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Abstract: The second law of thermodynamics, in the presence of gravity, is known to hold
at small scales, as in the case of black holes and self-gravitating radiation spheres. Using the
Friedmann–Lemaître–Robertson–Walker metric and the history of the Hubble factor, we argue
that this law also holds at cosmological scales. Based on this, we study the connection between the
deceleration parameter and the spatial curvature of the metric, Ωk, and set limits on the latter, valid
for any homogeneous and isotropic cosmological model. Likewise, we devise strategies to determine
the sign of the spatial curvature index k. Finally, assuming the lambda cold dark matter model is
correct, we find that the acceleration of the cosmic expansion is increasing today.
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1. Introduction

The validity of the second law of thermodynamics for systems dominated by gravity should
not be taken for granted. Gravity is a long-ranged interaction while the formulation of the second
is based on the observation of ordinary systems, i.e., those dominated by short-ranged interactions.
In actual fact, its validity for the former systems was studied only recently, notably in the case of black
holes and self-gravitating radiation spheres. In the former case, Bekenstein demonstrated that the
black-hole entropy, in addition to the entropy of the black-hole exterior, never decreases [1,2]. In the
latter, it was shown that the static stable configurations of a sphere of self-gravitating radiation are
those that maximize the radiation entropy [3,4]. Both instances correspond to small scale systems.
Although different authors assumed it to be in order to constrain the evolution of cosmological
models (see, e.g., [5] and references therein), as far as we know, the validity of the said law at
large (i.e., cosmic) scales has not been explored as yet. The main purpose of this work is to fill this
gap. Our study analysis rests on the simplest realistic large-scale space-time metric, namely, the
Friedmann–Lemaître–Robertson–Walker (FLRW) one alongside a selected set of observational data
about the history of cosmic expansion.

Homogeneous and isotropic universe models are usually described by the FLRW metric

ds2 = −c2dt2 + a2(t)
{

dr2

1− kr2 + r2
(

dθ2 + sin2 θ dφ2
)}

, (1)

coupled to the sources of the gravitational field. This metric relies on the cosmological principle [6–8]
whose validity, at large scales, has not been contradicted thus far [9] and it looks rather robust [10–12].
The curvature index, k, is either 0,+1, or −1 depending on whether the spatial part of the metric is
flat, positively curved (closed), or negatively curved (hyperbolic), respectively.
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This constant index, like the scale factor a(t), is not a directly observable quantity. In principle,
however, it can be determined through the knowledge of the dimensionless, fractional curvature
density, Ωk ≡ −k/(a2H2), which is accessible to observation, albeit indirectly. As usual,
H = c d ln a/dt denotes the Hubble factor. Current measurements of Ωk only indicate that its present
absolute value is small (| Ωk0 | > 10−3 [13,14]). Note that this constraint was obtained under
the assumption that the universe is accurately described by the ΛCDM model. Thus the sign of
k remains unknown.

The aim of this research is fourfold: (i) To determine whether the second law of thermodynamics
is fulfilled at cosmological scales and; if so, (ii) constrain Ωk as much as possible and (iii) determine the
sign of k; finally, (iv) to derive a thermodynamic constraint relating the present value of the deceleration
and jerk parameters. For the first three objectives, neither a cosmological model nor theory of gravity
will be assumed. We shall just use the FLRW metric, the history H(z) of the Hubble factor and the
second law of thermodynamics. For the fourth objective, we will assume Einstein gravity and the
ΛCDM model. As is customary, a subindex zero attached to any quantity means that the latter should
be evaluated at present time.

2. Cosmological Consequences of the Second Law

Given the strong connection between gravity and thermodynamics [1,2,15–17], it is natural to
expect that the universe behaves as a normal thermodynamic system; it therefore must tend to a state
of maximum entropy in the long run [18,19].

For comoving observers, FLRW models entail “normal”, “trapped” and “anti-trapped” regions.
In the first one, the expansion of outgoing null geodesic congruences, normal to the spatial two-sphere
of radius r̃(= ra(t)) centered at the origin (i.e., at the position of the observer), is positive, and negative
for ingoing null geodesic congruences. In the trapped region, both kind of geodesic congruences
have negative expansion. By contrast, in the anti-trapped region the expansion of both congruences
is positive. The boundary hyper-surface of the space-time anti-trapped region is called the apparent
horizon; its radius is r̃A = [(H/c)2 + ka−2]−1/2. Since the observer has no information about what
might be going on beyond the horizon, the latter has an entropy, namely: SA = kBπr̃2

A/`2
pl, where `pl

is Planck’s length. For details, see [20]. (Bear in mind that r̃ and H have dimensions of length and
length−1, respectively, k of length−2, and a is dimensionless.)

A rather reasonable assumption concerning the entropy of the observable universe is that it is
dominated by the entropy of the cosmic horizon. In the current universe, the entropy of the horizon
exceeds that of supermassive black holes, stellar black holes, relic neutrinos and CMB photons by
18, 25, 33 and 33 orders of magnitude, respectively [21]. There are several possible choices for the
cosmic horizon: the particle horizon, the event horizon, the apparent horizon and the Hubble horizon.
Given that the first one does not exist for accelerating universes and the second only exists if the
universe accelerates forever in the future, we take the apparent horizon, which, on the one hand,
always exists, both for ever-expanding and ever-contracting universes, and, on the other hand, by
contrast to the other mentioned possibilities, the laws of thermodynamics are fulfilled on it [22].
The Hubble horizon is a particular case of the apparent horizon when k = 0.

To support the above claim that the entropy of the horizon dominates over the entropy of any
form of energy inside the horizon, especially at late times, we shall consider the entropy of pressureless
matter. The latter is given by Sm = kB n Vk [23], with n = n0a−3, being n0 the present number density
of matter particles, and

Vk = 2πa2
[√
| k | a sin−1(

√
| k |a−1r̃A) − k r̃2

AH
]

(2)
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the volume enclosed by the apparent horizon for k = +1 and −1 (for the flat case, Vk=0 = (4π/3) r̃3
A).

For k = −1 one follows Sm(a � 1) → 2kB n0 πa−1r̃2
AH. Hence, when a � 1 the ratio SA/Sm results

proportional to a/H. For k = +1 one has Sm(a� 1)→ 2kB n0 a−1
(

1−
√

1− r̃2
Aa−1

)
, hence

SA
Sm

∝
a r̃2
A

1 −
√

1− r̃2
A
a

.

Accordingly, in all three cases (k = 0,+1,−1) the entropy of the horizon overwhelms that of the
matter inside it, especially at late times.

Recalling that SA ∝ A with A = 4π(H2 + k a−2)−1 the area of the horizon (henceforward we set
c = 1), the second law of thermodynamics S′A ≥ 0 leads to

A′ = −A
2

2π

(
HH′ − k

a3

)
≥ 0 ⇒ HH′ ≤ k

a3 , (3)

where the prime means d/da.
The second inequality tells us that if H′ is or has been positive at any stage of cosmic expansion

(excluding, possibly, the pre-Planckian era), then k = +1 and that, in principle, any sign of k is
compatible with H′ < 0. Multiplying the said inequality by −aH−2 produces −aH′/H ≥ Ωk,
which can be recast in terms of the redshift as

(1 + z)
d ln H

dz
≥ Ωk . (4)

Thus, if dH/dz > 0 for all z ≥ 0, then both k = +1 and k = 0 are consistent with the second law of
thermodynamics at large scales. However, given the present ample uncertainties in the observational
data regarding the Hubble history, if k were −1, then the said law could break down at cosmic scales.
To explore this, we set k = −1 in Equation (4) and integrate the resulting expression in the interval
z1 ≤ z ≤ z2 to get

H2
2 − H2

1 ≥ 2(z2 − z1) + (z2
2 − z2

1). (5)

Therefore, if this relationship failed for whatever pair of points (zi, Hi), with i = 1, 2, it should
mean that the choice k = −1 would not be consistent with the second law at the said scales.

We use Equation (5) alongside the 28 experimental data H vs. z, in the interval 0.1 ≤ z ≤ 2.36,
with their 1σ error bars, compiled by Farook et al. [24] and listed in Table 1 (see also Figure 1) for the
reader convenience, to draw Figure 2. The latter suggests that, given the experimental uncertainties,
the possibility k = −1 also appears compatible with the inequality S′A ≥ 0. While wider compilations
of H(z) are available, we believe this one is preferable because it does not include any obviously
correlated data, nor does it contain older, less reliable data, some with much weight from anomalously
small error bars.

Equation (4) can alternatively be written as

1 + q ≥ Ωk , (6)

where q = −ä/(aH2) is the dimensionless deceleration parameter. The last equation, like (4), imposes
an upper bound (that depends on redshift) on Ωk. In the radiation dominated era q was close to 1;
a result that, in spite of having been derived for spatially flat universes described by general relativity,
should hold irrespective of the sign of the curvature and the gravity theory employed. Notice that
even a mild deviation of q ' 1 at that time would conflict with the observational results about the
primordial nucleosynthesis of light elements [25]. This suggests an easily verifiable test on modified
gravity theories, namely, that they should be consistent with the bound Ωk ≤ 2 at the radiation era.
However, if general relativity is the right theory of gravity, the first Friedmann equation implies the
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stronger bound Ωk < 1 at all epochs. Nevertheless, even if one uses general relativity, Equation (6)
might provide a useful bound when q < 0.

Table 1. Hubble Parameter vs. Redshift Data.

z H(z) (km·s−1·Mpc−1) Reference

0.100 69± 12 [26]
0.170 83± 8 [26]
0.179 75± 4 [27]
0.199 75± 5 [27]
0.270 77± 14 [26]
0.320 79.2± 5.6 [28]
0.352 83± 14 [27]
0.400 95± 17 [26]
0.440 82.6± 7.8 [29]
0.480 97± 62 [30]
0.570 100.3± 3.7 [28]
0.593 104± 13 [27]
0.600 87.9± 6.1 [29]
0.680 92± 8 [27]
0.730 97.3± 7 [29]
0.781 105± 12 [27]
0.875 125± 17 [27]
0.880 90± 40 [30]
0.900 117± 23 [26]
1.037 154± 20 [27]
1.300 168± 17 [26]
1.363 160± 33.6 [31]
1.430 177± 18 [26]
1.530 140± 14 [26]
1.750 202± 40 [26]
1.965 186.5± 50.4 [31]
2.340 222± 7 [32]
2.360 226± 8 [33]
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Figure 1. 28 H(z) data points with their 1σ uncertainty.
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Figure 2. Left-hand side vs. right-hand side of Equation (5) for all possible i > j combinations of the
data shown in Table 1. The error bars denote 1σ confidence level.

We can draw further consequences from the thermodynamic bound (6). To this end, we first
apply the model independent Gaussian process (GP) introduced by Seikel et al. [34] to smooth the
28 observational H(z) data depicted in Figure 1. Figure 3 shows the outcome.
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Figure 3. Gaussian process reconstruction of the history of the Hubble factor from the raw H(z) data
depicted in Figure 1, as well as here for convenience of the reader. The blue shaded region shows the
1σ uncertainty.
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Inspection of the latter suggests that dH/dz ≥ 0 in the redshift range be considered. If this gets
confirmed by future H(z) data of much higher quality, any sign of the curvature scalar index k will be
consistent with the second law of thermodynamics. The following analysis, based on the smoothed
data shown in Figure 3, allows the quantification of the gap between 1 + q and Ωk.

The quantity 1 + q alongside its 1σ, uncertainty is obtained by computing the quantity in the
left-hand side of (4) using the smoothed H(z) data, and similarly Ωk by computing −k(1 + z)2/H2(z)
using the same data. Figures 4 and 5 summarize the results for k = +1 and −1, respectively. It is
apparent that, whatever the sign of k, the second law is fulfilled by a generous margin. Likewise,
inspection of the left panels of the aforesaid figures indicates that Ωk0 ≤ 0.64. Obviously, this upper
bound is much more loose than the one obtained in [14] (6.5× 10−3 ≤ Ωk0 ≤ −6.6× 10−3), but the
latter is based on a particular (though so far successful) cosmological model—the ΛCDM—that rests
on a number of assumptions, some of which can be justified only a posteriori. By contrast, this other
rests just on the FLRW metric and the second law of thermodynamics. Combining the readings on the
vertical axes of the right panels of the same figures yields the constraint 2× 10−4 ≤ Ωk0 ≤ −2.6× 10−4.
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Figure 4. Left panel: 1 + q vs. redshift after smoothing the 28 H(z) data as depicted in Figure 3.
Also shown is Ωk for k = +1. Clearly, the latter is practically zero. Right panel: Zoom of Ωk and its 1σ

uncertainty interval.
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Figure 5. Same as Figure 4 but for k = −1.

Regrettably, as hinted above, the quality of the available sets of H(z) data is not good enough to
directly constrain Ωk into a small range, much less to discriminate the sign of k. One has to apply some
smoothing procedure to the data of the Hubble history (the GP process in our case) to downsize the
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error bars and thus obtain a tighter constraint. However, one should not be fully confident about the
outcome since the said procedure, though efficient, is not exempt of potential shortcomings.

Nevertheless, the situation is expected to improve greatly in the not so distant future thanks to
the Sandage–Loeb (SL) test [35,36] based on the Mc-Vittie formula [37]

H(zs) = H0[1 + zs(t0)] −
∆zs

∆t0
(7)

that governs the drift of the redshift. Here, zs stands for the redshift of the source (e.g., quasar, globular
cluster, HI region, ...). With the use of high precision spectrographs, such as CODEX [38], and extremely
large telescopes, as the ELT [39], the SL test will provide us accurate H(z) data sets at different redshift
intervals. These data will be free of any assumption whatsoever about the spatial curvature, gravity
theory or cosmological model.

Observational data in the 0 < z < 1.0 interval will be provided by the square kilometer array (SKA)
radio-telescope [40], likewise the wide radio-sky survey PARKES will scan 21-cm radio-sources [41] as
well as the experiment CHIME in the 0.8 < z < 2.5 interval [42]. To collect a useful sample of H(z) data
will take between one and four decades, approximately. Details can be found in References [43,44].

If the data revealed that, in some redshift, interval H decreased with increasing z, it would
immediately imply k = +1. On the contrary, if H always increased in every z interval, the application
of (4) would require more effort, but in any case it will (hopefully) permit one to discern the sign of k.

If the above strategy would fail, for instance if the data would indicate different signs for Ωk
in separate intervals, it would mean either that the second law of thermodynamics does fail at large
scales or that the FLRW metric should not be trusted after all.

3. The Jerk Parameter

By expanding the scale factor in terms of its successive derivatives we can write

a(t) = a0

{
1 + H0 (t− t0) − 1

2 q0H2
0(t− t0)

2 + 1
6 j0H3

0(t− t0)
3 + 1

24 s0H4
0(t− t0)

4 + O([t− t0]
5)
}

, (8)

where j =
...
a /(aH3) and s = (aH4)−1d4a/dt4 are the dimensionless jerk and snap parameters,

respectively.
Here, we shall focus on the current value of the jerk parameter of a universe dominated by

pressureless matter and the cosmological constant (subindexes m and Λ, respectively). Thus far, we
did not specialize to any cosmological model nor theory of gravity. In what follows, to constrain the
theoretical value of j0, we adopt general relativity and the ΛCDM model because they are the simplest
theory and model, respectively, that comply, at least at the background level, with the observational
data [14]. In this model, the Hubble factor, as well as the deceleration and jerk parameters, read in
terms of the redshift

H(z) = H0

√
Ωm0(1 + z)3 + ΩΛ0 + Ωk0(1 + z)2 , (9)

q(z) =
1
2

Ωm0(1 + z)3 − 2ΩΛ0

Ωm0(1 + z)3 + ΩΛ0 + Ωk0(1 + z)2 , (10)

j(z) = 1 − Ωk0(1 + z)2

Ωm0(1 + z)3 + ΩΛ0 + Ωk0(1 + z)2 , (11)

where the various Ωi0, with i = m, Λ, and k, stand for the current values of the fractional
energy densities.

Bearing in mind the Friedmann constraint Ωm + ΩΛ + Ωk = 1 we readily get

j0 = 1 − Ωk0 (12)
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from Equation (11). Thereby if future accurate measurements show that j0 deviates from unity, we will
know that our universe (modulo the FLRW metric and the ΛCDM are correct) is not spatially flat,
and the deviation will coincide with minus the present value of the spatial curvature. Unfortunately,
current measurements of j0 come along only with great latitude, −7.6 ≤ j0 ≤ 8.5 [45]. However,
this wide observational uncertainty gets substantially reduced after combining (12) with Equation (6),
specialized to the ΛCDM model. It readily yields q0 + j0 ≥ 0. For instance, using the experimental
constraint on q0 of Daly et al. [46], q0 = −0.48± 0.11, we find (within 1σ)

j0 ≥ 0.37. (13)

The simple fact that, observationally, q0 is negative [24,46–48], renders j0 positive in the said
model; i.e., cosmic acceleration should be increasing nowadays.

4. Concluding Remarks

The validity of the second law, in the presence of gravity, is well supported at small scales by
the thermodynamics of astrophysical-sized collapsed objects, in particular of black holes [1,2], and of
self-gravitating radiation spheres [3,4] but, to the best of our knowledge, this law had not been tested
at cosmological scales thus far. Here, assuming the correctness of the FLRW metric at large scales
and using the history of the Hubble factor—see Equations (4) and (5) and Figure 2—we found that
the second law likely holds at these scales as well. However, due to the sizable error bars of the H(z)
data, the thermodynamic constraint on | Ωk0 | is rather loose. As we have shown, the situation greatly
improves by applying the GP procedure of Reference [34] to these data. Then, | Ωk0 |∼ 10−4—see the
right-hand panel of Figures 4 and 5. However, although the procedure rests on very reasonable
assumptions, these are hard to test. On the other hand, we could not determine the sign of k.
Nevertheless, we suggested that by means of Mc Vittie formula, Equation (7) of the drift of the
redshift [37] and the use of advanced telescopes and spectrographs that will be in service soon, it will
be possible to obtain accurate H(z) data capable of discerning it. Further, in the context of the ΛCDM
model, we demonstrated a very simple relationship, Equation (12), between the present value of the jerk
parameter and Ωk0. Finally, we showed that the second law drastically reduces the ample uncertainty
about the current value of the jerk and using current constraints on q0 sets a lower bound on it.
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