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Abstract: We use the Dirac equation in a fixed black hole background and different independent
techniques to demonstrate the absence of fermionic bound states around a Schwarzschild black hole.
In particular, we show that no embedded eigenvalues exist which has been claimed for the case
when the energy is less than the particle’s mass. We explicitly prove that the claims regarding the
embedded eigenvalues can be traced back to an oversimplified approximation in the calculation.
We conclude that no bound states exist regardless of the value of the mass.
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1. Introduction

In the last fifteen years, the problem of whether or not bound states exist for the Dirac equation
in the presence of a black hole attracted a lot of attention in the scientific community. The existing
literature on this topic is characterized by disagreeing results. For instance, [1,2] showed that bound
states exist for a Fermion immersed in the geometry of a Schwarzschild black hole. Their argument
relies on an approximation of the radial system emerging from the Dirac equation after separation of
variables and on the construction of approximated solutions at the event horizon and far away from the
black hole. Both of them end up with an approximated spectrum resembling that of a hydrogen-like
atom. On the other hand, [3] proved that such bound states cannot exist and only resonances are
admitted. In their approach, the problem is tackled numerically after writing the Dirac equation in the
Schwarzschild black hole (BH) metric with respect to a gauge that is well-suited to a numerical solution.
Furthermore, it as been shown in [4] that the Dirac equation does not admit normalizable, time-periodic
solutions in a non-extreme Reissner–Nordström black hole geometry where the proof relies on the
Heisenberg Uncertainty Principle and the particular form of the Dirac current. A non-existence theorem
regarding bound states for the Dirac equation in a Kerr–Newman geometry was obtained by [5], where
the authors introduced certain matching conditions for the spinor field across the horizons, which, in
turn, gave rise to a weak solution of the Dirac equation in the physical region of the maximal analytic
extension of the Kerr–Newman solution. More precisely, they exploited the conservation and positivity
of the Dirac current to show that, because of the matching conditions, the only way in which a bound
state solution of the Dirac equation can be normalizable is that each term in the Fourier expansion
of the spinor field in time, and the angular variable around the axis of symmetry, be identically zero.
The case of the extreme Kerr metric has been treated by [6], where necessary and sufficient conditions
for the existence of bound states have been derived. However, since such conditions are expressed in
terms of a complicated set of equations and inequalities, the author did not further study the problem
of whether or not there exist values of the particle energy satisfying the aforementioned conditions.
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Instead of dealing with the conditions derived by [6,7] proved the non-existence of bound states
for the Dirac equation in the extreme Kerr geometry by applying the so-called Index Theorem for
Dirac systems presented in [8]. Finally, the non-existence of bound states for the Dirac equation in
the presence of a Kerr–Newman–de Sitter black hole was shown in [9] adopting an operator theory
approach. In the present work, we prove that no bound states occur for the Dirac equation in the
Schwarzschild BH metric. Our method is different from those applied in the existing literature on
this topic, and, in a certain sense, is much simpler since it boils down to the analysis of a four-term
recurrence relation. Our paper is structured as follows: in Section 1, we give a short introduction
motivating the importance of our findings; and in Section 2, we introduce the Dirac equation in the
Schwarzschild BH metric and review the different forms (tetrad dependent) obtained for the radial
system emerging after the Chadrasekhar ansatz has been applied. At this point, a comment is in order.
The completeness of the Chandrasekhar ansatz has been proved for the first time in [10] where an
integral representation for the Dirac propagator in terms of the solutions of the radial and angular
ODEs arising by means of the Chandrasekhar method of separation of variables has been derived.
Ref. [10] inferred the completeness of this ansatz from the aforementioned integral representation.
An alternative proof of the completeness of the Chandrasekhar ansatz can also be found in [11].
In Section 3, rather than approximating the radial system as in [1,2], where bound states were found
due to the oversimplification of the problem, we decouple it and show that each radial spinor satisfies
a generalized Heun equation [12–14]. Then, we require that the radial spinors exhibit exponential
decay asymptotically away from the black hole. This will always be the case if ω2 < m2

e , where ω

is the energy of the particle and me the mass of the Fermion. The next step consists in establishing
whether or not it is possible to find representations of the radial wave functions consisting of an
exponential decaying at space-like infinity multiplied by a polynomial function. The presence of a
polynomial function will ensure integrability at the event horizon. Similarly to the study of bound
states for the hydrogen atom, we employ a power series representation whose coefficients turn out to
satisfy a four-term recurrence relation instead of a two-term recurrence relation, as it is the case for
the hydrogen atom. At this point, we derive necessary and sufficient conditions ensuring that our
recurrence relation breaks down in the sense that the first N coefficients of the power series expansion
do not vanish and the subsequent coefficients are all zero. Finally, we show by contradiction that
there exist no real values of the energy of the Fermion satisfying the aforementioned conditions, and,
hence, no bound states can occur. However, if one allows for complex values of the energy, then our
conditions can be satisfied simultaneously and resonances appear in agreement with the results in [3].
In Section 4, we give an alternative proof relying on the application of the Index Theorem for Dirac
systems (see [8]).

2. The Dirac Equation in the Schwarzschild BH Metric

The Schwarzschild space-time represents a static black hole immersed in an asymptotically
Minkowski space-time. In coordinates (t, r, ϑ, ϕ) with r > 0, 0 ≤ ϑ ≤ π, 0 ≤ ϕ < 2π, the Schwarzschild
BH metric is given by [15]

ds2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1
dr2 − r2(dϑ2 + sin2 ϑdϕ2), (1)

where M is the mass of the black hole. A fermion of mass me and charge e in a curved space-time is
described by the Dirac equation (h̄ = c = G = 1) [16,17]

∇AA′ P
A + iµ∗QA′ = 0, ∇AA′Q

A + iµ∗PA′ = 0, µ∗ =
me√

2
, (2)

where ∇AA′ denotes covariant differentiation, and (PA, QA
′
) with A = 0, 1, and A

′
= 0

′
, 1
′

are the
two-component spinors representing the wave function. According to [17], at each point of the
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space-time, we can associate with the spinor basis a null tetrad (`, n, m, m) obeying the normalization
and orthogonality relations

` · n = 1, m ·m = −1, ` ·m = ` ·m = n ·m = n ·m = 0, (3)

and, hence, the Dirac equation can be rewritten as [17]

(D + ε− ρ)P0 + (δ + π − α)P1 = iµ∗Q1′ , (4)

(δ + β− τ)P0 + (∆ + µ− γ)P1 = −iµ∗Q0′ , (5)

(D + ε− ρ)Q0
′
+ (δ + π − α)Q1

′
= iµ∗P1, (6)

(δ + β− τ)Q0
′
+ (∆ + µ− γ)Q1

′
= −iµ∗P0, (7)

where
D = `i∂i, ∆ = ni∂i, δ = mi∂i, δ = mi∂i, i = 1, · · · , 4, (8)

and the spin coefficients are given by

κ = γ(3)(1)(1), σ = γ(3)(1)(3), λ = γ(2)(4)(4), ν = γ(2)(4)(2), ρ = γ(3)(1)(4), µ = γ(2)(4)(3), (9)

τ = γ(3)(1)(2), π = γ(2)(4)(1), ε =
1
2

[
γ(2)(1)(1) + γ(3)(4)(1)

]
, γ =

1
2

[
γ(2)(1)(2) + γ(3)(4)(2)

]
, (10)

α =
1
2

[
γ(2)(1)(4) + γ(3)(4)(4)

]
, β =

1
2

[
γ(2)(1)(3) + γ(3)(4)(3)

]
, (11)

with (a) denoting the tetrad index and a = 1, · · · , 4. The Ricci rotation coefficients are expressed as

γ(a)(b)(c) =
1
2

[
λ(a)(b)(c) + λ(c)(a)(b) − λ(b)(c)(a)

]
, λ(a)(b)(c) =

[
e(b)i,j − e(b)j,i

]
e(a)

ie(c)
j, (12)

where

(e(a)
i) =


`1 `2 `3 `4

n1 n2 n3 n4

m1 m2 m3 m4

m1 m2 m3 m4

 , (13)

and its inverse is denoted by (e(b)i). We recall that tetrad indices label rows and tensor indices label
columns. Taking into account that e(a)i = gike(a)

k and assuming a diagonal metric tensor g, we find that

(e(a)i) =


`1 `2 `3 `4

n1 n2 n3 n4

m1 m2 m3 m4

m1 m2 m3 m4

 . (14)

We have different null tetrads leading to different expressions of the spin coefficients. For instance,
Refs. [17,18] use the so-called Kinnersley tetrad

` = e(1) =
(

r2

∆r
, 1, 0, 0

)
, n = e(2) =

(
1
2

,− ∆r

2r2 , 0, 0
)

, m = e(3) =
(

0, 0,
1

r
√

2
,

i
r
√

2 sin ϑ

)
, (15)

with ∆r = r2 − 2Mr. Furthermore, one can also use the Carter tetrad [19,20], which allows for a more
elegant treatment of the separation problem and leads to a simpler form of the radial system than those
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derived in [17,18]. To this purpose, we first introduce a vierbein {ẽ(a)} with a = 1, · · · , 4, such that
g = η(a)(b) ẽ(a) ⊗ ẽ(b) with η(a)(b) = diag(1,−1,−1,−1). For the Schwarzschild BH metric, we have

ẽ(1) =
(√

∆r

r
, 0, 0, 0

)
, ẽ(2) =

(
0,

r√
∆r

, 0, 0
)

, ẽ(3) = (0, 0, r, 0), ẽ(4) = (0, 0, 0,−r sin ϑ). (16)

With the help of (5.119) in [21], we can construct the following symmetric null tetrad [11,22]

` =

(
r√
2∆r

,−1
r

√
∆r

2
, 0, 0

)
, n =

(
r√
2∆r

,
1
r

√
∆r

2
, 0, 0

)
, m =

(
0, 0,

1
r
√

2
,

i
r
√

2 sin ϑ

)
. (17)

The corresponding spin coefficients are listed in Table 1. We complete this section by giving
an overview of the different but equivalent radial systems emerging from the Dirac equation after
separation of variables when the Kinnersley and Carter tetrads are used. First of all, Ref. [17] separates
the Dirac equation in the Schwarzschild BH metric by choosing the Kinnersley tetrad and by making
the ansatz

P0 =
ei(ωt+kϕ)

r
√

2
R−(r)S−(ϑ), P1 = ei(ωt+kϕ)R+(r)S+(ϑ), (18)

Q0
′

= − e−i(ωt+kϕ)

r
√

2
R−(r) S+(ϑ), Q1

′
= e−i(ωt+kϕ)R+(r) S−(ϑ), (19)

where ω is the energy of the particle and k = ±1/2,±3/2, · · · is the azimuthal quantum number [11].
This procedure leads to the following radial and angular systems(

D0 −(λ + imer)
−(λ− imer)

√
∆rD†

0
√

∆r

)(
R−
R+

)
= 0,

 L†
1
2
−λ

λ L 1
2

( S−
S+

)
= 0, (20)

where
D0 = d

dr + i ωr2

∆r
, D†

0 = d
dr − i ωr2

∆r
, L 1

2
= d

dϑ + k
sin ϑ + 1

2 cot ϑ, L†
1
2
= d

dϑ −
k

sin ϑ + 1
2 cot ϑ. (21)

Table 1. Table of spin coefficients for different choices of the null tetrad.

Vierbein κ σ λ ν ρ µ τ π ε γ β α

Kinnersley (15) 0 0 0 0 − 1
r

2M−r
2r2 0 0 0 M

2r2
cot ϑ
2
√

2r
−β

Carter (17) 0 0 0 0
√

∆r
r2
√

2
ρ 0 0 − M

2
√

2r
√

∆r
ε cot ϑ

2
√

2r
−β

The spectrum of the angular problem is purely discrete and the eigenvalues are given as follows [23]:

λj(k) = sgn(j)
(
|k| − 1

2
+ |j|

)
, j ∈ Z\{0}. (22)

Finally, the radial system can be rewritten as

dR−
dr

+ i
ωr

r− 2M
R− = (λ + imer)R+, (23)

dR+

dr
+

(
r−M

r2 − 2Mr
− i

ωr
r− 2M

)
R+ =

λ− imer
r2 − 2Mr

R−. (24)
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The Dirac equation in the Schwarzschild BH metric has been also separated in [18], where the
Kinnersley tetrad has been adopted, but the initial ansatz for the spinor is somewhat different from
that made in [17]. In this case, we let

P0 =
ei(ωt+kϕ)

r
H1(r)S1(ϑ), P1 =

ei(ωt+kϕ)

r
H2(r)S2(ϑ), (25)

Q0
′

= − e−i(ωt+kϕ)

r
H1(r) S2(ϑ), Q1

′
=

e−i(ωt+kϕ)

r
H2(r) S1(ϑ), (26)

and after substitution into the Dirac equation, we obtain the following radial and angular systems:(
r
√

2D0 λ− imer
λ + imer ∆r

r
√

2

(
D†

0 +
M
∆r

) )( H1

H2

)
= 0,

(
L+ λ

−λ L−

)(
S1

S2

)
= 0, (27)

where D0 and D†
0 are defined as in [17]. Moreover, L+ = L†

1
2

and L− = L 1
2
. Finally, the radial system

can be rewritten as

dH1

dr
+ i

ωr
r− 2M

H1 =

(
iµ∗ −

λ

r
√

2

)
H2, (28)

dH2

dr
+

(
M

r2 − 2Mr
− i

ωr
r− 2M

)
H2 = − 2r

r− 2M

(
iµ∗ +

λ

r
√

2

)
H1. (29)

We end this section with a short derivation of the radial system when the Carter tetrad is chosen.
The corresponding spin coefficients are given in Table 1. Let

P0 =
ei(ωt+kϕ)

√
r 4
√

∆r
R+(r)S+(ϑ), P1 =

ei(ωt+kϕ)

√
r 4
√

∆r
R−(r)S−(ϑ), (30)

Q0
′

= − e−i(ωt+kϕ)

√
r 4
√

∆r
R−(r) S+(ϑ), Q1

′
=

e−i(ωt+kϕ)

√
r 4
√

∆r
R+(r) S−(ϑ). (31)

Then, the Dirac equation splits into the following radial and angular systems( √
∆rD0 −(λ + imer)

−(λ− imer)
√

∆rD†
0

)(
R−
R+

)
= 0,

(
L 1

2 −λ

λ L†
1
2

)(
S−
S+

)
= 0, (32)

where D0, D†
0 , L 1

2 , and L†
1
2

are defined as in [17]. The following property of the radial spinors

R−(r) = R+(r), R+(r) = R−(r) (33)

becomes evident if we rewrite the radial system as

dR−
dr

+ i
ωr

r− 2M
R− =

λ + imer√
r2 − 2Mr

R+, (34)

dR+

dr
− i

ωr
r− 2M

R+ =
λ− imer√
r2 − 2Mr

R−. (35)

Note that property (33) could not have become transparent if we would have adopted the
Kinnersley tetrad. This also implies that the solution of the Dirac equation will read
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P0 =
ei(ωt+kϕ)

√
r 4
√

∆r
R+(r)S+(ϑ), P1 =

ei(ωt+kϕ)

√
r 4
√

∆r
R−(r)S−(ϑ), (36)

Q0
′

= − e−i(ωt+kϕ)

√
r 4
√

∆r
R+(r) S+(ϑ), Q1

′
=

e−i(ωt+kϕ)

√
r 4
√

∆r
R−(r) S−(ϑ). (37)

If we let

P0 =
F1√

r 4
√

∆r
, P1 =

F2√
r 4
√

∆r
, Q0

′
= − G2√

r 4
√

∆r
, Q1

′
=

G1√
r 4
√

∆r
, (38)

the Dirac equation in the presence of a Schwarzschild manifold can be written as

(R+A)Ψ = 0, Ψ = (F1, F2, G1, G2)
T , (39)

with

R =


−imer 0

√
∆rD+ 0

0 −imer 0 −
√

∆rD−
−
√

∆rD− 0 −imer 0
0

√
∆rD+ 0 −imer

 , A =


0 0 0 −L−
0 0 −L+ 0
0 L− 0 0
L+ 0 0 0

 , (40)

and differential operators

D± = ∂r ±
r2

∆r
∂t, L± = ∂ϑ ±

i
sin ϑ

∂ϕ +
1
2

cot ϑ. (41)

From (39), we immediately obtain the Dirac equation in Hamiltonian form, namely

i∂tΨ = HΨ, H = i
∆r

r2 diag(−∂r, ∂r, ∂r,−∂r)−
me

r

√
∆r A + i

√
∆r

r2 B, (42)

with

A =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , B =


0 L− 0 0
L+ 0 0 0
0 0 0 −L−
0 0 −L+ 0

 . (43)

According to [6], on the region r > 2M and on the hypersurfaces t = const, we can introduce the
following inner product:

〈Ψ, Φ〉 =
∫ +∞

2M
dr

r2

∆r

∫ π

0
dϑ sin ϑ

∫ 2π

0
dϕΨ∗T(t, r, ϑ, ϕ)Φ(t, r, ϑ, ϕ). (44)

It is not difficult to verify that the Hamiltonian H is symmetric or formally self-adjoint with
respect to the inner product (44). This, in turn, will imply that ω ∈ R. In what follows, we say that
a time-periodic solution

Ψ(t, r, ϑ, ϕ) = e−iωtΨ0(r, ϑ, ϕ), ω ∈ R, Ψ0 6= 0 (45)

of the Dirac Equation (42) is a bound state if it is normalizable, that is

〈Ψ, Ψ〉 = 〈Ψ0, Ψ0〉 < ∞, (46)
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where 〈·, ·〉 is given by (44). If such a solution exists, we say that ω is an eigenvalue of the Hamiltonian
H for the eigenspinor Ψ0 and ω represents the energy of the bound state. Furthermore, if we introduce
the Chandrasekhar ansatz

Ψ0(r, ϑ, ϕ) = eikϕ


R+(r)S+(ϑ)

R−(r)S−(ϑ)
R−(r)S+(ϑ)

R−(r)S−(ϑ)

 , (47)

with k = ±1/2,±3/2, · · · , we only need to investigate the radial and angular systems (32). The angular
system has been thoroughly studied in [23], where eigenvalues and associated eigenfunctions have
been computed. Note that after separation of variables of the Dirac equation, ω ∈ R will be an energy
eigenvalue of (42), if there exists some λ ∈ R and non-trivial solutions

R(r) =

(
R−(r)
R+(r)

)
, S(ϑ) =

(
S−(ϑ)
S+(ϑ)

)
, r > 2M, ϑ ∈ (0, π), (48)

satisfying the normalization conditions

∫ +∞

2M
dr

r2

∆r
|R(r)|2 < ∞,

∫ π

0
dϑ sin ϑ |S(ϑ)|2 < ∞. (49)

By means of (47), it is straightforward to verify that

〈Ψ, Ψ〉 = 2π

(∫ +∞

2M
dr

r2

∆r
|R(r)|2

)(∫ π

0
dϑ sin ϑ |S(ϑ)|2

)
< ∞, (50)

whenever (49) is satisfied, and, moreover, the approach followed here allows for reducing the
eigenvalue equation HΨ0 = ωΨ0 and the normalization condition 〈Ψ0, Ψ0〉 to a pair of boundary
value problems coupled by the separation constant λ. From [23], we already know that the second
inequality in (49) is satisfied for the eigenfunctions associated with the eigenvalues of the angular
problem. Therefore, in the next two sections, we will investigate whether or not there exist solutions of
the radial problem such that the first inequality in (49) is satisfied.

3. Non Existence of Fermionic Bound States in the Schwarzschild BH Metric

Refs. [1,2] claimed that bound states solutions for the Dirac equation in the Schwarzschild BH
metric exist. The main idea behind their method is to study approximated solutions of the radial
system close to the event horizon and asymptotically at space-like infinity. In particular, they obtained
an asymptotic energy spectrum by requiring that the Kummer function describing the radial spinor
asymptotically at infinity reduces to a polynomial function. The emergence of these bound states is
a result of the oversimplification of the original system of differential equations governing the radial
problem. This becomes particularly clear if one studies the original radial system without introducing
any sort of approximation. For this reason, we first reduce the system of differential equations satisfied
by the radial spinors to a couple of generalized Heun equations (see [12–14]), despite the claims in [1,18]
that such a radial system cannot be reduced to any known equation of mathematical physics, and
then, we derive a set of necessary and sufficient conditions for the existence of bound state solutions
for spin-1/2 particles in the Schwarzschild geometry. Finally, we prove that such a set of conditions
can never be satisfied if the spectral parameter ω is real. If ω is allowed to be complex, polynomial
solutions exist, but, in this case, instead of bound states, resonances will occur in agreement with the
findings of [3]. Last but not least, our novel approach leads to a non-existence result in line with the
findings of [5,7,9], where the authors reached the same conclusion in the framework of operator theory.
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To this purpose, let Ω = 2 Mω and µ = 2 Mme. Furthermore, we introduce the rescaled radial variable
ρ = r/(2 M) with ρ ∈ (1,+∞). If we set

f (ρ) =
ρ

ρ− 1
, g(ρ) =

λ + iµρ√
ρ2 − ρ

, (51)

then the radial system represented by (34) and (35) can be rewritten as follows:

dR−
dρ

+ iΩ f (ρ)R−(ρ) = g(ρ)R+(ρ),
dR+

dρ
− iΩ f (ρ)R+(ρ) = g(ρ)R−(ρ), (52)

and it decouples into the following second order linear differential equations:

R
′′
−(ρ)−

g
′
(ρ)

g(ρ)
R
′
−(ρ) +

[
Ω2 f 2(ρ)− |g(ρ)|2 + iΩ

(
f
′
(ρ)− f (ρ)

g
′
(ρ)

g(ρ)

)]
R−(ρ) = 0, (53)

R
′′
+(ρ)−

g′(ρ)
g(ρ)

R
′
+(ρ) +

[
Ω2 f 2(ρ)− |g(ρ)|2 − iΩ

(
f
′
(ρ)− f (ρ)

g′(ρ)
g(ρ)

)]
R+(ρ) = 0, (54)

where a prime denotes differentiation with respect to the independent variable ρ. In order to bring the
above differential equations into the form of a generalized Heun equation, we make a partial fraction
expansion of the coefficient functions and we obtain

R
′′
±(ρ) + p±(ρ)R

′
±(ρ) + q±(ρ)R±(ρ) = 0, (55)

with
p±(ρ) =

1/2
ρ

+
1/2

ρ− 1
− 1

ρ− c±
, c± = ∓i

λ

µ
(56)

and

q±(ρ) = Ω2 − µ2 +
λ2

ρ
+

α±
ρ− 1

+
β±

(ρ− 1)2 +
γ±

ρ− c±
, α± = 2Ω2 − λ2 − µ2 − γ±, (57)

β± = Ω2 ± i
Ω
2

, γ± = ∓ λΩ
iλ± µ

. (58)

By means of the transformation

R±(ρ) = e−
√

µ2−Ω2ρR̃±(ρ), (59)

the differential Equation (55) becomes

R̃
′′
±(ρ) + P±(ρ)R̃

′
±(ρ) + Q±(ρ)R̃±(ρ) = 0, (60)

with
P±(ρ) = p±(ρ)− 2

√
µ2 −Ω2, Q±(ρ) =

σ

ρ
+

α̃±
ρ− 1

+
β±

(ρ− 1)2 +
γ̃±

ρ− c±
, (61)

where

σ = λ2 −
√

µ2 −Ω2

2
, α̃± = α± −

√
µ2 −Ω2

2
, γ̃± = γ± +

√
µ2 −Ω2. (62)

In order to eliminate terms like (ρ− 1)−2, in Q±, we introduce the transformation:

R̃±(ρ) = (ρ− 1)δ± R̂±(ρ), (63)
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with δ± ∈ C, and hence, R̂± must satisfy the differential equation

R̂
′′
±(ρ) + p±(ρ)R̂

′
±(ρ) + q±(ρ)R̂±(ρ) = 0, (64)

with
p±(ρ) =

1/2
ρ + 2δ±+(1/2)

ρ−1 − 1
ρ−c± − 2

√
µ2 −Ω2, q±(ρ) =

σ̂±
ρ + α̂±

ρ−1 + β̂±
(ρ−1)2 +

γ̂±
ρ−c± , (65)

where

σ̂± = σ− δ±
2 , α̂± = α̃± − 2δ±

√
µ2 −Ω2 + δ±

2 + δ±
c±−1 , β̂± = δ2

± −
δ±
2 + β±, γ̂± = γ̃± − δ±

c±−1 . (66)

Observe that β̂± = 0 whenever δ± = ±iΩ. Hence, by introducing the rescaled radial variable
ρ = r/(2M) and employing the ansatz

R±(ρ) = (ρ− 1)±iΩe−
√

µ2−Ω2ρR̂±(ρ), (67)

the radial systems (34) and (35) decoupled into the following generalized Heun equations:

R̂
′′
±(ρ) +

(
2

∑
n=0

1− µn,±
ρ− ρn

+ α

)
R̂
′
±(ρ) +

β0,± + β1,±ρ + β2,±ρ2

∏2
n=0(ρ− ρn)

R̂±(ρ) = 0, (68)

where α = −2
√

µ2 −Ω2 and {0, µ0,±}, {0, µ1,±}, and {0, µ2,±}. Here, µ0,± = 1/2, µ1,± = (1/2)∓ 2iΩ,
µ2,± = 2 are the exponents associated to the simple singularities ρ0 = 0, ρ1 = 1, and ρ2 = c± with
c± = ∓iλ/µ while the point at infinity is an irregular singular point of rank at most one. Furthermore,
we have

β0,± = c±σ̂±, β1,± = −c±(α̂± + σ̂±)− γ̂± − σ̂±, β2,± = α̂± + γ̂± + σ̂±, (69)

with

α̂± = 2Ω2 − λ2 − µ2 −
√

µ2−Ω2

2 (1± 4iΩ)∓ i Ω
2 , γ̂± = ±iΩ +

√
µ2 −Ω2, σ̂± = λ2 −

√
µ2−Ω2

2 ∓ i Ω
2 . (70)

Looking back at (67), we see that the problem of existence of bound states reduces to the question
of whether or not the generalized Heun equation (68) admits polynomial solutions for |Ω| < µ, since
then (67) would clearly satisfy the normalization condition (49). To this purpose, let us first rewrite (68)
as follows:

ρ(ρ− 1)(ρ− c±)R̂
′′
±(ρ) +P±(ρ)R̂

′
±(ρ) +Q±(ρ)R̂±(ρ) = 0, (71)

with c± as defined in the statement of the previous theorem and

P±(ρ) = (1− µ0,±)(ρ− 1)(ρ− c±) + (1− µ1,±)ρ(ρ− c±) + (1− µ2,±)ρ(ρ− 1) + αρ(ρ− 1)(ρ− c±), (72)

Q±(ρ) = β0,± + β1,±ρ + β2,±ρ2. (73)

Furthermore, suppose that

R̂±(ρ) =
∞

∑
n=0

d±,n(ρ− 1)n. (74)

In order for this infinite series to stop at some fixed value of n, we first need to derive the recurrence
relation satisfied by the coefficients d±,n. To this purpose, it results as convenient to introduce the
independent variable transformation τ = ρ− 1. Then, our differential equation becomes

A(τ)R̂
′′
±(τ) +P±(τ)R̂

′
±(τ) +Q±(τ)R̂±(τ) = 0, (75)
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with

A(τ) = τ3 + a1,±τ2 + a2,±τ, P±(τ) = ατ3 + b1,±τ2 + b2,±τ + b3,±, Q±(τ) = β2,±τ2 + c1,±τ + c2,±, (76)

where

a1,± = 2− c±, a2,± = 1− c±, (77)

b1,± = α(2− c±)± 2iΩ, b2,± = α(1− c±)− c±(1± 2iΩ) + 1
2 ± 4iΩ, b3,± = (1− c±)

(
1
2 ± 2iΩ

)
, (78)

β2,± = 2Ω2 − µ2 ∓ 2iΩ
√

µ2 −Ω2, c1,± = β1,± + 2β2,±, c2,± = β0,± + β1,± + β2,±. (79)

Substituting R̂±(τ) = ∑∞
n=0 d±,nτn into (75) and shifting indices appropriately yield the following

four term recurrence relation:

ϕ1(n + 1)d±,n+1 + ϕ2(n)d±,n + ϕ3(n− 1)d±,n−1 + ϕ4(n− 2)d±,n−2 = 0, n = 0, 1, 2, · · · , (80)

with

ϕ1(ξ) = a2,±ξ(ξ − 1) + b3,±ξ, ϕ2(ξ) = a1,±ξ(ξ − 1) + b2,±ξ + c2,±, (81)

ϕ3(ξ) = ξ(ξ − 1) + b1,±ξ + c1,±, ϕ4(ξ) = αξ + β2,±. (82)

In order to find under which conditions we may have polynomial solutions of the form

N

∑
n=0

d±,nτn, N = 0, 1, 2, · · · , (83)

let n = N + 2 in (80). Then, we obtain

ϕ1(N + 3)d±,N+3 + ϕ2(N + 2)d±,N+2 + ϕ3(N + 1)d±,N+1 + ϕ4(N)d±,N = 0, N = 0, 1, 2, · · · (84)

For any fixed N, we will have a polynomial solution of degree N whenever

ϕ4(N) = 0, d±,N+1 = d±,N+2 = 0. (85)

Bound states solutions will exist for those real values of Ω such that |Ω| < µ and Ω satisfy
simultaneously the above set of equations. It is not difficult to verify that the condition ϕ4(N) = 0
can be rewritten as αN + β2,± = 0, and, taking into account that α = −2

√
µ2 −Ω2, the same

condition reads
2Ω2 − µ2 − 2N

√
µ2 −Ω2 = ±2iΩ

√
µ2 −Ω2. (86)

We argue now by contradiction. Let us suppose that for some N ∈ N∪ {0} there exists a bound
state with energy ΩN ∈ R such that |ΩN | < µ. This would imply that the left hand side of (86)
representing a real number should be equal to the right hand side of (86) representing an imaginary
number, and, hence, we have a contradiction. Therefore, there are no polynomial solutions for any
N = 0, 1, 2, · · · .

4. A Deficiency Index Approach

In this section, we offer an alternative proof that no bound states exist for the Dirac equation in
the Schwarzschild BH metric. This is achieved by constructing a suitable transformation of the radial
system and showing that the deficiency indices of the transformed radial operator are zero. This is not
surprising since the deficiency index of a differential operator counts the number of square integrable
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solutions. In order to be able to apply the Index Theorem in [8], we bring the radial system (32) into
the form of a symmetric Dirac system. This is done by transforming the radial spinors according to

(R−(r), R+(r))T = (F(r)− iG(r), F(r) + iG(r))T , (87)

where T denotes transposition and introducing a tortoise coordinate defined through

du
dr

=
r

r− 2M
, (88)

whose solution is
u(r) = r + 2M ln (r− 2M). (89)

Note that u → +∞ as r → +∞ and u → −∞ as r → 2M+. If we set Φ̂ = (F, G)T ,
the system (32) becomes

(U Φ̂)(u) := J
dΦ̂
du

+ B(u)Φ̂ = ωΦ̂, (90)

with

J =

(
0 1
−1 0

)
, B(u) =

√
∆r(u)

r2(u)

(
mer(u) λ

λ −mer(u)

)
. (91)

According to the above transformations, the integrability condition (49) for the radial spinors
simplifies to

(Φ̂, Φ̂) =
∫ +∞

−∞
du(F2(u) + G2(u)) < +∞. (92)

The formal differential operator U is formally symmetric because J = −J∗ and B = B∗. Let Smin
be the minimal operator associated to U such that Smin acts on the Hilbert space L2(R, du) with respect
to the scalar product (·, ·) introduced in (92). Then, the operator Smin with domain of definition
D(Smin) = C∞

0 (R)2 such that SminΦ̂ := U Φ̂ for Φ̂ ∈ D(Smin) is densely defined and closable.
Let S denote the closure of Smin. In order to apply Neumark’s decomposition method [24], we
introduce minimal operators Smin,± associated with U when the latter is restricted to the half-lines
I+ = [0,+∞) and I− = (−∞, 0], respectively. Moreover, we consider Smin,± acting on the Hilbert
space L2(I±, du) with respect to the scalar product (·, ·). The operators Smin,± with domains of
definition D(Smin,±) = C∞

0 (I±)2 and such that Smin,±Φ̂± := U Φ̂± for Φ̂± ∈ D(Smin,±) are again
densely defined and closable. Furthermore, U is in the limit point case (l.p.c.) at ±∞. This can be seen
as follows. First of all, we recall that, since the limit point and limit circle cases are mutually exclusive,
we can determine the appropriate case if we examine the solution of (90) for a single value of ω. Hence,
without loss of generality, we set ω = 0 and consider the system

J
dΨ̂
du

+ B(u)Ψ̂ = 0. (93)

For u → −∞, it is straightforward to verify that the radial variable r admits the
asymptotic expansion

r = 2M + e
u

2M +O
(

e
u
M

)
. (94)

Furthermore, in the same asymptotic limit, the matrix B(u) has the following decomposition:

B(u) = B0(u) + B1(u), B0(u) = e
u

4M

(
me

λ
2M

λ
2M −me

)
, |B1(u)| ≤ Ce

3u
4M , (95)
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where C is a positive constant. Finally, it can be easily checked that the system (93) has asymptotic
solution for u→ −∞ given by

F(u) = exp
(

2γe
u

2M

)( 1
0

)
+O

(
e

3u
4M

)
, G(u) = exp

(
−2γe

u
2M

)( 0
1

)
+O

(
e

3u
4M

)
, γ =

√
λ2 + 4M2m2

e . (96)

When u→ +∞, the tortoise coordinate becomes

u = r + 2M ln r +O
(

1
u

)
, (97)

from which we find that r can be expressed as a function of u as follows:

r(u) = exp

(
−
[

W

(
e

u
2M

2M

)
− u

2M

])
+O

(
1
u

)
. (98)

Here, W denotes the so-called Lambert function [25]. Finally, expanding W asymptotically for
u→ +∞ as in [26] yields

r = u− 2M ln u +O
(

1
u

)
. (99)

When u→ +∞, the matrix B(u) admits the decomposition

B(u) = B̃0(u) + B̃1(u), B̃0(u) =

(
me 0
0 −me

)
, |B̃1(u)| ≤

D
u

, (100)

for some positive constant D. Hence, the system (93) admits the following solution for u→ +∞:

F(u) = emeu

(
1
0

)
+O

(
1
u

)
, G(u) = e−meu

(
0
1

)
+O

(
1
u

)
. (101)

By inspecting (96) and (101), we can immediately conclude that the differential operator U is in
the limit point case at ±∞. Hence, the operators Smin,± are essentially self-adjoint. Let S± denote
the closure and N(S±) the corresponding deficiency indices. If ν± denotes the number of positive
and negative eigenvalues of the matrix iJ, then, since ν+ = 1 = ν−, Theorem 5.2 in [8] implies that
N±(S+) = 1 = N±(S−). Since zero is the only solution of (93) in L2(R, du), the original system (90)
is definite on I+ and I− in the sense of [8]. Finally, (5.11a) in Proposition 5.4 in [8] yields that the
deficiency indices for the operator S are

N±(S) = N±(S+) + N±(S−)− 2 = 0. (102)

This implies that the radial system (90) does not posses any square integrable solution on the
whole real line, and, therefore, no bound states for the Dirac equation in the Schwarzschild BH metric
are allowed.

5. Conclusions

In this paper, we have focused on the existence of fermionic bound states around a black hole.
Although such proofs are not new, our methods in Sections 3 and 4 are original and suitable to show
the absence of the bound states, in particular for the case of ω < me and for any ω in the case the
index theorem is used. Claims regarding the existence of such bound states have been made in the
literature but were based on approximation methods. We used two different exact methods to complete
the proof that regardless of the value of the particle’s mass, the fermionic bound states do not exist.
This also means that the aforementioned approximations were not adequate to study bound states in a
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curved background. For those who arrive at the same conclusion as us (i.e., absence of bound states
in the black hole metric) but use the full atlas (including the inside of the black hole), the physical
explanation for the absence of bound states is that the central singularity acts as a current sink [3].
Since we are working in the Schwarzschild coordinates, we think that the presence of the horizon
is sufficient to explain the phenomenon. To appreciate the physical relevance of the result, let us
highlight the fact that the absence of bound states around a black hole is a proper quantum effect
in the sense explained hereafter. In classical electrodynamics, a charged particle in motion around
a point-like object should emit radiation, making atoms unstable. The resolution of this problem
takes place in Quantum Mechanics, which predicts the existence of stable, non-radiating bound states.
The opposite seems to happen in gravitation. Classically, a particle can orbit around a black hole along
a geodesic outside the horizon and such an orbit is stable [17]. However, relativistic wave mechanics
and spin (i.e., Dirac equation in curved spacetime) breaks down completely the classical picture, and,
as a consequence, no stable orbits exist. We can say that this happens due to the finite probability
finding the particle inside the horizon. It is quite natural to ask whether this result continues to hold in
the case that gravity is that of the Fermion itself or in the presence of other effects such as those due to
torsion. In general, we could raise the question if the results persist in modified versions of gravity.
These are questions we will study elsewhere.

Let us shed some light on the above-mentioned quantum effect while drawing some analogies
from quantum mechanics. Consider a classical hydrogen atom. By Gauss law, the electron orbiting
outside the proton radius will not “know” whether the proton has a structure (finite size) or if it is a
point-like object. The electron experiences only the Coulomb force. This picture changes in quantum
mechanics. The wave function is defined here over the whole space, and, as a consequence, we have
to specify the full interaction potential. The choice of the Coulomb potential means that we opt for
a point-like proton, and the choice to include the finite size of the proton will lead to a different
result (see [27] for a simplified version of this picture and [28,29] for a more sophisticated approach).
We encounter a similar situation with an electron around a black hole. Classically, the electron cannot
“know” whether it moves (in stable orbits) around a black hole or just in a spherically symmetric metric
of a star. In quantum mechanics, just analogously to the hydrogen atom where the electron experiences
also the “inside-potential” of the proton, the electron described by a Dirac equation coupled to a
black hole metric will “know” about the existence of a horizon. The latter fact is the reason why we
encounter no bound states. Whereas in the hydrogen atom this effect is microscopic, in the black hole
metric, it is a macroscopic quantum effect, which, by itself, is interesting. Both effects as seen from a
classical perspective also have to do with non-locality, which is best exemplified in the black hole case.
We could start putting the electron at a distance from the horizon at which classically we would expect
a stable orbit. What we should see, due to the fact that a stable orbit essentially does not exist, is the
decay of the same. The non-locality shows up since the electron at a classical distance will “know” if
there is a horizon or not.
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