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Abstract: Recent analyses of cosmic microwave background surveys have revealed hints that there
may be a non-trivial running of the running of the spectral index. If future experiments were to
confirm these hints, it would prove a powerful discriminator of inflationary models, ruling out simple
single field models. We discuss how isocurvature perturbations in multi-field models can be invoked
to generate large runnings in a non-standard hierarchy, and find that a minimal model capable of
practically realising this would be a two-field model with a non-canonical kinetic structure. We also
consider alternative scenarios such as variable speed-of-light models and canonical quantum gravity
effects and their implications for runnings of the spectral index.
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1. Introduction

Cosmic inflation, a period of accelerated expansion in the very early universe, was originally
proposed as a solution to the flatness, horizon and monopole problems of the standard hot big bang
cosmology [1,2], but its main success today is arguably its explanation of the primordial density
fluctuations which served as the seeds of structure formation in our universe. Inflation’s generic
prediction of a nearly scale-invariant spectrum of primordial fluctuations has established it as a widely
accepted element of early universe cosmology, though alternatives such as variable speed-of-light
scenarios have been proposed. Despite the apparent need for an accelerating expansion in the early
universe, the underlying mechanism responsible for causing it remains unclear. Exotic matter such as
scalar fields, possibly motivated by supersymmetric or string theories, and modifications of General
Relativity are amongst the vast number of models [3,4] seeking to explain inflation.

Experimental measurements of the anisotropies in the cosmic microwave background (CMB)
radiation can be used to constrain the details of the spectrum of primordial fluctuations, the predictions
for which differ from model to model. This can, in principle, let us narrow down the range of
feasible models, and indeed, recent advances in this direction, particularly with the Planck and
Background Imaging of Cosmic Extragalactic Polarization (BICEP) missions have begun to rule
out the most simplistic models of inflation due to predicting an overly scale-dependent spectrum,
or overproduction of tensor fluctuations [5,6]. Analysis of such CMB experiments typically parametrise
the primordial power spectrumPR as a scale-invariant amplitude term As plus a power series encoding
the scale-dependent deviation from this, such that

ln (PR) = ln (As) + (ns − 1) ln
(

k
k∗

)
+

1
2

αs ln2
(

k
k∗

)
+

1
6

βs ln3
(

k
k∗

)
+ . . . , (1)

where ns is called the spectral index, αs is known as the running of the spectral index, while βs

is similarly called the running of the running, and k∗ is a reference scale, which is usually taken
as 0.05 Mpc−1. Further terms can of course be added here, parametrising yet-higher order deviations
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from scale invariance, but in the most typical analyses of CMB data, βs and any higher order
runnings are assumed to be zero. Constraining the parameters with the Planck experiment data,
in this case, yields:

ns = 0.9655± 0.0062 , (2)

αs = −0.0084± 0.0082 , (3)

βs ≡ 0 . (4)

This looks largely consistent with the idea that one can safely neglect the higher-order runnings
such as βs, as it appears likely that even the first running αs is an order of magnitude or two smaller
than (ns − 1). The runnings hence seem to follow a standard hierarchy where each higher order
correction is suppressed by a smaller coefficient than the previous term in the expansion.

To confirm that this is reliable and that we can be satisfied with our parametrisation of PR as
a truncated power series, however, one should also consider an analysis which does allow βs to take
a nonzero value. One would expect to see that the best fit values given in Equations (2)–(4) are only
mildly perturbed by the addition of this extra parameter, and that the best fit value of βs would be
largely negligible. This is not the case, though, as one instead finds the best fit for the primordial power
spectrum cut off at the βs term is

ns = 0.9569± 0.0077 , (5)

αs = 0.011+0.014
−0.013 , (6)

βs = 0.029+0.015
−0.016 . (7)

Here, αs is still largely consistent with zero, albeit with a slight hint of now being positive and
possibly more comparable in size to (ns − 1). More strikingly, however, is the suggestion that βs is
positive at nearly 2σ, and possibly larger than αs. As well as the simple curiosity that the analysis may
be unstable under the inclusion of an additional parameter, the Planck results note that “Allowing
for running of the running provides a better fit to the temperature spectrum at low multipoles”.
An extended analysis of the Planck experiment’s data detailed in [7], in which the lensing amplitude
AL, density parameter of curvature Ωk and neutrino masses ∑ mν are independently accounted for,
find best fit values of

ns = 0.9582+0.0055
−0.0054 , (8)

αs = 0.011± 0.010 , (9)

βs = 0.027± 0.013 , (10)

which provides a slightly stronger hint at deviation from the standard hierarchy, with βs now positive
at more than 2σ and larger than αs at a greater significance than the Planck analysis. This analysis also
finds that the tension in the original Planck analysis with the expectation of AL = 1 and Ωk = 0 is
slightly alleviated. Along with the better fit of the data at low multipoles, these observations suggest
that we should take these analyses with βs 6= 0 seriously.

The large error bars on these quantities mean that further data and analyses are needed before
one can conclusively say that nature is not consistent with an approximately zero βs, but, as we will
discuss in this article, this also may be a hint of the workings of some interesting physics. While we
hence dedicate our attention for the moment to an exploratory study of the theoretical feasibility of
a non-standard hierarchy in which |βs| ' |αs|, it is also important to contemplate the future prospects
for improving constraints on the runnings, and thus becoming able to vindicate or exclude inflationary
models based on their hierarchical structure of runnings.
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Measurements of spectral distortions in the CMB could improve our constraints on the hierarchy of
runnings, and could be achieved at a useful significance by the proposed Primordial Inflation Explorer
(PIXIE) experiment [8–11]. Similarly, future CMB survey missions such as the Cosmic Origins Explorer
(CORE) [12,13] or the Polarized Radiation Imaging and Spectroscopy Mission (PRISM) [14], 21 cm
mapping [15] with an instrument such as the Square Kilometre Array [16], or a spectroscopic galaxy
survey with the Euclid satellite [17] could constrain αs and βs. Particularly with a combination of some
or all of these future experiments (or comparable alternatives), as forecasted in [18], the uncertainty in
the runnings could be brought down to O(10−3).

2. Predictions of Single Field Slow-Roll Inflation

A first question to ask is whether the simplest and most ubiquitous inflationary scenario, in which
one canonical scalar field slow-rolls down its potential, can invoke a non-standard hierarchy of
runnings in which |βs| ' |αs|. The well-known result for the primordial power spectrum in such
scenarios is

PR =
H2

8π2ε0
, (11)

where H is the Hubble parameter, and ε0 is the first slow-roll parameter with the usual definition

ε0 = − Ḣ
H2 , (12)

which has the property that when ε > 1, the expansion of the universe ceases to be inflationary. As this
is a single field result, all quantities are evaluated at the moment of horizon crossing (typically 50
or 60 e-folds before inflation ends, such that ε0 � 1) and no significant evolution of the curvature
perturbation occurs on superhorizon scales such that the power spectrum at this point is the final
power spectrum to a very good approximation. From Equation (11), we can determine the spectral
index and runnings as defined in Equation (1), via

ns − 1 =
d lnPR

d ln k
= −2ε0 − ε1 , (13)

αs =
d ns

d ln k
= −2ε0ε1 − ε1ε2 , (14)

βs =
d αs

d ln k
= −2ε0ε1(ε1 + ε2)− ε1ε2(ε2 + ε3) , (15)

where we have defined a series of slow-roll parameters εn recursively such that

εn+1 =
ε̇n

Hεn
. (16)

Once again, at the point of horizon crossing, all of the εn must be very small for inflation to
be sustained for a sufficient number of e-folds. This statement could potentially be circumvented
if some of the slow-roll parameters are temporarily enlarged due to, say, a localised feature in the
potential [19,20], but this would need to be fine tuned to occur as observable modes leave the horizon.
As a result, while ns − 1 is O(εn) � 1, the runnings αs and βs are found to be O(ε2

n) and O(ε3
n)

respectively, and hence progressively smaller. Indeed, given that to fit the data ns − 1 ≈ −4× 10−2,
one would roughly expect α ≈ 10−3 and βs ≈ 10−5. This is of course consistent with the analysis in
which one assumes βs ≡ 0, but harder to reconcile with the extended analyses including a nonzero
βs discussed in Section 1. This is both due to the hierarchy of the magnitude of the runnings and
the signs; Equations (13)–(15) predict negative runnings (as εn ≥ 0), while the experimental data for
βs 6= 0 favour positive values of αs and βs at a significance of up to 2σ.
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The extremely small values of runnings predicted by single field slow-rolling models mean that if
the realisation of inflation in nature is of this kind, a conclusive detection of such small running values
will be experimentally challenging [21], albeit eventually possible. Correspondingly, the detection of
a larger running of the running of, say, O(10−2) could be feasible much sooner, with less sensitive
experiments, and it is possible that the results quoted in Section 1 are the first signs we are seeing of this.
Given this state of affairs, we argue that it is important to begin considering what kind of inflationary
scenarios may lead to such unexpectedly large values of the running of the running, such that we are in
a position to more readily confront observation with theory should such a detection occur. Relatively
little work has been done on understanding αs [22–25], never mind βs, which is usually neglected.
Nevertheless, with further work, this could potentially prove a powerful constraint on inflationary
models. The next section is thus dedicated to an initial exploration of achieving a non-standard
hierarchy of runnings theoretically.

3. Multi-Field Scenarios and Isocurvature Perturbations

Part of the issue preventing the single field models of the previous section from generating large
runnings is that the final power spectrum is determined at the moment of horizon crossing where the
slow-roll approximation is still strongly valid. Models containing more than one field, in which the
superhorizon growth of curvature perturbations due to interaction with isocurvature modes breaks
this limitation of single field inflation, are a promising arena in which to investigate the possibility of
non-standard runnings of the spectral index. The final power spectrum when this is taken into account
is given by [26–28],

PR = P∗R
(

1 + T 2
RS

)
, (17)

where P∗R is the horizon-crossing power spectrum (starred quantities will henceforth denote values
at horizon crossing) and TRS is the isocurvature-to-curvature transfer function, which encodes the
superhorizon evolution of perturbations via,

TRS =
∫ tend

t∗
A(t)H(t)TSSdt , (18)

where the isocurvature-to-isocurvature transfer function is given by,

TSS = exp
(∫ tend

t∗
B(t)H(t)dt

)
, (19)

and A and B are model-dependent functions of background quantities, derived from the perturbed
equations of motion of the two-field system [29–31], and appearing in the large-scale equations of
motion as,

Ṙ = AHS , Ṡ = BHS . (20)

Using the definitions of the spectral index and runnings (the first equalities in Equations (13)–(15)),
we can calculate the corrections due to isocurvature transfer from Equation (17) as

(ns − 1) =
d lnPR

d ln k
= (n∗s − 1) +

1
H∗

d ln
(
1 + T 2

RS
)

dt∗
, (21)

α =
d ns

d ln k
= α∗ +

1
(H∗)2

d2 ln
(
1 + T 2

RS
)

d(t∗)2 , (22)

β =
d α

d ln k
= β∗ +

1
(H∗)3

d3 ln
(
1 + T 2

RS
)

d(t∗)3 , (23)
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where the first term is the spectral index/running/running of the running at horizon crossing and
the second term in each equation is the effect of TRS on the final values of these spectral parameters.
In these expressions, we have converted derivatives with respect to k into time derivatives at horizon
crossing t∗ by noting k = a∗H∗ such that k̇ = a∗(H∗)2(1− ε∗0) ≈ a∗(H∗)2 . The correction terms
can be re-expressed by explicitly computing the t∗ derivatives of Equations (18)–(19), with which we
obtain [32]

ns − 1 = (ns − 1)∗ − 2 sin Θ (A∗ cos Θ + B∗ sin Θ) , (24)

αs = α∗s + 2 cos Θ (A∗ cos Θ + B∗ sin Θ) (A∗ cos 2Θ + B∗ sin 2Θ) , (25)

βs = β∗s − 2 cos Θ (A∗ cos Θ + B∗ sin Θ) (B∗ cos 2Θ− A∗ sin 2Θ)

× (A∗ + 2A∗ cos 2Θ + 2B∗ sin 2Θ) , (26)

where tan Θ = TRS is the transfer angle. Hence, the spectral index/running/running of the running
receive corrections proportional to the model dependent parameters A∗ and B∗. When Θ = 0,
corresponding to the power spectrum maintaining the usual amplitude despite the interaction
with isocurvature modes, ns = n∗s due to the factor of sin Θ, while αs and βs receive corrections.
Similarly, when Θ approaches π/2, corresponding to the final power spectrum amplitude being
primarily due to isocurvature transfer (TRS � 1), αs and βs are uncorrected while ns is disturbed from
its horizon crossing value. This latter case is undesirable, as it does not help us obtain unconventional
runnings, but may ruin the smallness of the spectral index. By contrast, the aforementioned limit of
a zero transfer angle is appealing as it does not perturb the spectral index, while allowing potentially
large corrections to αs and βs for appropriate values of A∗ and B∗. In particular, taking the leading
contribution around the point Θ→ 0, we find,

ns − 1 = (ns − 1)∗ , (27)

αs = α∗s + 2(A∗)2 , (28)

βs = β∗s − 6(A∗)2B∗ . (29)

Here, if B∗ is sufficiently large and negative, one could amplify βs significantly above its
horizon-crossing value. For intermediate values of Θ, one could find cases in which all three parameters
are uncorrected (e.g., (A∗ cos Θ + B∗ sin Θ) = 0) and many cases where all three parameters are altered
in different ways due to the different trigonometric dependence on Θ of each parameter. This shows
that the introduction of additional fields, and their resulting isocurvature perturbations, vastly expand
the possible phenomenology of the spectral runnings, as long as A∗ and B∗ are non-negligible.

While it is hence possible for multiple field models to produce non-standard hierarchies of
runnings, the simplest model, two canonical, non-interacting fields with minimal potentials (only mass
terms) are incapable of achieving this in practice, as for any mass ratio the values of A∗ and B∗ are
small, and thus βs ≈ β∗s and so on for any transfer angle. On the other hand, a minimal extension of
such a model, described by the action [29,30,33,34]

S =
∫

d4x
√
−g
[

1
2

R− 1
2
(∂φ)2 +−1

2
e2b(φ)(∂χ)2 −V(φ, χ)

]
, (30)

where the potential does not necessarily need to, but may, include interaction terms such as g2φ2χ2,
can, for specific parameters (at least in the b(φ) ∝ φ case, but likely for a range of non-canonical kinetic
terms), achieve non-standard hierarchies that approximately fit the data. [32]. It would be interesting
for future work to study a range of models based on e.g., supergravity, where a non-minimal Kähler
potential naturally gives rise to such non-canonical kinetic terms, or other physically motivated actions
of this form. It is important to note that for some theories of this class, a leading-order slow-roll analysis
is not sufficient and it has been found that second-order corrections play an important role [31].



Universe 2017, 3, 17 6 of 10

The presence of isocurvature modes also modifies the standard inflationary consistency relation
between the tensor-to-scalar ratio r and the tensor spectral index nt, such that now

r = −8nt cos2 Θ . (31)

Future constraints on r and nt could hence infer the possible values of Θ in a multi-field scenario,
and act as a consistency check with the possible values of Θ implied by measurements of the runnings
in a model, through Equations (24)–(26).

4. Other Approaches

As a complementary approach to the above strategy of building more complicated models of
inflation to produce a non-standard running hierarchy, one could also consider alternatives to the
inflationary paradigm such as Variable Speed-of-Light (VSL) [35] models or model-independent
corrections to the inflationary spectra coming from theories of quantum gravity. We will, in this section,
briefly cover an example of each of these from the literature to explore the feasibility of achieving
non-standard runnings in each case.

4.1. Variable Speed-Of-Light Cosmology

VSL models are a popular alternative to inflation which may be physically realised, for example,
in disformally related bimetric theories, which allow the ratio of the speed of light to the speed of
gravity to vary [36–38]. Proponents argue that it is more predictive than inflation, and does not
suffer from problems of fine-tuning present in inflation [39]. While here we are interested in the early
universe effects of a variable speed of light, constraints on and evidence for VSL cosmologies at late
times [40,41] have also been studied. In the bimetric VSL model of Moffat [37,42], the power spectrum
takes the form

PR ∝ ln2
(

Ak3
)

, (32)

where A is a constant depending on model parameters, fixed by normalising the amplitude of the
power spectrum. From this, one obtains,

ns = 1 +
6

ln (Ak3)
≈ 0.96 , (33)

αs = −
1
2
(ns − 1)2 ≈ −8× 10−4 , (34)

βs =
1
2
(ns − 1)3 ≈ −3× 10−5 . (35)

This is largely consistent with the Planck analysis assuming βs ≡ 0—a standard hierarchy of
runnings. The relations αs ∝ (ns − 1)2 and βs ∝ (ns − 1)3 are characteristic of standard hierarchies
and very similar to the predictions of single field slow roll inflation (as ns − 1 ∝ ε, αs ∝ ε2 and so on).
Similarly to the expectation of fiducial models of inflation (15), this predicts βs < 0. Overall, this model
is largely indistinguishable from the most simplistic versions of inflation and as a result, to achieve
consistency with a more certain detection of an alternative hierarchy with βs ≈ O(10−2), this basic
realisation of VSL would have to be extended, much like the most basic inflationary scenarios.

4.2. Cosmological Perturbations in Quantum Gravity

Theories of quantum gravity predict modifications of the dynamics of cosmological perturbations
and hence corrections to the inflationary power spectra [43]. In canonical quantum gravity, for example,
it has been shown [44,45] that the corrected power spectrum takes the form

PR = P (0)
R (1 + ∆) , (36)
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where P (0)
R is the usual, uncorrected spectrum and

∆ = 0.988
H2

M2
pl

(
k̄
k

)3

+ O(ε) , (37)

is the leading order (in slow-roll) correction due to quantum gravity effects, in which k̄ is an introduced
length scale of the theory. It is noted that this kind of correction term does not lend itself well to the
common parametrisation of the spectrum in Equation (1). In particular, the explicit dependence on k
will lead to terms in the spectral index and runnings which are not suppressed by increasing orders of
slow-roll parameters, and hence could be of similar order. This is interesting for our purposes, as it
could quite naturally explain a deviation from the expected hierarchy of runnings, without having
to invoke complicated models of inflation. On a similar note, theories of loop quantum gravity such
as [46] have been shown to produce spectra with higher order runnings, all of a similar magnitude.
In general, the field of quantum gravity would hence seem to be an interesting area to further study in
the context of going beyond the usual slow-roll hierarchy of runnings.

Explicitly calculating the spectral index and its runnings from Equation (36), we obtain,

ns − 1 = (ns − 1)(0) − 3∆
(1 + ∆)

+ O(ε) , (38)

αs = α
(0)
s +

9∆

(1 + ∆)2 + O(ε) , (39)

βs = β
(0)
s +

27∆ (∆− 1)

(1 + ∆)3 + O(ε) . (40)

In [45], the authors explicitly compute the spectral index and running for the case where
H ≈ 10−5 MPl for a fiducial scale k̄ to find that in such models, when ∆ is O(10−10), the corrections
to the spectral parameters are likely unobservably small. The correction to α is however greater
in magnitude than the one to ns, confirming the expectation that this quantum gravity correction
would not fit the standard hierarchy of runnings. Indeed, in the limit of small ∆, the leading order
corrections are

ns − 1 ≈ (ns − 1)(0) − 3∆ , (41)

αs = α
(0)
s + 9∆ , (42)

βs = β
(0)
s − 27∆ , (43)

such that each subsequent parameter is a factor of 3 greater in magnitude than the previous one.
One could also consider alternative scenarios in which ∆ is not small (e.g., when H/MPl is larger
for some reason, or for a larger choice of k̄) and the final power spectrum (36) receives a greater
contribution from quantum gravity effects. In such a scenario, to obtain a positive correction to βs as is
found in the analysis of [7], from (40), one needs ∆ > 1 (though we note that, in this regime, higher
order corrections would also likely be important). For such a large ∆, ns − 1 and αs are corrected
by O(1), which likely ruins their fit to the data unless the uncorrected values ((ns − 1)(0) , etc.) are
abnormal in the first place.

To conclude, while quantum gravity effects may be capable of naturally breaking the hierarchy of
runnings, this particular realisation appears unsuitable for achieving the specific modified hierarchy
that recent analyses have hinted at, as the corrections are either too small (when ∆� 1), of the wrong
sign for βs (when 0 < ∆ < 1), or too large in ns and αs (when ∆ > 1).
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5. Conclusions

Given recent observational hints of an unexpectedly large running of the running (βs), and the
resulting non-standard hierarchy of runnings, we undertook a theoretical exploration of the possible
implications of this and what kinds of physical models might be able to realise such a hint if it is later
confirmed by further analyses and experiments. We find that single field slow-roll inflation would be
very difficult to reconcile with such a hierarchy. Models of multi-field inflation with non-canonical
kinetic terms, due to the influence of isocurvature perturbations on the spectrum, are however capable
of generating this kind of hierarchy. In any case, future measurements of the running and running of the
running may provide a powerful discriminator between inflationary models. Variable speed-of-light
models do not alleviate the problem, with the simplest realisations predicting the same kind of running
hierarchy as single field slow-roll inflation. Quantum gravity corrections to the primordial power
spectra, however, seem to have the right kind of qualitative properties to explain an unusually large
running of the running, taking a form which does not lend itself well to comparison with the usual
parametrisation. Future work in this direction may hence be able to shed some light on the nature of
quantum gravity effects.
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