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Abstract: Local Lorentz invariance (LLI) is one of the most important fundamental symmetries
in modern physics. While the possibility of LLI violation (LLIv) was studied extensively in flat
spacetime, its counterpart in gravitational interaction also deserves significant examination from
experiments. In this contribution, I review several recent studies of LLI in post-Newtonian gravity,
using powerful tools of pulsar timing. It shows that precision pulsar timing experiments hold
a unique position to probe LLIv in post-Newtonian gravity.
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1. Introduction

In 1905, one of Einstein’s annus mirabilis papers—“On the electrodynamics of moving bodies”
(in German, “Zur Elektrodynamik bewegter Körper”)—permanently established the Lorentzian nature
of a flat spacetime in special relativity, and it was later extended by Einstein himself to general
relativity (GR) locally. According to GR, for every point on our 4-dimensional spacetime manifold,
its tangent space possesses the symmetry of a Lorentz group. As a foundational principle of today’s
theoretical physics, the local Lorentz invariance (LLI) deserves empirical examination with exquisite
precision [1–5].

When performing phenomenological studies to test the Lorentz symmetry, if gravitation
is involved, one shall carefully distinguish the concept of Lorentz symmetry in flat and
curved spacetimes [1,2,6]. The LLI violation (LLIv) in gravitational interaction modifies the local
Lorentzian transformation property of gravitation, and leads to various anomalous phenomena in
gravitational experiments [2,3,7–11], including lunar laser ranging [12,13], atom interferometry [14],
pulsar timing [15–19], cosmic rays [20,21], very long baseline interferometry [22], and short-range
experiments in laboratory [23–26]. In this short contribution, I will focus on the recent limits
on LLIv obtained from precision pulsar timing experiments [7,15–19,27,28] in the theoretical
frameworks of parametrized post-Newtonian (PPN) gravity [2,29] and the pure gravity sector of
the standard-model extension (SME) [1,6,7]. Interested readers are encouraged to elaborate reviews
for more details [2–5,30].

2. Parametrized Post-Newtonian Gravity of Will and Nordtvedt

The PPN formalism was developed to conduct precision tests of post-Newtonian gravity
in the solar system. It incorporates various ways, in terms of ten PPN parameters in different
components of the metric gµν, to challenge fundamental properties in GR, such as the amount of
nonlinearity in gravity, the LLI, and the conservation laws of energy and momentum [2]. In the PPN
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formalism, the semi-conservative Lagrangian for the gravitational interaction of a binary pulsar with
masses mp (pulsar) and mc (companion) can be written as [2,15,16,29],

L = Lβ,γ + Lα1 + Lα2 , (1)

where Lβ,γ is the post-Newtonian terms from GR and its minimal extensions characterized by
the Eddington–Robertson–Schiff parameters, β and γ,

Lβ,γ = −mp
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and the velocity-dependent, LLIv terms,
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where M ≡ mp + mc, r ≡ |r| is the coordinate separation (in the PPN gauge) of two components,
n ≡ r/r, v0 denotes the absolute velocity with respect to a preferred frame (see [2,16] for more details).
β, γ, α1, α2 are PPN parameters which take different numerical values in different alternative gravity
theories; in GR, β = γ = 1 and α1 = α2 = 0 [2]. There is another PPN parameter, α3, that leads
to LLIv in gravity; but, in addition, it violates energy-momentum conservation, thus is not included
here [2].

It was found by Damour and Esposito-Farèse that, for a binary pulsar in a quasi-circular orbit,
the existence of a nonzero α1 term (3) tends to polarize the binary’s Laplace–Runge–Lenz vector
according to the absolute velocity of the binary with respect to a cosmologically preferred frame [15].
Such an orbital polarization phenomenon can be studied with a population of small-eccentricity
binary pulsars by assuming that, (i) they have been evolved for a long time to achieve the
randomness in the orientation of the general-relativistically precessing Laplace–Runge–Lenz vector,
(ii) and the longitude of ascending nodes is randomly distributed in [0◦, 360◦) [30]. With these
assumptions, one can obtain a probabilistic constraint on the value of α1 with a handful of binary
pulsars [15]. Recently, the probabilistic method was extended into a robust one which drops these two
assumptions [16]. The new method takes advantage of new observations which, by combining radio
timing and optical spectroscopic data, give (i) the detailed information on the binary’s 3-dimensional
motion in space; (ii) a precision mass measurement which is independent of the underlying gravity
theories; (iii) and a better measurement of the orbital Laplace–Runge–Lenz vector where its time
variation can be inferred. A white-dwarf neutron-star binary, PSR J1738+0333, with an orbital period
∼8.5 h and an eccentricity ∼10−7 [31], turns out to be the best celestial laboratory at the current stage
for this test, and gives the best limit on the PPN parameter |α1| . 10−5 [2,16].

In the same publication, the effect of α2 on a binary pulsar was also worked out. It was found
that, for a quasi-circular orbit, the effects of α1 and α2 decouple. A nonzero α2 term (4) tends to
rotate the binary’s orbital angular momentum around a direction according to the absolute velocity
of the binary with respect to a preferred frame [16,32]. The change of a binary’s projected semi-major
axis from pulsar timing observation can be used to constrain the value of α2, but the constraint
is weaker than the one obtained in the solar system by Nordtvedt [33]. Later, the idea of using
a rotating massive body to constrain α2 [33] inspired the usage of solitary millisecond pulsars to test
α2 [17]. It was found that the N-body version of Equation (4), from which the equations of motion
for constituent particles of a neutron star can be derived, introduces a free precession of a rapidly
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spinning pulsar along an axis defined by the direction of the spinning axis and the absolute velocity
of the pulsar [17,33]. The magnitude of the precession is inversely proportional to the spin period
of the rotating body. Therefore well-timed millisecond pulsars are the best objects to study α2.
In the case of a nonzero α2, the precession would introduce changes in the pulsar’s pulse profile
received on the Earth, which was not seen in the &10 -year Effelsberg radio telescope’s observation of
PSRs B1937+21 and J1744−1134 [17]. Such a non-detection was translated into an extremely tight limit,
|α2| . 10−9 [17], which surpasses all previous limits [2]. As a side remark, the non-detection of the
pulsar’s pulse profile change was also extremely useful to constrain the Whitehead’s term in the PPN
formalism [2,34].

3. Standard-Model Extension of Kostelecký et al.

In contrast to the metric-based approach in the PPN formalism, SME uses an action-based
approach that introduces LLIv from a spontaneous symmetry breaking of vectorial and tensorial
fields dynamically [6]. For the case of LLIv with energy-momentum conservation, SME extends the
PPN formalism to allow an anisotropic breaking of the Lorentz symmetry in the preferred frame [7].
The action for the pure gravity sector within the minimal SME in Riemannian spacetime reads [6,7],

S =
1

16πG

∫ [√
−g
(

R− 2Λ− uR + sµνRT
µν + tκλµνCκλµν

)
−V(gµν; u, sµν, tκλµν)

]
d4x , (5)

where the extra fields, u, sµν, and tκλµν would have obtained their vacuum expectation values, ū,
s̄µν, and t̄κλµν, respectively, through spontaneous symmetry breaking by minimizing the interaction
potential term, V(gµν; u, sµν, tκλµν) [6,7]. At the first post-Newtonian approximation, only nine
degrees of freedom in the dimensionless matrix, s̄µν, enter the actual dynamics of a gravitating
system [7].

The two-body dynamics of a binary pulsar was worked out with osculating elements by
Bailey and Kostelecký [7], and recently it was extended to include Lorentz-violating matter-gravity
couplings [35] and higher-order curvature couplings [36]. Nevertheless, the timing formulae
developed in [7,35] contain strong degeneracy in parameters, and have not been used yet with
real pulsar timing data. In general, LLIv terms introduce time variations in the orbital eccentricity,
the longitude of periastron, and the orbital inclination for a binary pulsar. These contributions are
controlled by the same set of underlying Lorentz-violating parameters from the SME effective action,
but the magnitude of these contributions differs for different pulsars because of different projection
effects (see [7]). They are caused by the different sky position, the different orbital orientation,
and the different 3-dimensional binary velocities of pulsar systems. By combining different binary
pulsar systems, it is possible to break the degeneracy and obtain stringent limits on all components
of s̄µν (except s̄TT [18]).

Besides the modifications on the orbital dynamics of binary pulsars, SME coefficients, like in
the PPN formalism, introduce a free precession to solitary pulsars [7,18] that is inversely proportional
to the spin period of pulsars. The precession is controlled by the same set of Lorentz-violating
parameters, therefore, with careful studies, one can combine the tests from binary pulsars with
the tests from solitary pulsars [18]. A first systematic study with different pulsars was carried out
in [18] that combined thirteen best systems with twenty-seven different tests to break parameter
degeneracy and reduce parameter correlations. Later, the Lorentzian boost effect from the movements
of the pulsar systems with respect to the solar system was included to study the remaining
unconstrained time–time component of s̄µν, namely s̄TT [19]. The limits on the SME coefficients
obtained from pulsar systems turn out to be among the best limits for the pure gravity sector of
the minimal SME [1,5]. In addition, these limits have promising prospects to be improved greatly in
the future, scaling as T3/2

obs , where Tobs is the span of the observational time [18].
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4. Discussion

LLI is an important concept of modern physics that deserves the most stringent examination
from experiments. LLIv in the gravitational interaction, which is an important ingredient of the strong
equivalence principle [2], is relatively harder to be studied than its flat-spacetime counterpart,
because of the intrinsic weakness of gravitation (with an extremely small coupling constant, G).
However, some trial theories, in seeking an ultimate quantum gravity, have motivated great interest
in looking for possible signatures from LLIv [37]. Precision pulsar timing experiments turn out to
be one of the best celestial laboratories to study the phenomena of LLIv in great detail, especially in
the new era with giant radio telescopes, such as the Five-hundred-meter Aperture Spherical Telescope
(FAST) and the Square Kilometre Array (SKA) [38]. If LLIv is discovered in the future, it will result in
a paradigm shift in the fundamental physics; otherwise, the ever-tight new experimental limits of LLI
are extremely useful to guide further development of alternative gravity theories.

Conflicts of Interest: The author declares no conflict of interest.
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