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Abstract: The Poisson structure of intrinsic time gravity is analysed. With the starting point
comprising a unimodular three-metric with traceless momentum, a trace-induced anomaly results
upon quantization. This leads to a revision of the choice of momentum variable to the (mixed index)
traceless momentric. This latter choice unitarily implements the fundamental commutation relations,
which now take on the form of an affine algebra with SU(3) Lie algebra amongst the momentric
variables. The resulting relations unitarily implement tracelessness upon quantization. The associated
Poisson brackets and Hamiltonian dynamics are studied.
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1. Introduction

A crucially important question in the quantization of gravity in 3+1 dimensions, as for any theory,
is the choice of the fundamental dynamical variables of the classical theory, which upon quantization
become promoted to quantum operators. In Loop Quantum Gravity (LQG) [1] the starting point for
the classical theory are the Ashtekar variables, where a SU(2) gauge connection and a densitized triad
form a canonically conjugate pair. This choice of variables turns the initial value constraints of GR
from intractable non polynomial phase space functions, as they appear in the Arnowitt Deser Misner
(ADM) theory [2], into polynomial form at the expense of an additional set of constraints related to the
SU(2) gauge symmetry inherent in the theory. It is hoped that the polynomial form of the constraints
in LQG make the constraints more tractable for quantization and the construction of a physical Hilbert
space. The actual configuration variable in LQG which is subject to the quantization procedure is not
the connection itself, but rather the holonomy of the connection, since the latter is well-defined in the
quantum theory whereas the connection fails to exist [3]. Furthermore, the transformation properties of
the holonomy more aptly are representative, at the kinematical level, of the symmetry properties of the
theory [4]. Consequently, upon quantization in LQG all constraints and quantities must be rewritten in
terms of the holonomies and the densitized triad, which themselves no longer form a canonical pair.

In LQG there exists only a manifold structure with no metric, and the metric is no longer
fundamental, but becomes a derived quantity in terms of more fundamental variables. A main
difficulty in LQG is the construction of a physical Hilbert space from solution of the Hamiltonian
constraint. Whether one utilizes the self-dual version of the connection or its real counterparts as in
the Barbero variables [5], the solution to the Hamiltonian constraint and its subsequent delineation
of the physical Hilbert space, is a long and standing unresolved problem [2]. Consequently, the
quantization of LQG remains complete only at the kinematical level (which is more suitably adapted
to the fundamental variables), and the physical dynamics of gravity remain to be completely encoded
within this procedure [4]. LQG can be contrasted with the standard ADM approach [4], wherein the
fundamental variables are the spatial three metric and its conjugate momentum, constructed from the
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extrinsic curvature of the spatial slice of four-dimensional spacetime upon which the quantization
must be performed. The corresponding initial value constraints are intractable due to various technical
issues particularly related to ultraviolet divergences associated with operator products, which in
LQG are absent. The choice of fundamental variables in the ADM approach poses the problem that
as canonically conjugate variables, the momentum generates translations of the spatial three metric.
Since the spectrum of both variables is the real line, then the positivity of the metric in the quantum
theory cannot be guaranteed while having self-adjoint variables. Positivity of the spatial three metric is
a crucially important condition that any quantum theory of gravity must satisfy, since spatial distances
as measured by the theory must always be positive.

The theory of Intrinsic time quantum gravity (ITQG) [6] presented in this paper is driven by
the motivation to solve all of the above difficulties. The choice of the configuration space variable in
ITQG will be a unimodular spatial three metric metric and a momentum variable (ultimately known
as a momentric) which generates dilations (more precisely SU(3) and SL(3,R) transformations of the
metric). The importance of this choice of fundamental variables is that they will be self-adjoint in the
quantum theory, while preserving the positivity and the unimodularity of the spatial three metric
forming the configuration space variable. A common misconception of the price for such a result
is that the variables cannot be canonically related, resulting in complications in their quantization.
However, in the case of ITQG we will see that it is precisely their non canonical nature that makes
them perfectly suited for quantization, and admits a group-theoretical interpretation as such, which
resolves all of the aforementioned difficulties in the LQG and ADM approaches in one stroke.

In [6], a new formulation for quantization of the gravitational field in ITQG, is presented. The basic
idea, as introduced in [7] and [8], is the concept of a new phase space for gravity which breaks the
paradigm of four-dimensional spacetime covariance, shifting the emphasis to three dimensional spatial
diffeomorphism invariance combined with a physical Hamiltonian which generates evolution with
respect to intrinsic time. Through the constructive interference of wavefronts, classical spacetime
emerges from the formalism, with direct correlation between intrinsic time intervals and proper time
intervals of spacetime. In the present paper we will take a step back to analyse the motivations and
canonical structure of ITQG, and then construct the fundamental variables and their commutation
relations of the theory. These relations are noncanonical, which lead to the uncovering of an inherent
SU(3) structure for gravity. This presents certain advantages from the standpoint of quantization.
The paper is thus structures as follows: Section 2 discusses the Poisson structure of the barred classical
variables, Section 3 highlights the prelude to the quantum theory, Section 4 discusses the momentric
operators and the SU(3) Lie algebra, Section 5 revisits the classical theory, and then lastly, Section 6
concludes the paper with some recommendations for similar future work in this direction.

2. Poisson Structure of the Barred Classical Variables

Let qij, π̃ij denote the spatial 3-metric and its conjugate momentum defined on a spatial slice Σ of
a four dimensional spacetime of topology M = Σ× R. In the ADM metric theory, the basic variables
provide a canonical one form

ΘADM =
∫

Σ
d3x π̃ij(x)δqij(x). (1)

Starting from this canonically conjugate pair, let us define as fundamental classical variables
the following barred quantities q̄ij, a unimodular metric with detqij = 1, and a traceless momentum

variable πij via the relations [7,8]

qij = q−1/3qij; πij = q1/3(π̃ij − 1
3

qijπ̃
)
, (2)

where π̃ = qijπ̃
ij with qijπ

ij = 0. From Equation (2) we get the following cotangent
space decomposition

δqij = q1/3(qijδlnq1/3 + δqij
)
−→ δqij = Pkl

ij δqkl (3)
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where we have defined the traceless projector Pij
kl =

1
2
(
δi

kδ
j
l + δ

j
kδi

l
)
− 1

3 qijqkl , with Pij
klq

kl = qijP
ij
kl = 0.

So we have qijδqij = 0, namely that the cotangent space elements δqij are traceless. The inverse relations

qij = q1/3qij; π̃ij = q−1/3(πij +
1
3

qijπ̃
)

(4)

take us from the barred back to the unbarred variables. Substitution of the left side of the arrow
of Equation (3) into Equation (1) provides a clean separation of the barred gravitational degrees of
freedom with canonical one-form [7]

Θ =
∫

Σ
d3xπ̃ijδqij =

∫
Σ

d3x
(
π̃δlnq1/3 + πijδqij

)
, (5)

where we have used πijqij = qijδqij = 0. Equation (5) yields a corresponding symplectic two-form

Ω = δΘ =
∫

Σ
d3x
(

δπ̃ ∧ δlnq1/3 + δπij ∧ δqij

)
. (6)

While this may be the case, as we will see, the Poisson brackets which can arise from (6) are not
unique, on account of subtleties due to the implementation of tracelessness of πij.

A necessary condition for a consistent canonical quantization of the theory is that the correct
Poisson brackets comprise the starting point at the classical level. So let us directly calculate via
Equation (2) barred Poisson brackets with respect to the unbarred canonical structure, which is
clearly known to be unambiguous. For the metric components we have {qij(x), qkl(y)} = 0 which is
encouraging, as the unbarred metric clearly is devoid of any momentum dependence. However, using
the following relations

δq1/3

δqij
=

1
3

q1/3qij;
δqij

δqmn
= −q(imqj)n;

δqkl
δqij

= q−1/3Pij
kl ;

δπij

δπ̃kl = q1/3Pij
kl , (7)

in conjunction with

δπij

δqkl
=

1
3

(
qklπij + q1/3(q(ikqj)lqrsπ̃rs − qijπ̃kl)) =

1
3

q−1/3(qklπij − qijπkl)+ 1
3

q1/3q(ikqj)lπ̃, (8)

we obtain the following Poisson bracket relations between barred metric and momentum

{qij(x), πkl(y)} =
∫

Σ
d3z
( δqij(x)

δqmn(z)
δπkl(y)
δπ̃mn(z)

− δπkl(y)
δqmn(z)

δqij(x)

δπ̃mn(z)

)
= Pkl

ij δ(3)(x, y). (9)

Finally, we obtain the following relation amongst the barred momentum components

{πij(x), πkl(y)} =
∫

Σ
d3z
( δπij(x)

δqmn(z)
δπkl(y)
δπ̃mn(z)

− δπkl(y)
δqmn(z)

δπij(x)
δπ̃mn(z)

)
=

1
3
(
qklπij− qijπkl)δ(3)(x, y). (10)

The Poisson brackets between barred variables are noncanonical. But we will show that they yield
the same barred contribution as the symplectic two form (6) which can be seen as follows. From the
calculated Poisson brackets the following Poisson matrix can be constructed

PI J =

(
{qij(x), qkl(y)} {qij(x), πkl(y)}
{πkl(y), qij(x)} {πij(x), πkl(y)}

)
=

(
0 Pkl

ij

−Pkl
ij

1
3
(
qklπij − qijπkl)

)
δ(3)(x, y). (11)

In Poisson geometry, a two form Ω = 1
2 ΩI JδqI ∧ δqJ on the phase space qI ≡ qij, πij can be

constructed whose components are the inverse of the Poisson matrix. If Ω is closed (δΩ = 0) and
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nondegenerate, then it is said to be a symplectic two form. Making the identifications {q, π} ∼ β and
{π, π} ∼ α, then the inverse of the Poisson matrix for the barred variables is of the form

P−1 =

(
0 β

−β α

)−1

=

(
β−1αβ−1 −β−1

β−1 0

)
, (12)

which does not exist since the projector Pkl
ij is uninvertible. This suggests, naively, that the symplectic

structure associated with the above Poisson brackets does not exist.
One method of quantization of a theory is to promote Poisson brackets directly into quantum

commutators. The Poisson brackets for a generic theory can be read off directly from its symplectic
two form, and which in turn is defined from the Poisson matrix by constructing the inverse of the
latter. We would like to construct the symplectic two form for ITQG by inverting the Poisson matrix
PI J constructed in equation Equation (11). The Poisson matrix in its present form is uninvertible since
it consists of projectors Pkl

ij in its block off-diagonal positions denoted by the symbol β. In the process

of inversion of PI J , as shown above with P−1, it is necessary to have β−1. But β−1 does not exist on
account of the fact that projectors are not invertible, which suggests, naively, that ITQG does not have
a well-defined symplectic structure.

To get around this technical difficulty we will add a trace part to the Poisson matrix, parametrized
by a parameter γ which we will ultimately remove after all calculations have been performed.
While this distorts the theory of ITQG to a new theory parametrized by γ, it renders the resulting
Poisson matrix invertible to allow progress to the corresponding symplectic two form, parametrized by
γ, since the previously offending terms β now become βγ, which as in Equation (12) are now invertible.
Thus we have

βγ ≡ (Pγ)
ij
kl = Pij

kl + γqijqkl −→ β−1
γ = Pkl

mn +
1

9γ
qklqmn. (13)

So now, we can invert the resulting object, and we have that

β−1
γ αβ−1

γ =
1
3
(

Pmn
kl +

1
9γ

qmnqkl
)(

qklπij − qijπkl)(Prs
ij +

1
9γ

qrsqij
)
= − 1

9γ

(
πmnqrs − qmnπrs), (14)

where we have used Pij
klqij = qklπkl = 0 and Pij

klπ
kl = πij, which assumes that πij is traceless. So the

inverse of the Poisson matrix parametrized by γ is given by

P−1 =

(
− 1

9γ

(
qklπij − qijπkl) −(Pkl

mn +
1

9γ qklqmn
)

Pij
rs +

1
9γ qijqrs 0

)
δ(3)(x, y),

and the associated two form Ω inherits the γ dependence

Ωγ =
1
2

Ωγ
I JδqIδqJ

=
∫

Σ
d3x
[
− 1

18γ

(
qklπij − qijπkl)δqij ∧ δqkl +

(
Pij

kl +
1

9γ
qijqkl

)
δqij ∧ δπkl +

1
2
(0)ijklδπij ∧ δπkl

]
.

(15)

But qijδqij = 0, causing the δq ∧ δq term and the γ contribution to the δq ∧ δπ term of (15) vanish.
The quantity (0)ijkl in Equation (15) is basically to highlight the fact that that term, while zero is
nontrivially so. Rather than omit this term, we wanted to highlight the fact that it is a tensorial quantity
forming the coefficient of the δπ̄ ∧ δπ̄ two form. This facilitates the keeping track for the reader of
each individual term, of which there should be of the type including δq̄ ∧ δq̄ and δq̄ ∧ δπ̄. There is no
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δπ ∧ δπ term since {qij, qkl} = 0. All explicit γ dependence in the symplectic form has disappeared,
so the γ→ 0 limit can be safely taken, yielding

limγ→0Ωγ =
∫

Σ
d3xPij

klδqij ∧ δπkl

=
∫

Σ
d3xδqij ∧ δπij − 1

3

∫
Σ

d3x(qijδqij) ∧ (qklδπkl) =
∫

Σ
d3xδqij ∧ δπij.

(16)

The vanishing of the 1
3 term is due to qijδqij = 0 or alternatively by the Leibniz rule for the

momentum term

(qijδqij) ∧ (qklδπkl) = δqij ∧ δ(qijqklπkl)− δqij ∧ δqij(qklπ
kl)− (qijδqij) ∧ (πklδqkl) = 0 (17)

due additionally to qijπ
ij = 0. This implies that the tracelessness of πij must be conjugate to the fact

that infinitesimal variations in qij are traceless. Hence (16) is the same as the barred contribution to (6),

with the difference that the tracelessness of πij has been implicitly enforced due to a unimodular
metric. This calculation demonstrates that extreme care must be exercised when extracting Poisson
brackets from a symplectic two form, particular when the index structure of the fundamental variables
has implicit symmetries. The requirement to implement the noncanonical Poisson brackets at the
quantum level will pose nontrivial issues, which we will address in the next few sections. Let us
display, for completeness, the fundamental Poisson brackets for the barred phase space

{qij(x), qkl(y)} = 0; {qij(x), πkl(y)} = Pij
kl(x, y); {πij(x), πkl(y)} = 1

3
(
qklπij − qijπkl)δ(3)(x, y). (18)

The basic Poisson brackets are noncanonical, which can be seen as the price to be paid for
choosing πij to be traceless at the classical level, or alternatively, the price for choosing unimodular
metric variables.

The original motivation was to obtain a symplectic form parametrized by γ and then to take the
limit as γ approaches zero. But as one can see from the above that the wedge products in the resulting
symplectic two form have coefficients proportional to γ−1, which in the limit as γ approaches zero
would be ill-defined. However, note form the arguments provided from Equation (15) through to
Equation (18), that the individual wedge products of the fundamental variables all vanish on account
of the unimodularity of the configuration space variable q̄ij and the tracelessness of the momentum p̄iij.
Hence the proper procedure is to leave γ arbitrary in the symplectic two form, which is immaterial
since all terms which depend on γ automatically vanish. The result is that the symplectic two form
reduces to δq̄ ∧ δπ̄ form as in Equation (17), whence γ is conspicuously absent. So the justification that
the parametrization of the Poisson matrix by the parameter does not affect the results of the symplectic
two form is that for all nonzero γ, we can transition from the Poisson matrix to the symplectic two
form by inversion as per the standard procedure, yielding a symplectic two form which is independent
of the parameter γ. It is the unique choice of unimodular and traceless variables, which makes this the
case, which admits a complete quantization of these variables.

3. A Prelude into the Quantum Theory

Having determined the Poisson brackets for the barred phase space, the next step is to implement
them at the quantum level. In proceeding to the quantum theory according to the Heisenberg–Dirac
prescription, we must promote all classical variables A, B to operators Â, B̂ and all Poisson brackets
to commutators {A, B} → 1

(ih̄) [Â, B̂]. So the fundamental Poisson brackets (18) yield the following
equal-time commutation relations

[qij(x, t), qkl(y, t)] = 0; [qij(x, t), π̂
kl
(y, t)] = ih̄Pij

kl(x, y); [π̂
ij
(x, t), π̂

kl
(y, t)] = ih̄

3
(
qklπ̂

ij − qijπ̂
kl)

δ(3)(x, y), (19)
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where we have chosen an operator ordering with the momenta to the right. Since the momentum
components fail to commute, then we are restricted to wavefunctionals ψ[q̄] in the metric representation.
A representation of the classically traceless momentum as a vector field

π̂
ij
(x)ψ[q] −→ h̄

i

[
Pij

kl
δ

δqkl
+

1
3
(
qijπkl − qklπij) δ

δπkl

]
ψ[q] =

h̄
i

Pij
kl(x)

δψ[q]
δqkl(x)

(20)

correctly reproduces the commutation relations (19) (The term of (20) from the πij, πkl commutation
relation does not contribute for wavefunctionals ψ[q] polarized in the metric representation.). However,
Equation (20) does not constitute a self-adjoint operator since

h̄
i

δ

δqkl(x)
Pij

kl(x) =
h̄
i

Pij
kl(x)

δ

δqkl(x)
− 2h̄

3i
qijδ(3)(0). (21)

So qijπ̂
ij
= 0 6= π̂

ij
qij, namely that the momentum in (20) is left-traceless, but is not right-traceless.

A self- adjoint operator can be constructed by averaging the left-traceless and right-traceless versions
1
2
(

δ
δqij

Pkl
ij + Pkl

ij
δ

δqij

)
. However, the resulting operator, while self-adjoint, is neither traceless from the

left nor from the right. So it appears that tracelessness is a property which is nontrivial to enforce at
the quantum level in the q̄ij, πij variables.

The quantity δ(3)(0) in Equation (21) is an ultraviolet singularity in field theory, which results from
evaluating the commutation relations at the same spatial point. It is a formal expression more rigorously
defined by a limiting procedure in the coincidence limit of the arguments x and y. It is necessary
to perform the commutation relations at the same spatial point in order to reorder the fundamental
operators in Equations (20) and (21), which are defined at the same spatial point, which is necessary in
order to evaluate self-adjointness. This operator ordering induced ambiguity, parametrized by δ(3)(0),
highlights that the variables in their present form, while solving the aforementioned problem of the
symplectic structure, are still not ideally suited for quantization. This will ultimately lead us to the
choice of the momentric π̄i

j, in lieu of the momentum variable π̄ij, which being self adjoint as we will

demonstrate in the remainder of this paper, will eliminate the presence of any such δ(3)(0) divergences
in the quantum theory.

4. Momentric Operators and the SU(3) Lie Algebra

Let us define a mixed-index version of the momentum, namely the momentric variables
Pi

j = qjmπim. We first compute the commutator of Pi
j with the barred metric. This is given by

[Pi
j(x), qkl(y)] = [qjm(x)πmi(x), qkl(y)] = qjm(x)[πmi(x), qkl(y)] = −ih̄qjmPmi

kl δ(3)(x, y) ≡ h̄
i Ei

j(kl)δ
(3)(x, y) (22)

where we have used (19), with the “superspace vielbein” defined as Ei
j(kl) =

1
2
(
δi

kqjl + δi
lqjk
)
− 1

3 δi
jqkl .

So we will rather adopt the pair qij, Pi
j as the fundamental variables, and recompute the fundamental

relations (19) with respect to them.
For the commutators amongst the momentric components themselves the following identity

involving commutation relations regarding generic operators Â, B̂, Ĉ, D̂ will be useful

[ÂB̂, ĈD̂] = Â[B̂, Ĉ]D̂ + Ĉ[Â, D̂]B̂ + [Â, Ĉ]B̂D̂ + ĈÂ[B̂, D̂]. (23)
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Note that the proper operator ordering has been preserved in (23). So we have the following,
suppressing the x-y dependence in the intermediate steps and suppressing the hats to avoid cluttering
up the notation,

[Pi
j(x), Pk

l (y)] = [qjm(x)πim(x), qln(y)π
kn(y)]

= qjm[π
im, qln]π

kn + qln[qjm, πkn]πim + [qjm, qln]π
imπkn + qlnqjm[π

im, πkn]

=
h̄
i

[
qjmPim

ln πkn − qlnPkn
jmπim + 0 +

1
3

qlnqjm
(
qknπim − qimπkn)]δ(3)(x, y).

(24)

In the third line of Equation (24) we have used the fundamental equal time commutation
relations (19). For completeness, let us display some of the intermediate steps from Equation (24).
For the first term on the right hand side we have

qjmPim
ln πkn = qjm

(1
2
(
δi

lδ
m
n + δi

nδm
l
)
− 1

3
qimqln

)
πkn =

1
2
(
δi

l P
k
j + qjlπ

ki)− 1
3

δi
jP

k
l . (25)

For the middle term we have

qlnPkn
jmπim = qln

(1
2
(
δk

j δn
m + δk

mδn
j
)
− 1

3
qknqjm

)
πim =

1
2
(
δk

j Pi
l + ql jπ

ik)− 1
3

δk
l Pi

j. (26)

For the last term on the right hand side of (24) we have

1
3

qlnqjm
(
qknπim − qimπkn) = 1

3
(
δk

l Pi
j − δi

jP
k
l
)
. (27)

Substitution of Equations (25)–(27) into Equation (24) yields the result that

[Pi
j(x), Pk

l (y)] =
h̄
i

[
1
2
(
δi

l P
k
j − δk

j Pi
l
)
+

2
3
(
δk

l Pi
j − δi

jP
k
l
)]

δ(3)(x, y). (28)

Note that the algebra closes (if not for the precise cancellation of terms of the form qjlπ
ki, this

would not be the case). While the algebra (28) closes on the momentric variables Pi
j, it does not enforce

the vanishing of the trace P = δ
j
i Pi

j. This can be seen by contraction of (28) with δi
j, wherein

[P(x), Pi
j(y)] = −

2h̄
i
(

Pi
j −

1
3

δi
jP
)
δ(3)(x, y) ≡ 2ih̄πi

jδ
(3)(x, y), (29)

where πi
j denotes the traceless part of the momentric. Note that P = 0 in Equation (29) leads to a

contradiction, whereas the relation (22) implies [P, qij] = 0 due to tracelessless of Ei
j(kl).

Still, it is interesting in Equation (29) that the commutator of Pi
j with its trace yields it traceless

part πi
j. So let us evaluate the commutation relations involving the traceless part (suppressing the

coordinate dependence for simplicity)

[πi
j(x), πk

l (y)] =
[
Pi

j −
1
3

δi
jP, Pk

l −
1
3

δk
l P
]
= [Pi

j, Pk
l ]−

1
3

δk
l [P

i
j, P]− 1

3
δi

j[P, Pk
l ] +

1
9

δi
jδ

k
l [P, P]

=
ih̄
2
(
δi

l P
k
j − δk

j Pi
l
)
δ(3)(x, y)

(30)
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where we have used (28) and (29). We can now make the substitution Pi
j = πi

j +
1
3 δi

jP, and the trace

part cancels out to yield [πi
j, πk

l ] =
ih̄
2
(
δi

lπ
k
j − δk

j πi
l
)
. The final result of our commutation relations (19),

in terms of the traceless momentric variables πi
j is given by

[qij(x), qkl(y)] = 0; [π̂
i
j(x), qkl(y)] =

h̄
i Ei

j(kl)δ
(3)(x, y); [π̂

i
j(x), π̂

k
l (y)] =

ih̄
2
(
δi

lπ
k
j − δk

j πi
l
)
δ(3)(x, y). (31)

Note that Equation (31) implies a representation of the momentric as a vector field

P̂
i
j =

h̄
i

δ

δqkl
Ei

j(kl) =
h̄
i

Ei
j(kl)

δ

δqkl
+

h̄
i

[ δ

δqkl
, Ei

j(kl)

]
=

h̄
i

Ei
j(kl)

δ

δqkl
, (32)

which is both self-adjoint and left-right traceless, implements the commutation relations, and is

traceless in the sense that δ
j
i π̂

i
j = π̂

i
jδ

j
i = 0. There are a few things to note regarding (31). First, upon

contraction with δ
j
i , yields consistently that the trace δ

j
i π

i
j = 0 vanishes as well as its comutator with all

quantities. Secondly, the traceless momentric variables by themselves form a SU(3) current algebra,
and also generate an affine algebra with the metric, which unlike (19) preserves the positivity of the
metric qij. Thus, the fundamental variables qij, πi

j will be the prime choice for the quantum theory
which, at the kinematical level, will involve constructing unitary, irreducible representations of the
SU(3) Lie algebra. Also of note is that the the object ∆ = π

j
iπ

i
j encodes to the quadratic Casimir of

SU(3), which by definition must commute with all traceless momentric components [∆, πi
j] = 0.

The Gell–Mann matrices satisfy the relations

[λA, λB]
i
j = i f C

AB(λC)
i
j; {λA, λB}i

j = dABC(λC)
i
j (33)

with totally antisymmetric structure constants fABC, and totally symmetric dABC. We will exploit the
aforementioned index structure by projection of the momentric onto the Gell–Mann matrices

TA = (λA)
j
iπ

i
j −→ πi

j = 2TA(λA)
i
j, (34)

where we have used the SU(3) completeness relation (λA)i
j(λ

A)k
l = 1

2
(
δk

j δi
l −

1
3 δi

jδ
k
l
)
. The SU(3) Lie

algebra is of rank 2, and therefore has two Casimir operators, C(2) and C(3) given by

C(2) = (λA)
j
i(λA)

i
j = TATA; C(3) = dABC(λA)

i
j(λB)

j
k(λC)

k
i = εijkεmnlπ

m
i πn

j πl
k ∝ 6detπi

j. (35)

Note for C(3) that the pair of epsilon symbols is totally symmetric under interchange of any index
pair (i, m), (j, n), (k, l), which is consistent with the total symmetry of dABC.

5. The Classical Theory, Revisited

Having determined the ideal variables for quantization as the unimodular- traceless momentric
pair qij, πi

j, we will now re-evaluate the Poisson brackets of the theory. This provides a basis for
correlation of quantum predictions to the classical dynamics. First, the fundamental Poisson brackets
are given by

{qij(x), qkl(y)} = 0, {qij(x), πk
l (y)} = Ei

j(kl)δ
(3)(x, y); {πi

j(x), πk
l (y)} =

1
2
(
δi

lπ
k
j − δk

j πi
l
)
δ(3)(x, y). (36)
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So the Poisson brackets between phase space functions A and B is given by

{A, B} =
∫

Σ
d3x

∫
Σ

d3y
[

δA
δqij(x)

{qij(x), qkl(y)}
δB

δqkl(y)
+

δA
δqij(x)

{qij(x), πk
l (y)}

δB
δπk

l (y)

+
δA

δπi
j(x)
{πi

j(x), qkl(y)}
δB

δqkl(y)
+

δA
δπi

j(x)
{πi

j(x), πk
l (y)}

δB
δπk

l (y)

]
=
∫

Σ
d3z
[

Ek
j(ij)

( δA
δqij

δB
δπk

l
− δB

δqij

δA
δπk

l

)
+

δA
δπi

j
πi

l
δB

δπ
j
l

− δA
δπi

j
πk

j
δB
δπk

i

]
.

(37)

In General relativity, we will be interested in the evolution of the basic variables with respect to T,
gauge-invariant part of intrinsic time lnq1/3, under the action of a physical Hamiltonian

HPhys =
∫

Σ
d3xH̄(x) =

∫
Σ

d3x
√

π
j
iπ

i
j + V[qij], (38)

where V is a potential term which depends on the metric. The Hamilton’s equations for the basic
variables with respect to the Poisson brackets (37) are given by

δqij(x)

δT
= {qij(x), HPhys} =

1
H̄

Ek
l(ij)π

l
k;

δπi
j(x)

δT
= {πi

j(x), HPhys} =
1
H̄

[1
2

Ei
j(kl)

δV

δqkl
+ πi

lπ
l
j − πk

j πi
k

]
=

1
2H̄

Ei
j(kl)

δV

δqkl
.

(39)

As a quick consistency check, contraction of the first equation of (39) with qij and contraction of
the second equation with δ

j
i shows that if qij is unimodular and πi

j is traceless at time T0, then these
properties will be preserved under evolution in intrinsic time by the Hamilton’s equations.

6. Conclusions

The consistent quantization of 3+1 gravity is one of the biggest unsolved problems in theoretical
physics spanning the past 100 years of approaches which, while leading to insights into certain often
complementary aspects of the problem, have so far not provided a complete solution due to various
technical and conceptual difficulties and issues. The novelty of the author’s approach is the claim
that with ITQG, one has a complete and consistent quantization of gravity which provides a possible
resolution to the long-standing problem, while solving the difficulties inherent in all of the approaches
so far, in one stroke.

For future work, we aim to follow the work of this paper with a similar work by focusing on
some 2+1 aspect of ITQG, with the aim of studying the thermodynamic aspects of the BTZ black hole.
Also, looking at the initial wave function, one difference from the case of 3+1 gravity seems to be the
observation that there is no Cotton-York tensor in two spatial dimensions. So we should expect just a
Ricci curvature-squared higher derivative rendition of the theory. This then will help us to be able to
exploit the SU(2) structure of the theory, which will go a long way towards learning about the physical
Hilbert space.
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