Lagrangian density Lq =

[
R̂
2κ + L̂

]
e2θ

I =
∫

d4x Vq Lq (20)

As was demonstrated in [11] the Einstein tensor can be written as

Ḡαβ = Ĝµν + θα;β + θαθβ +
1
2

gαβ

[
(θµ);µ + θµθµ

]
(21)

and we can obtain the invariant cosmological constant Λ

Λ = −3
4
[
θαθα + �̂θ

]
(22)

so that we can define a geometrical Weylian quantum action W =
∫

d4x
√
−ĝ Λ, such that the

dynamics of the geometrical field, after imposing δW = 0, is described by the Euler-Lagrange
equations which take the form

∇̂αΠα = 0, or �̂θ = 0 (23)

where the momentum components are Πα ≡ − 3
4 θα and the relativistic quantum algebra is given

by [11]
[θ(x), θα(y)] = −iΘα δ(4)(x− y), [θ(x), θα(y)] = iΘα δ(4)(x− y) (24)

with Θα = ih̄ Ûα and Θ2 = ΘαΘα = h̄2Ûα Ûα for the Riemannian components of velocities Ûα.

2.2. Charged Geometry and Vector Field Dynamics

In order to extend the previous study we shall consider that the scalar field θ is given by

θ(xα) = φ(xα) e−iθ(xα), or θ(xα) = φ∗(xα) eiθ(xα) (25)

where φ(xα) is a complex field and φ∗(xα) its complex conjugate. In this case, since
θα = eiθ (∇̂α + iθα

)
φ∗, the Weylian connections hold

Γα
βγ =

{
α

β γ

}
+ eiθ gβγ

(
∇̂α + i θα

)
φ∗ ≡

{
α

β γ

}
+ gβγ eiθ (Dαφ∗) (26)
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where we use the notation Dαφ∗ ≡
(
∇̂α + iθα

)
φ∗. The Weylian components of the velocity uµ and

the Riemannian ones Uµ, are related by

uµ = Ûµ + eiθ (Dµφ∗)
(

xεÛε
)

(27)

Furthermore, using the fact that

δgαβ = e−iθ [(∇̂β − iθβ

)
Ûα +

(
∇̂α − iθα

)
Ûβ

]
φ δS (28)

we can obtain from the constriction Λδgαβ = gαβδΦ, that

δΦ =
Λ
4

gαβ δgαβ (29)

so that, using Equation (28), the flux of Aµ across the Gaussian-like hypersurface can be expressed in
terms of the quantum derivative of the complex field:

δΦ
δS
≡ dΦ

dS
=

Λ
2

eiθÛα (Dαφ∗) (30)

Using the fact that ∇̂αδWα = δΦ, it is easy to obtain

∇̂µ Aµ =
Λ
2

eiθÛα (Dαφ∗) (31)

where we have defined Aµ = δWµ

δS . Notice that the velocity components Ûα of the Riemannian
observer define the gauge of the system. Furthermore, due to the fact that δWα = gβγ∇̂αδΨβγ, hence
we obtain that

δWα

δS
≡ Aα = gβγ∇̂αχβγ ≡ ∇̂αχ (32)

where χβγ are the components of the gravitational waves:

∇̂α Aα = gβγ∇̂α∇̂αχβγ ≡ �̂χ (33)

3. Quantum Field Dynamics

In this section we shall study the dynamics of charged and vector fields, in order to obtain their
dynamical equations.

3.1. Dynamics of the Complex Fields

The cosmological constant Equation (22) can be rewritten in terms of φ = θ eiθ and φ∗ = θe−iθ

Λ = −3
4
[(
∇̂νφ

) (
∇̂νφ∗

)
+ θν Jν

]
(34)

where the current due to the charged fields is

Jν = i
[
δν

ε

(
∇̂εφ

)
φ∗ −

(
∇̂νφ∗

)
φ− iθν (φφ∗)

]
(35)

The important fact in Equation (34) is that the geometrical current Jµ interacts with the
geometrical Weylian manifold. In other words, the cosmological constant can be viewed in this
context as due to a purely quantum excitation (of charged fields), of the Riemannian (classical)
background.
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As can be demonstrated, ∇̂ν Jν = − 8
3

∫
dθ =

( 2
3 Λ S

)2
, so that we obtain the condition

φ∗ ei (θ− π
2 ) = φ e−i (θ− π

2 ) (36)

The zeroth-component of the current is

J0 = i
[
δ0

ε

(
∇̂εφ

)
φ∗ −

(
∇̂0φ∗

)
φ− iθ0 (φφ∗)

]
(37)

which represents the density of electric charge, so that the charge is

Q =
∫

d3x
√
|det[gij]| J0 (38)

once we require that ∇̂i Ji =
( 2

3 Λ S
)2

, and consequently ∇̂0Q = 0.
The second equation in Equation (23) results in two different equations(

�̂+ iθµ∇̂µ +
4
3

Λ
)

φ∗ = 0 (39)(
�̂− iθµ∇̂µ +

4
3

Λ
)

φ = 0 (40)

where the gauge equations are

−
[

iθµ∇̂µ +
3
4

Λ
]

φ∗ =
3
4

Λ e−i(θ− π
2 ) (41)[

iθµ∇̂µ −
3
4

Λ
]

φ =
3
4

Λ ei(θ− π
2 ) (42)

so that finally we obtain the equations of motion for both fields

�̂φ∗ =
3
4

Λ e−i(θ− π
2 ) (43)

�̂φ =
3
4

Λ ei(θ− π
2 ) (44)

Notice that the functions e±i(θ− π
2 ) are invariant under θ = 2 nπ (n- integer) rotations, so that the

complex fields are vector fields of spin 1. Using the expressions Equation (26) to find the commutators
for the complex fields, we obtain that

[φ∗(x), Dµφ∗(y)] =
4
3

iΘµ δ(4)(x− y),
[
φ(x), Dµφ(y)

]
= −4

3
iΘµ δ(4)(x− y) (45)

where Dµφ∗ ≡
(
∇̂µ + i θµ

)
φ∗ and Dµφ ≡

(
∇̂µ − i θµ

)
φ.

3.2. Dynamics of the Vector Fields

On the other hand, if we define Fµν ≡ ∇̂µ Aν − ∇̂ν Aµ, such that Aα is given by Equation (32), we
obtain the equations of motion for the components of the electromagnetic potentials Aν: ∇̂µFµν = Jν

�̂Aν − ∇̂ν
(
∇̂µ Aµ

)
= Jν (46)

where Jν being given by the expression Equation (35) and from Equation (15) we obtain that
∇̂µ Aµ = −Λ

2 θµÛµ = 2
3 Λ2 S(xµ) = 4 dΦ

dS determines the gauge that depends on the Riemannian frame
adopted by the relativistic observer. Notice that for massless particles the Lorentz gauge is fulfilled,
but it does not work for massive particles, where S 6= 0.
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4. Final Remarks

We have studied charged and electromagnetic fields from relativistic quantum geometry. In this
formalism, the Einstein tensor complies with gauge-invariant transformations studied in a previous
work [12]. The quantum dynamics of the fields is described on a Weylian manifold which comes
from a geometric extension of the Riemannian manifold, on which is defined the classical geometrical
background. The connection that describes the Weylian manifold is given in Equation (26) in terms
of the quantum derivative of the complex vector field with a Lagrangian density described by
the cosmological constant Equation (34). We have demonstrated that vector fields Aµ describe an
extended Maxwell dynamics (see Equation (46)), where the source is provided by the charged fields
current density Jµ, with a nonzero tetra-divergence. Furthermore, the gauge of Aµ is determined
by the relativistic observer: ∇̂µ Aµ = Λ

2 θµÛµ. Finally, it is important to notice that the cosmological
constant appears as a Riemannian invariant, but not a Weylian one. It can be viewed in this context
as due to a purely quantum excitation. In this paper these excitations of a Riemannian (classical)
background, are driven by charged complex fields.
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