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Abstract: In this review we present the most general form of the Janis–Newman algorithm.
This extension allows generating configurations which contain all bosonic fields with spin less
than or equal to two (real and complex scalar fields, gauge fields, metric field) and with five of the six
parameters of the Plebański–Demiański metric (mass, electric charge, magnetic charge, NUT charge
and angular momentum). Several examples are included to illustrate the algorithm. We also discuss
the extension of the algorithm to other dimensions.
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1. Introduction

1.1. Motivations

General relativity is the theory of gravitational phenomena. It describes the dynamical evolution
of spacetime through the Einstein–Hilbert action that leads to Einstein equations. The latter are highly
non-linear differential equations and finding exact solutions is a notoriously difficult problem.

There are different types of solutions, but this review will cover only black-hole-like solutions
(type-D in the Petrov classification) which can be described as particle-like objects that carry some
charges, such as a mass or an electric charge.

Black holes are important objects in any theory of gravity for the insight they provide into the
quantum gravity realm. For this reason it is a key step, in any theory, to obtain all possible black
holes solutions. Rotating black holes are the most relevant subcases for astrophysics as it is believed
that most astrophysical black holes are rotating. These solutions may also provide exterior metric for
rotating stars.

The most general solution of this type in pure Einstein–Maxwell gravity with a cosmological
constant Λ is the Plebański–Demiański metric [1,2]: it possesses six charges: mass m, NUT charge n,
electric charge q, magnetic charge p, spin a and acceleration α. A challenging work is to generalize this
solution to more complex Lagrangians, involving scalar fields and other gauge fields with non-minimal
interactions, as is typically the case in supergravity. As the complexity of the equations of motion
increase, it is harder to find exact analytical solutions, and one often consider specific types of solutions
(extremal, BPS), truncations (some fields are constant, equal or vanishing) or solutions with restricted
number of charges. For this reason it is interesting to find solution generating algorithms—procedures
which transform a seed configuration to another configuration with a greater complexity (for example
with a higher number of charges).

An on-shell algorithm is very precious because one is sure to obtain a solution if one starts with
a seed configuration which solves the equations of motion. On the other hand, off-shell algorithms
do not necessarily preserve the equations of motion but they are nonetheless very useful: they
provide a motivated ansatz, and it is always easier to check if an ansatz satisfy the equations than
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solving them from scratch. Even if in practice this kind of solution generating technique does not
provide so many new solutions, it can help to understand better the underlying theory (which can be
general relativity, modified gravities or even supergravity) and it may shed light on the structure of
gravitational solutions.

1.2. The Janis–Newman Algorithm

The Janis–Newman (JN) algorithm is one of these (off-shell) solution generating techniques,
which—in its original formulation—generates rotating metrics from static ones. It was found by Janis
and Newman as an alternative derivation of the Kerr metric [3], while shortly after it has been used
again to discover the Kerr–Newman metric [4].

This algorithm provides a way to generate axisymmetric metrics from a spherically symmetric
seed metric through a particular complexification of radial and (null) time coordinates, followed by
a complex coordinate transformation. Often one performs eventually a change of coordinates to write
the result in Boyer–Lindquist coordinates.

The original prescription uses the Newman–Penrose tetrad formalism, which appears to be very
tedious since it requires to invert the metric, to find a null tetrad basis where the transformation can
be applied, and lastly to invert again the metric. In [5] Giampieri introduced another formulation of
the JN algorithm which avoids gymnastics with null tetrads and which appears to be very useful for
extending the procedure to more complicated solutions (such as higher dimensional ones). However it
has been so far totally ignored in the literature. We stress that all results are totally equivalent in both
approaches, and every computation that can be done with the Giampieri prescription can be done
with the other. Finally [6] provides an alternative view on the algorithm.

In order for the metric to be still real, the radial functions inside the metric must be transformed
such that reality is preserved.1 Despite that there is no rigorous statement concerning the possible
complexification of these functions, some general features have been worked out in the last decades and
a set of rules has been established. Note that this step is the same in both prescriptions. In particular
these rules can be obtained by solving the equations of motion for some examples and by identifying
the terms in the solution [7]. Another approach consists in expressing the metric functions in terms of
the Boyer–Lindquist functions—that appear in the change of coordinates and which are real—, the
latter being then determined from the equations of motion [8,9].

It is widely believed that the JN algorithm is just a trick without any physical or mathematical
basis, which is not accurate. Indeed it was proved by Talbot [10] shortly after its discovery why
this transformation was well-defined, and he characterizes under which conditions the algorithm is
on-shell for a subclass of Kerr–Schild (KS) metrics (see also [11]).2 KS metrics admit a very natural
formulation in terms of complex functions for which (some) complex change of coordinates can be
defined. Note that KS metrics are physically interesting as they contain solutions of Petrov type II and
D. Another way to understand this algorithm has been provided by Schiffer et al. [12] who showed
that some KS metrics can be written in terms of a unique complex generating function, from which
other solutions can be obtained through a complex change of coordinates. In various papers, Newman
shows that the imaginary part of complex coordinates may be interpreted as an angular momentum,
and there are similar correspondences for other charges (magnetic. . . ) [13–15]. More recently Ferraro
shed a new light on the JN algorithm using Cartan formalism [16]. Uniqueness results for the case of
pure Einstein theory have been derived in [8]. A recent account on these different points can be found
in [17].

1 For simplifying, we will say that we complexify the functions inside the metric when we perform this transformation, even
if in practice we "realify" them.

2 It has not been proved that the KS condition is necessary, but all known examples seem to fit in this category.
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In its current form the algorithm is independent of the gravity theory under consideration since it
operates independently at the level of each field in order to generate an ansatz, and the equations of
motion are introduced only at the end to check if the configuration is a genuine solution. We believe
that a better understanding of the algorithm would lead to an on-shell formulation where the algorithm
would be interpreted as some kind of symmetry or geometric property. One intuition is that every
configuration found with the JN algorithm and solving the equations of motion is derived from a seed
that also solves the equations of motion (in particular no useful ansatz has been generated from an
off-shell seed configuration).

Other solution generating algorithms rely on a complex formulation of general relativity which
allows complex changes of coordinates. This is the case of the Ernst potential formulation [18,19]
or of Quevedo’s formalism who decomposes the Riemann tensor in irreducible representations of
SO(3,C) ∼ SO(3, 1) and then uses the symmetry group to generate new solutions [20,21].

Despite its long history the Janis–Newman algorithm has not produced any new rotating solution
for non-fluid configurations (which excludes radiating and interior solutions) beside the Kerr–Newman
metric [4], and very few known examples have been reproduced [3,22–25]. Generically the application the
Janis–Newman algorithm to interior and radiating systems [9,26–30] consist in deriving a configuration
that do not solve the equations of motion by itself and to interpret the mismatch as a fluid (whose
properties can be studied)—in this review we will not be interested by this kind of applications.
Moreover the only solutions that have been fully derived using the algorithm are the original Kerr
metric [3], the d = 3 BTZ black hole [23,24] and the d-dimensional Myers–Perry metric with a single
angular momentum [22]: only the metric was found in the other cases [4,25] and the other fields had
to be obtained using the equations of motion.

A first explanation is that there is no real understanding of the algorithm in its most general
form (as reviewed above it is understood in some cases): there is no geometric or symmetry-related
interpretation. Another reason is that the algorithm has been defined only for the metric (and real
scalar fields) and no extension to the other types of fields was known until recently. It has also been
understood that the algorithm could not be applied in the presence of a cosmological constant [7]:
in particular the (a)dS–Kerr(–Newman) metrics [31] (see also [1,2,32,33]) cannot be derived in this way
despite various erroneous claims [29,34]. Finally many works [35–43] (to cite only few) are (at least
partly) incorrect or not reliable because they do not check the equations of motion or they perform
non-integrable Boyer–Lindquist changes of coordinates [30,44,45].

The algorithm was later shown to be generalizable by Demiański and Newman who demonstrated
by writing a general ansatz and solving the equations of motion that other parameters can be
added [7,46], even in the presence of a cosmological constant. While one parameter corresponds to the
NUT charge, the other one did not receive any interpretation until now.3 Unfortunately Demiański
did not express his result to a concrete algorithm (the normal prescription fails in the presence of the
NUT charge and of the cosmological constant) which may explain why this work did not receive any
further attention. Note that the algorithm also failed in the presence of magnetic charges.

A way to avoid problems in defining the changes of coordinates to the Boyer–Lindquist system
and to find the complexification of the functions has been proposed in [8] and extended in [30]:
the method consists of writing the unknown complexified function in terms of the functions of the
coordinate transformation. This philosophy is particularly well-suited for providing an ansatz which
does not rely on a static seed solution.

More recently it has been investigated whether the JN algorithm can be applied in modified
theories of gravity. Pirogov put forward that rotating metrics obtained from the JN algorithm in
Brans–Dicke theory are not solutions if α 6= 1 [50]. Similarly Hansen and Yunes have shown a similar

3 Demiański’s metric has been generalized in [47–49].
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result in quadratic modified gravity (which includes Gauss–Bonnet) [51].4 These do not include Sen’s
dilaton–axion black hole for which α = 1 (Section 5.4), nor the BBMB black hole from conformal
gravity (Section 5.2). Finally it was proved in [53] that it does not work either for Einstein–Born–Infled
theories.5 We note that all these no-go theorem have been found by assuming a transformation with
only rotation.

Previous reviews of the JN algorithm can be found in [8,17,37,54] (see also [55]).

1.3. Overview

The goal of the current work is to review a series of recent papers [56–59] in which the JN
algorithm has been extended in several directions, opening the doors to many new applications.
This review evolved from the thesis of the author [60], which presented the material from a slightly
different perspective, and from lectures given at HRI (Allahabad, India).

As explained in the previous section, the JN algorithm was formulated only for the metric and
all other fields had to be found using the equations of motion (with or without using an ansatz).
For example neither the Kerr–Newman gauge field or its associated field strength could be derived
in [4]. The solution to this problem is to perform a gauge transformation in order to remove the
radial component of the gauge field in null coordinates [56]. It is then straightforward to apply the
JN algorithm in either prescription.6 Another problem was exemplified by the derivation of Sen’s
axion–dilaton rotating black hole [62] by Yazadjiev [25], who could find the metric and the dilaton,
but not the axion (nor the gauge field). The reason is that while the JN algorithm applies directly to
real scalar fields, it does not for complex scalar fields (or for a pair of real fields that can naturally be
gathered into a complex scalar). Then it is necessary to consider the complex scalar as a unique object
and to perform the transformation without trying to keep it real [59]. Hence this completes the JN
algorithm for all bosonic fields with spin less than or equal to two.

A second aspect for which the original form of the algorithm was deficient is configuration with
magnetic and NUT charges and in presence of a cosmological constant. The issue corresponds to
finding how one should complexify the functions: the usual rules do not work and if there were no
way to obtain the functions by complexification then the JN algorithm would be of limited interest as it
could not be exported to other cases (except if one is willing to solve equations of motion, which is not
the goal of a solution generating technique). We have found that to reproduce Demiański’s result [7] it
is necessary to complexify also the mass and to consider the complex parameter m + in [58,59] and to
shift the curvature of the spherical horizon. Similarly for configurations with magnetic charges one
needs to consider the complex charge q + ip [59]. Such complex combinations are quite natural from
the point of view of the Plebański–Demiański solution [1,2] described previously. It is to notice that the
appearance of complex coordinate transformations mixed with complex parameter transformations
was a feature of Quevedo’s solution generating technique [20,21], yet it is unclear what the link
with our approach really is. Hence the final metric obtained from the JN algorithm may contain
(for vanishing cosmological constant) five of the six Plebański–Demiański parameters [1,2] along with
Demiański’s parameter.

4 There are some errors in the introduction of [51]: they report incorrectly that the result from [50] implies that Sen’s black
hole cannot be derived from the JN algorithm, as was done by Yazadjiev [25]. But this black hole corresponds to α = 1
and as reported above there is no problem in this case (see [52] for comparison). Moreover they argue that several works
published before 2013 did not take into account the results of Pirogov [50], published in 2013.

5 It may be possible to circumvent the result of [53] by using the results described in this review since several tools were not
known by its author.

6 Another solution has been proposed by Keane [61] but it is applicable only to the Newman–Penrose coefficients of the field
strength. Our proposal requires less computations and yields directly the gauge field from which all relevant quantities can
easily be derived.
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An interesting fact is that the previous argument works in the presence of the cosmological
constant only if one considers the possibility of having a generic topological horizons (flat, hyperbolic
or spherical) and for this reason we have provided an extension of the formalism to this case [58].

We also propose a generalization of the algorithm to any dimension [57], but while new examples
could be found for d = 5 the program could not be carried to the end for d > 5.

All these results provide a complete framework for most of the theories of gravity that are
commonly used. As a conclusion we summarize the features of our new results:

• all bosonic fields with spin ≤ 2;
• topological horizons;
• charges m, n, q, p, a (with a only for Λ = 0);
• extend to d = 3, 5 dimensions (and proposal for higher).

We have written a general Mathematica package for the JN algorithm in Einstein–Maxwell theory.7

Here is a list of new examples that have been completely derived using the previous results (all in 4d
except when said explicitly):

• Kerr–Newman–NUT;
• dyonic Kerr–Newman;
• Yang–Mills Kerr–Newman black hole [63];
• adS–NUT Schwarzschild;
• Demiański’s solution [7];
• ungauged N = 2 BPS solutions [64];
• non-extremal solution in T3 model [62] (partly derived in [25]);
• SWIP solutions [65];
• (a)dS–charged Taub–NUT–BBMB [66];
• 5d Myers–Perry [67];
• 5d BMPV [68];
• NUT charged black hole8 in gauged N = 2 sugra with F = −i X0X1 [69].

We also found a more direct derivation of the rotating BTZ black hole (derived in another way by
Kim [23,24]).

1.4. Outlook

A major playground for this modified Janis–Newman (JN) algorithm is (gauged) supergravity—
where many interesting solutions remain to be discovered—since all the necessary ingredients are
now present. Moreover important solutions are still missing in higher-dimensional Einstein–Maxwell
(in particular the charged Myers–Perry solution) and one can hope that understanding the JN algorithm
in higher dimensions would shed light on this problem. Another open case is whether black rings can
also be derived using the algorithm.

A major question about the JN algorithm is whether it is possible to include rotation for
non-vanishing cosmological constant. A possible related problem concerns the addition of acceleration
α, which is the only missing parameter when Λ = 0. It is indeed puzzling that one could get all
Plebański–Demiański parameters but the acceleration, which appears in the combination a + iα. Both
problems are linked to the fact that the JN algorithm – in its current form – does not take into account
various couplings between the parameters (such as the spin with the cosmological constant or the
acceleration with the mass in the simplest cases). On the other hand it does not mean that it is
impossible to find a generalization of the algorithm: philosophically the problem is identical to the
ones of adding NUT and magnetic charges.

7 Available at http://www.lpthe.jussieu.fr/~erbin/.
8 Derived by D. Klemm and M. Rabbiosi, unpublished work.

http://www.lpthe.jussieu.fr/~erbin/
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In any case the meaning and a rigorous derivation of the JN algorithm—perhaps elevating it
to the status of a true solution generating algorithm—are still to be found. It is also interesting to
note that almost all of the examples quoted in the previous section can be embedded into N = 2
supergravity. This calls for a possible interpretation of the algorithm in terms of some hidden symmetry
of supergravity, or even of string theory.

We hope that our new extension of the algorithm will help to bring it out of the shadows where it
stayed since its creation, and to establish it as a standard tool for deriving new solutions in the various
theories of gravity.

1.5. Summary

In Section 2 we review the original Janis–Newman algorithm and its alternative form due to
Giampieri before illustrating it with some examples. Section 3 shows how to extend the algorithm
to more complicated set of fields (complex scalars, gauge fields) and parameters (magnetic and NUT
charges, topological horizon). Then Section 4 provides a general description of the algorithm in its
most general form. Section 5 describes several examples.

Appendix A reviews briefly the main properties of N = 2 supergravity.
In our conventions the spacetime signature is mostly plus.

2. Algorithm: Main Ideas

In this section we summarize the original algorithm together with its extension to gauge fields.
We will see that the algorithm involves the transformations of two different objects (the tensor
structure and the coordinate-dependent functions of the fields) which can be taken care of separately.
The transformation of the tensor structure is simple and no new idea (for d = 4) will be needed after
this section since we will be dealing with the two most general tensor structures for bosonic fields of
spin less than or equal to two (the metric and vector fields). On the other hand, the transformation
of the functions is more involved and we will introduce new concepts through simple examples in
the next section before giving the most general formulation in Section 4. We review the two different
prescriptions for the transformation and we illustrate the algorithm with two basic examples: the flat
space and the Kerr–Newman metrics.

2.1. Summary

The general procedure for the Janis–Newman algorithm can be summarized as follows:

1. Perform a change of coordinates (t, r) to (u, r) and a gauge transformation such that grr = 0 and
Ar = 0.

2. Take u, r ∈ C and replace the functions fi(r) inside the real fields by new real-valued functions
f̃i(r, r̄) (there is a set of “empirical” rules).

3. Perform a complex change of coordinates and transform accordingly:

(a) the tensor structure, i.e., the dxµ (two prescriptions: Janis–Newman [3] and Giampieri [5]);
(b) the functions f̃i(r, r̄).

4. Perform a change of coordinates to simplify the metric (for example to Boyer–Lindquist system).
If the transformation is infinitesimal then one should check that it is a valid diffeomorphism,
i.e., that it is integrable.

Note that in the last point the operations (a) and (b) are independent. In practice one is performing
the algorithm for a generic class of configurations with unspecified fi(r) in order to obtain general
formulas. One leaves point 2 and (3b) implicit since the other steps are independent of the form of the
functions. Then given a specific configuration one can perform 2 and (3b).

Throughout the review we will not be interested in showing that the examples discussed are
indeed solutions but merely to explain how to extend the algorithm. All examples we are discussing
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have been shown to be solutions of the theory under concerned and we refer the reader to the original
literature for more details. For this reason we will rarely mention the action or the equations of motion
and just discussed the fields and their expressions.

One could add a fifth point to the list: checking the equations of motion. We stress again that the
algorithm is off-shell and there is no guarantee (except in some specific cases [17]) that a solution is
mapped to a solution.

2.2. Algorithm

We present the algorithm for a metric gµν and a gauge field Aµ associated with a U(1) gauge
symmetry. This simple case is sufficient to illustrate the main features of the algorithm.

As already mentioned in the introduction, the authors of [4] failed to derive the field strength
of the Kerr–Newman black hole from the Reissner–Nordström one. In the null tetrad formalism
it is natural to write the field strength in terms of its Newman–Penrose coefficients, but a problem
arises when one tries to generate the rotating solution since one of the coefficients is zero in the
case of Reissner–Nordström, but non-zero for Kerr–Newman. Three different prescriptions have
been proposed: two works in the Newman–Penrose formalism—one with the field strength [61] and
one with the gauge field [56]—while the third extends Giampieri’s approach to the gauge field [56].
Since the proposals from [56] fit more directly (and parallel each other) inside the prescriptions of
Janis–Newman and Giampieri, we will focus on them. It is also more convenient to work with the
gauge fields since any other quantity can be easily computed from them.

2.2.1. Seed Metric and Gauge Fields

The seed metric and gauge field take the form

ds2 = − f (r)dt2 + f (r)−1 dr2 + r2dΩ2, dΩ2 = dθ2 + H(θ)2 dφ2, (1a)

A = fA(r)dt. (1b)

The normalized curvature of the (θ, φ) sections (or equivalently of the horizon) is denoted by κ

κ =

{
+1 S2,

−1 H2
(2)

where S2 and H2 are respectively the sphere and the hyperboloid,9 and one has

H(θ) =

{
sin θ κ = 1,

sinh θ κ = −1.
(3)

In all this section we will consider the case of spherical horizon with κ = 1.
Introduce Eddington–Finkelstein coordinates (u, r)

du = dt− f−1dr (4)

in order to remove the grr term of the metric [3]. Under this transformation the gauge field becomes

A = fA (du + f−1dr). (5)

9 We leave aside the case of the plane R2 with κ = 0. The formulas can easily be extended to this case.
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The changes of coordinate has introduced an Ar component but since it depends only on the
radial coordinate Ar = Ar(r) it can be removed by a gauge transformation.

At the end the metric and gauge fields are

ds2 = − f dt2 + 2dudr + r2dΩ2, (6a)

A = fA du. (6b)

This last step was missing in [4] and explains why they could not derive the full solution from the
algorithm. The lesson to draw is that the validity of the algorithm depends a lot on the coordinate basis
and of the parametrization of the fields, although guiding principle founded on all known examples
seems that one needs to have

grr = 0, Ar = 0. (7)

2.2.2. Janis–Newman Prescription: Newman–Penrose Formalism

The Janis–Newman prescription for transforming the tensor structure relies on the Newman–Penrose
formalism [3,4,17].

First one needs to obtain the contravariant expressions of the metric and of the gauge field

∂2

∂s2 = gµν∂µ∂ν = f ∂r2 − 2 ∂u∂r +
1
r2

(
∂2

θ +
∂2

φ

sin2 θ

)
, (8a)

A = − fA ∂r. (8b)

Then one introduces null complex tetrads

Zµ
a = {`µ, nµ, mµ, m̄µ} (9)

with flat metric

ηab =


0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

 (10)

such that

gµν = ηabZµ
a Zν

b = −`µnν − `νnµ + mµm̄ν + mνm̄µ. (11)

The explicit tetrad expressions are

`µ = δ
µ
r , nµ = δ

µ
u −

f
2

δ
µ
r , mµ =

1√
2r̄

(
δ

µ
θ +

i
sin θ

δ
µ
φ

)
(12)

and the gauge field is
Aµ = − fA `µ. (13)

Note that without the gauge transformation there would be an additional term and the expression
of Aµ in terms of the tetrads would be ambiguous.

At this point u and r are allowed to take complex values but keeping `µ and nµ real and
(mµ)∗ = m̄µ and replacing

f (r) −→ f̃ (r, r̄) ∈ R, fA(r) −→ f̃A(r, r̄) ∈ R. (14)

Consistency implies that one recovers the seed for r̄ = r and ū = u.
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Finally one can perform a complex change of coordinates

u = u′ + ia cos θ, r = r′ − ia cos θ (15)

where a is a parameter (to be interpreted as the angular momentum per unit of mass) and r′, u′ ∈ R.
While this transformation seems arbitrary, general consistency limits severely the possibilities [58].
The tetrads transform as vectors

Z′µa =
∂x′µ

∂xν
Zν

a (16)

and this lead to the expressions

`′µ = δ
µ
r , n′µ = δ

µ
u −

f̃
2

δ
µ
r ,

m′µ =
1√

2(r′ + ia cos θ)

(
δ

µ
θ +

i
sin θ

δ
µ
φ − ia sin θ (δ

µ
u − δ

µ
r )

)
.

(17)

After inverting the contravariant form of the metric and the gauge field one is lead to the
final expressions

ds′2 = − f̃ (du′ − a sin2 θ dφ)2 − 2 (du′ − a sin2 θ dφ)(dr′ + a sin2 θ dφ) + ρ2dΩ2, (18a)

A′ = f̃A (du′ − a sin2 θ dφ). (18b)

where
ρ2 = |r|2 = r′2 + a2 cos2 θ. (19)

The coordinate dependence of the functions can be written as

f̃ = f̃ (r, r̄) = f̃ (r′, θ) (20)

in the new coordinates (and similarly for f̃A), but note that the θ dependence is not arbitrary and
comes solely from Im r.

2.2.3. Giampieri Prescription

The net effect of the transformation (15) on the tensor structure amounts to the replacements

du −→ du′ − a sin2 θ dφ, dr −→ dr′ + a sin2 θ dφ (21)

by comparing (6) and (18), up to the r2 → ρ2 in front of dΩ2. Is it possible to obtain the same effect
by avoiding the Newman–Penrose formalism and all the computations associated to changing from
covariant to contravariant expressions? Inspecting the infinitesimal form of (15)

du = du′ − ia sin θ dθ, dr = dr′ + ia sin θ dθ, (22)

one sees that (21) can be recovered if one sets [5]

idθ = sin θ dφ. (23)

Note that it should be done only in the infinitesimal transformation and not elsewhere in the
metric. Although some authors [16,29] mentioned the equivalence between the tetrad computation
and (21), it is surprising that this direction has not been followed further.

While this new prescription is not rigorous and there is no known way to derive (23), it continues
to hold for the most general seed (Section 4) and it gives systematically the same results as the
Janis–Newman prescription, as can be seen by simple inspection. In particular this approach is not
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adding nor removing any of the ambiguities due to the function transformations that are already
present and well-known in JN algorithm. Since this prescription is much simpler we will continue
to use it throughout the rest of this review (we will show in Section 4 how it is modified for
topological horizons).

Finally the comparison of the two prescriptions clearly shows that the r2 factor in front of dΩ2

should be considered as a function instead of a part of the tensor structure: the replacement r2 → ρ2 is
dictated by the rules given in the next section. We did not want to enter into these subtleties here but
this will become evident in Section 4.

2.2.4. Transforming the Functions

The transformation of the functions is common to both the Janis–Newman and Giampieri
prescriptions since they are independent of the tensor structure. This step is the main weakness
of the Janis–Newman algorithm because there is no unique way to perform the replacement and for
this reason the final result contains some part of arbitrariness. This provides another incentive for
checking systematically if the equations of motion are satisfied. Nonetheless examples have provided
a small set of rules [3,4,8,56]

r −→ 1
2
(r + r̄) = Re r, (24a)

1
r
−→ 1

2

(
1
r
+

1
r̄

)
=

Re r

|r|2
, (24b)

r2 −→ |r|2. (24c)

The idea is to use geometric or arithmetic means. All other functions can be reduced to
a combination of them, for example 1/r2 is complexified as 1/|r|2.

Every known configuration which does not involve a magnetic, a NUT charge, complex scalar
fields or powers higher of rthan quadratic can be derived with these rules (these cases will be dealt
with in Sections 3 and 4). Hence despite the fact that there is some arbitrariness, it is ultimately quite
limited and very few options are possible in most cases.

2.2.5. Boyer–Lindquist Coordinates

Boyer–Lindquist coordinates are defined to be those with the minimal number of non-zero
off-diagonal components in the metric. Performing the transformation (the primes in (18) are now omitted)

du′ = dt′ − g(r)dr′, dφ = dφ′ − h(r)dr, (25)

the conditions gtr = grφ′ = 0 are solved for

g(r) =
r2 + a2

∆
, h(r) =

a
∆

(26)

where we have defined
∆(r) = f̃ ρ2 + a2 sin2 θ. (27)

As indicated by the r-dependence this change of variables is integrable provided that g and h are
functions of r only. However ∆ as given in (27) for a generic configuration contains a θ dependence:
one should check that this dependence cancels once restricted to the example of interest. Otherwise
one is not allowed to perform this change of coordinates (but other systems may still be found).
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Given (26) one gets the metric and gauge fields (deleting the prime)

ds2 = − f̃ dt2 +
ρ2

∆
dr2 + ρ2dθ2 +

Σ2

ρ2 sin2 θ dφ2 + 2a( f̃ − 1) sin2 θ dtdφ, (28a)

A = f̃A

(
dt− ρ2

∆
dr− a sin2 θ dφ

)
(28b)

with
Σ2

ρ2 = r2 + a2 + agtφ. (29)

The rr-term has been computed from

g− a sin2 θ h =
ρ2

∆
. (30)

Generically the radial component of the gauge field depends only on radial coordinate Ar = Ar(r)
(θ-dependence of the function f̃A sits in a factor 1/ρ2 which cancels the one in front of dr) and one can
perform a gauge transformation in order to set it to zero, leaving

A = f̃A

(
dt− a sin2 θ dφ

)
. (31)

2.3. Examples

2.3.1. Flat Space

It is straightforward to check that the algorithm applied to the Minkowski metric—which has
f = 1, leading to f̃ = 1—in spherical coordinates

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θ dφ2) (32)

gives again the Minkowski metric but in spheroidal coordinates (after a Boyer–Lindquist transformation)

ds2 = −dt2 +
ρ2

r2 + a2 dr2 + ρ2dθ2 + (r2 + a2) sin2 θ dφ2, (33)

recalling that ρ2 = r2 + a2 cos2 θ. The metric is exactly diagonal because gtφ = 0 for f̃ = 1 from (28a).
Hence for flat space the JN algorithm reduces to a change of coordinates, from spherical to (oblate)

spheroidal coordinates: the 2-spheres foliating the space in the radial direction are deformed to ellipses
with semi-major axis a.

This fact is an important consistency check and it has been useful for extending the algorithm
to higher dimensions [57] or to other coordinate systems (such as one with direction cosines).
Moreover in this case one can forget about the time direction and consider only the transformation of
the radial coordinate.

2.3.2. Kerr–Newman

The seed function is the Reissner–Nordström for which the metric and gauge field are

f (r) = 1− 2m
r

+
q2

r2 , fA =
q
r

. (34)
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Applications of the rules (24) leads to

f̃ = 1− 2m Re r

|r|2
+

q2

|r|2
= 1 +

q2 − 2mr′

ρ2 , (35a)

f̃A =
q Re r

|r|2
=

qr′

ρ2 . (35b)

These functions together with (28) describe correctly the Kerr–Newman solution [17,70].
For completeness we spell out the expressions of the quantities appearing in the metric

Σ2

ρ2 = r2 + a2 − q2 − 2mr
ρ2 a2 sin2 θ, (36a)

∆ = r2 − 2mr + a2 + q2. (36b)

In particular ∆ does not contain any θ dependence and the BL transformation is well defined.
Moreover the radial component of the gauge field is

Ar = −
f̃Aρ2

∆
=

qr
∆

(37)

and it is independent of θ.

3. Extension through Simple Examples

In this section we motivate through simple examples modifications to the original prescription
for the transformation of the functions.

3.1. Magnetic Charges: Dyonic Kerr–Newman

The dyonic Reissner–Nordström metric is obtained from the electric one (34) by the
replacement [71]

q2 −→ |Z|2 = q2 + p2 (38)

where Z corresponds to the central charge

Z = q + ip. (39)

Then the metric function reads

f = 1− 2m
r

+
|Z|2

r2 . (40)

The gauge field receives a new φ-component

A = fA dt− p cos θ dφ = fA du− p cos θ dφ (41)

(the last equality being valid after a gauge transformation) and

fA =
q
r

. (42)

The transformation of the function f under (15) is straightforward and yields

f̃ = 1− 2mr′ − |Z|2

ρ2 . (43)
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On the other hand transforming directly the r inside fA according to (24) does not yield the correct
result. Instead one needs to first rewrite the gauge field function as

fA = Re
(

Z
r

)
(44)

from which the transformation proceeds to

f̃A =
Re(Zr̄)

|r|2
=

qr′ − pa cos θ

ρ2 . (45)

Note that it not useful to replace p by Im Z in (41) since it is not accompanied by any r dependence.
Moreover it is natural that the factor |Z|2 appears in the metric and this explains why the charges there
do not mix with the coordinates.

The gauge field in BL coordinates is finally

A =
qr− pa cos θ

ρ2 dt +
(
− qr

ρ2 a sin2 θ +
p(r2 + a2)

ρ2 cos θ

)
dφ (46a)

=
qr
ρ2 (dt− a sin2 θdφ) +

p cos θ

ρ2

(
a dt + (r2 + a2)dφ

)
. (46b)

The radial component has been removed thanks to a gauge transformation since it depends only
on r

∆× Ar = −
qr− pa cos θ

ρ2 ρ2 − pa cos θ = −qr. (47)

There is a coupling between the parameters a and p which can be interpreted from the fact that
a rotating magnetic charge has an electric quadrupole moment. This coupling is taken into account
from the product of the imaginary parts which yield a real term. In view of the form of the algorithm
such contribution could not arise from any other place. Moreover the combination Z = q + ip appears
naturally in the Plebański–Demiański solution [1,2].

The Yang–Mills Kerr–Newman black hole found by Perry [63] can also be derived in this way,
starting from the seed

AI =
qI

r
dt + pI cos θ dφ, |Z|2 = qIqI + pI pI (48)

where qI and pI are constant elements of the Lie algebra.

3.2. NUT Charge and Cosmological Constant and Topological Horizon: (Anti-)de Sitter Schwarzschild–NUT

In this subsection we consider general topological horizons

dΩ2 = dθ2 + H(θ)2 dφ2, H(θ) =

{
sin θ κ = 1 (S2),

sinh θ κ = −1 (H2).
(49)

The cosmological constant is denoted by Λ. We give only the main formulas to motivate the
modification of the algorithm, leaving the details of the transformation for Section 4.

The complex transformation that adds a NUT charge is

u = u′ − 2κ ln H(θ), r = r′ + in, (50a)

m = m′ + iκn, κ = κ′ − 4Λ
3

n2. (50b)

Note that it is κ and not κ′ that appears in m. After having shown
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The metric derived from the seed (1a) is

ds2 = − f̃ (dt− 2κnH′(θ)dφ)2 + f̃−1 dr2 + ρ2 dΩ2, (51)

see (97), where
ρ2 = r′2 + n2. (52)

The function corresponding to the (a)dS–Schwarzschild metric is

f = κ − 2m
r
− Λ

3
r2 = κ − 2 Re

(m
r

)
− Λ

3
r2. (53)

The transformation is

f̃ = κ − 2 Re(mr̄)

|r|2
− Λ

3
|r|2 = κ′ − 4Λ

3
n2 −

2
[
m′r′ +

(
κ′ − 4Λ

3 n2
)

n2
]

ρ2 − Λ
3

ρ2 (54)

which after simplification gives

f̃ = κ′ − 2m′r′ + 2κ′n2

ρ2 − Λ
3
(r′2 + 5n2) +

8Λ
3

n4

ρ2 (55)

which corresponds correctly to the function of (a)dS–Schwarzschild–NUT [72].
Note that it is necessary to consider the general case of massive black hole with topological

horizon (if Λ 6= 0 for the latter) even if one is ultimately interested in the m = 0 or κ = 1 cases.
The transformation (50) can be interpreted as follows. In similarity with the case of the magnetic

charge, writing the mass as a complex parameter is needed to take into account some couplings
between the parameters that would not be found otherwise. Moreover the shift of κ is required because
the curvature of the (θ, φ) section should be normalized to κ = ±1 but the coupling of the NUT
charge with the cosmological constant modifies the curvature: the new shift is necessary to balance
this effect and to normalize the (θ, φ) curvature to κ′ = ±1 in the new metric. The NUT charge in the
Plebański–Demiański solution [1,2] is

` = n
(

1− 4Λ
3

n2
)

(56)

so the natural complex combination is m + i` and not m + iκn from this point of view, and similarly for
the curvature [73] (Section 5.3) (such relations appear when taking limit of the Plebański–Demiański
solution to recover subcases).

Finally we conclude this section with two remarks to quote different contexts where the above
expression appear naturally :

• Embedding Einstein–Maxwell into N = 2 supergravity with a negative cosmological constant
Λ = −3g2, the solution is BPS if [72]

κ′ = −1, n = ± 1
2g

, (57)

in which case κ′ = κ.
• The Euclidean NUT solution is obtained from the Wick rotation

t = −iτ, n = iν. (58)
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The condition for regularity is [74,75]

m = m′ − ν

(
κ +

4Λ
3

ν2
)
= 0. (59)

3.3. Complex Scalar Fields

For a complex scalar field, or any pair of real fields that can be naturally gathered as a complex
field, one should treat the full field as a single entity instead of looking at the real and imaginary
parts independently. In particular one should not impose any reality condition. A typical case of such
system is the axion–dilaton pair

τ = e−2φ + iσ. (60)

In order to demonstrate this principle consider the seed (for a complete example see Section 5.4)

τ = 1 +
µ

r
(61)

where only the dilaton is non-zero.
Then the transformation (15) gives

τ′ = 1 +
µ

r
= 1 +

µ

r′ − ia cos θ
= 1 +

µr′

ρ2 + i
µa cos θ

ρ2 . (62)

The transformation generates an imaginary part which cannot be obtained if Im τ is treated
separately: the algorithm does not change fields that vanish except if they are components of a larger
field. Note that both τ and τ′ are harmonic functions.

4. Complete Algorithm

In this section we gather all the facts on the Janis–Newman algorithm and we explain how to
apply it to a general setting. We write the formulas corresponding to the most general configurations
that can be obtained. We insist again on the fact that all these results can also be derived from the
tetrad formalism.

4.1. Seed Configuration

We consider a general configuration with a metric gµν, gauge fields AI
µ, complex scalar fields

τi and real scalar fields qu. The initial parameters of the seed configuration are the mass m, electric
charges qI , magnetic charges pi and some other parameters λA (such as the scalar charges). The electric
and magnetic charges are grouped in complex parameters

ZI = qI + ipI . (63)

All indices run over some arbitrary ranges.
The seed configuration is spherically symmetric and in particular all the fields depend only on

the radial direction r

ds2 = − ft(r)dt2 + fr(r)dr2 + fΩ(r)dΩ2, (64a)

AI = f I(r)dt + pI H′(θ)dφ, (64b)

τi = τi(r), qu = qu(r) (64c)

where

dΩ2 = dθ2 + H(θ)2 dφ2, H(θ) =

{
sin θ κ = 1 (S2),

sinh θ κ = −1 (H2).
(65)
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Note that only two functions in the metric are relevant since the last one can be fixed through
a diffeomorphism. All the real functions are denoted collectively by

fi = { ft, fr, fΩ, f I , qu}. (66)

The transformation to null coordinates is

dt = du−
√

fr

ft
dr (67)

and yields

ds2 = − ft du2 − 2
√

ft fr dr2 + fΩ dΩ2, (68a)

AI = f I du + pI H′ dφ (68b)

where the radial component of the gauge field

AI
r = f I

√
fr

ft
(69)

has been set to zero through a gauge transformation.

4.2. Janis–Newman Algorithm

4.2.1. Complex Transformation

One performs the complex change of coordinates

r = r′ + i F(θ), u = u′ + i G(θ). (70)

In the case of topological horizons the Giampieri ansatz (23) generalizes to

i dθ = H(θ)dφ (71)

leading to the differentials

dr = dr′ + F′(θ)H(θ)dφ, du = du′ + G′(θ)H(θ)dφ. (72)

The ansatz (71) is a direct consequence of the fact that the 2-dimensional slice (θ, φ) is given by

dΩ2 = dθ2 + H(θ)2 dφ2, such that the function in the RHS of (71) corresponds to
√

gΩ
φφ (where g is the

static metric), as can be seen by doing the computation with i dθ = H(θ)dφ and identifyingH = H at
the end.

The most general known transformation is

F(θ) = n− a H′(θ) + c
(

1 + H′(θ) ln
H(θ/2)
H′(θ/2)

)
, (73a)

G(θ) = κa H′(θ)− 2κn ln H(θ)− κc H′(θ) ln
H(θ/2)
H′(θ/2)

, (73b)

m = m′ + iκn, (73c)

κ = κ′ − 4Λ
3

n2, (73d)

where a, c 6= 0 only if Λ = 0. The mass that is transformed is the physical mass: even if it written in
terms of other parameters one should identify it and transform it.
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The parameters a and n correspond respectively to the angular momentum and to the NUT charge.
On the other hand the constant c did not receive any clear interpretation (see for example [7,17,76]).
It can be noted that the solution is of type II in Petrov classification (and thus the JN algorithm can
change the Petrov type) and it corresponds to a wire singularity on the rotation axis. Moreover the BL
transformation is not well-defined.

4.2.2. Function Transformation

All the real functions fi = fi(r) must be modified to be kept real once r ∈ C

f̃i = f̃i(r, r̄) = f̃i
(
r′, F(θ)

)
∈ R. (74)

The last equality means that f̃i can depend on θ only through Im r = F(θ). The condition that one
recovers the seed for r̄ = r = r′ is

f̃i(r′, 0) = fi(r′). (75)

If all magnetic charges are vanishing or in terms without electromagnetic charges the rules for
finding the f̃i are

r −→ 1
2
(r + r̄) = Re r, (76a)

1
r
−→ 1

2

(
1
r
+

1
r̄

)
=

Re r

|r|2
, (76b)

r2 −→ |r|2. (76c)

Up to quadratic powers of r and r−1 these rules determine almost uniquely the result. This is not
anymore the case when the configurations involve higher power. These can be dealt with by splitting
it in lower powers: generically one should try to factorize the expression into at most quadratic pieces.
Some examples of this with natural guesses are

r4 − b2 = (r2 + b)(r2 − b), r4 + b = r2
(

r2 +
b
r2

)
. (77)

Moreover the same power of r can be transformed differently, for example

1
rn −→

1
rn−2

1

|r|2
. (78)

Denoting by Q(r) and P(r) collectively all functions that multiply qI and pI respectively, all such
terms should be rewritten as(

qI Q(r), pI P(r)
)
=
(

Re
(
ZI Q(r)

)
, Im

(
ZI P(r)

))
(79)

before performing the transformation (70). Note that in this case one does not use the rules (76).
Finally the transformed complex scalars are obtained by simply plugging (70)

τ′i(r′, θ) = τi(r + iF(θ)
)
. (80)

4.2.3. Null Coordinates

Plugging the transformation (70) inside the seed metric and gauge fields (68) leads to10

10 We stress that at this stage these formula do not satisfy Einstein equations, they are just proxies to simplify later computations.
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ds2 = − f̃t (du′ + α dr′ + ωH dφ)2 + 2β dr′dφ + f̃Ω
(
dθ2 + σ2H2 dφ2), (81a)

AI = f̃ I (du′ + G′H dφ) + pI H′ dφ (81b)

where (one should not confuse the primes to indicate derivatives from the primes on the coordinates)

ω = G′ +

√
f̃r

f̃t
F′, σ2 = 1 +

f̃r

f̃Ω
F′2, α =

√
f̃r

f̃t
, β = f̃r F′H. (82)

4.2.4. Boyer–Lindquist Coordinates

The Boyer–Lindquist transformation

du′ = dt′ − g(r′)dr′, dφ = dφ′ − h(r′)dr′, (83)

can be used to remove the off-diagonal tr and rφ components of the metric

gt′r′ = gr′φ′ = 0. (84)

The solution to these equations is

g(r′) =

√(
f̃t f̃r
)−1 f̃Ω − F′G′

∆
, h(r′) =

F′

H∆
(85)

where

∆ =
f̃Ω

f̃r
σ2 =

f̃Ω

f̃r
+ F′2. (86)

Remember that the changes of coordinate is valid only if g and h are functions of r′ only.
Inserting (85) into (81) yields

ds2 = − f̃t (dt′ + ωH dφ′)2 +
f̃Ω

∆
dr′2 + f̃Ω

(
dθ2 + σ2H2 dφ′2

)
, (87a)

AI = f̃ I

dt′ − f̃Ω

∆
√

f̃t f̃r

dr′ + G′H dφ′

+ pI H′ dφ′ (87b)

where we recall that

ω = G′ +

√
f̃r

f̃t
F′, σ2 = 1 +

f̃r

f̃Ω
F′2. (88)

Generically one finds Ar = Ar(r) which can be set to zero thanks to a gauge transformation.
Before closing this section we simplify the above formulas for few simple cases that are often used.

Degenerate Schwarzschild Seed

A degenerate seed (one unknown function) in Schwarzschild coordinates has

fr = f−1
t , fΩ = r2. (89)

In this case the above formulas reduced to
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ds2 = − f̃t (dt + ωH dφ)2 +
ρ2

∆
dr2 + ρ2 (dθ2 + σ2H2 dφ2), (90a)

A = f̃A

(
dt− ρ2

∆
dr + G′H dφ

)
. (90b)

where

ω = G′ + f̃−1 F′, σ2 = 1 +
F′2

f̃ ρ2
, ∆ = f̃ ρ2 σ2. (91)

Degenerate Isotropic Seed

A degenerate seed in isotropic coordinates has

ft = f−1, fr = f , fΩ = r2 f . (92)

In this case the above formulas reduced to

ds2 = − f̃−1 (dt + ωH dφ)2 + f̃ ρ2
(

dr2

∆
+ dθ2 + σ2H2 dφ2

)
, (93a)

AI = f̃ I
(

dt− f̃ ρ2

∆
dr + G′H dφ

)
+ pI H′ dφ (93b)

where we recall that

ω = G′ + f̃ F′, σ2 = 1 +
F′2

ρ2 , ∆ = f̃ ρ2 + F′2. (94)

Constant F

The expressions simplify greatly if F′ = 0 (for example when Λ 6= 0). First all functions depend
only on r since F(θ) = cst

f̃i(r, θ) = f̃i(r, 0). (95)

As a consequence the Boyer–Lindquist transformation (85)

g(r′) =

√
f̃r

f̃t
, h(r′) = 0 (96)

is always well-defined.
For the same reason it is always possible to perform a gauge transformation. Finally the metric

and gauge fields (87) becomes

ds2 = − f̃t
(
dt + G′H dφ

)2
+ f̃r dr2 + f̃Ω dΩ2, (97a)

AI = f̃ I (dt′ + G′H dφ′
)
+ pI H′ dφ′. (97b)

4.3. Open Questions

The algorithm we have described help to work with five (four if Λ 6= 0) of the six parameters
of the Plebański–Demiański (PD) solution. It is tempting to conjecture that it can be extended to the
full set of parameters by generalizing the ideas described in Section 3.2 (shifting κ, writing a + iα. . . ).
Indeed we have found that these operations were quite natural in the context of the PD solution and
inspiration could be found in [73].
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5. Examples

In this section we list several examples that can be derived from the JN algorithm described
in Section 4. Other examples were described previously: Kerr–Newman in Section 2.3.2, dyonic
Kerr–Newman and Yang–Mills Kerr–Newman in Section 3.1. For simplicity we will always consider
the case κ = 1 except when Λ 6= 0.

The first two examples are the Kerr–Newmann–NUT solution and the charged (a)dS–BBMB–NUT
solution in conformal gravity. We will also give examples from ungauged N = 2 supergravity coupled
to nv = 0, 1, 3 vector multiplets (pure supergravity, T3 model and STU model): this theory is reviewed
in Appendix A.

5.1. Kerr–Newman–NUT

The Reissner–Nordström metric and gauge fields are given by

ds2 = − f dt2 + f−1 dr2 + r2dΩ2, f = 1− 2m
r

+
q2

r2 , (98a)

A = fA dt, fA =
q
r

, (98b)

m and q being the mass and the electric charge.
The two functions are complexified as

f̃ = 1− 2 Re(mr̄) + q2

|r|2
, f̃A =

q Re r

|r|2
. (99)

Performing the transformation

u = u′ +
(
a cos θ − 2n ln sin θ

)
, r = r′ + i

(
n− a cos θ

)
, m = m′ + in (100)

gives (omitting the primes)

f̃ = 1− 2mr + 2n(n− a cos θ)− q2

ρ2 , ρ2 = r2 + (n− a cos θ)2. (101)

The metric and the gauge fields in BL coordinates are

ds2 = − f̃ (dt + Ω dφ)2 +
ρ2

∆
dr2 + ρ2(dθ2 + σ2H2dφ2), (102a)

A =
qr
ρ2

(
dt− (a sin2 θ + 2n cos θ)dφ

)
+ Ar dr (102b)

where
Ω = −2n cos θ − (1− f̃−1) a sin2 θ, σ2 =

∆
f̃ ρ2

,

∆ = r2 − 2mr + a2 + q2 − n2.
(103)

This corresponds to the Kerr–Newman–NUT solution [72].
One can check that Ar is a function of r only

Ar = −
qr
∆

(104)

and it can be removed by a gauge transformation.
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5.2. Charged (a)dS–BBMB–NUT

The action of Einstein–Maxwell theory with cosmological constant conformally coupled to a scalar
field is [66]

S =
1
2

∫
d4x

√
−g
(

R− 2Λ− 1
6

Rφ2 − (∂φ)2 − 2αφ4 − F2
)

, (105)

where α is a coupling constant, and we have set 8πG = 1.
For F, α, Λ = 0, the Bocharova–Bronnikov–Melnikov–Bekenstein (BBMB) solution [77,78] is static

and spherically symmetric – it can be seen as the equivalent of the Schwarzschild black hole in
conformal gravity.

The general static charged solution with cosmological constant and quartic coupling reads

ds2 = − f dt2 + f−1 dr2 + r2 dΩ2, (106a)

A =
q
r

dt, φ =

√
− Λ

6α

m
r−m

, (106b)

f = −Λ
3

r2 + κ
(r−m)2

r2 , (106c)

where the horizon can be spherical or hyperbolic. There is one constraint among the parameters

q2 = κm2
(

1 +
Λ

36α

)
(107)

and one has αΛ < 0 in order for φ to be real.
In order to add a NUT charge one performs the JN transformation11

u = u′ − 2n ln H(θ), r = r′ + in, m = m′ + in, κ = κ′ − 4Λ
3

n2. (108)

One obtains the metric (omitting the primes)

ds2 = − f̃
(
dt− 2nH′ dφ

)2
+ f̃−1 dr2 + (r2 + n2)dΩ2 (109)

where the function f̃ is

f̃ = −Λ
3
(r2 + n2) +

(
κ − 4Λ

3
n2
)

(r−m)2

r2 + n2 . (110)

Note that the term (r−m) is invariant. Similarly one obtains the scalar field

φ =

√
− Λ

6α

√
m2 + n2

r−m
(111)

where the m in the numerator as been complexified as |m|.
Finally it is trivial to find the gauge field

A =
q

r2 + n2

(
dt− 2n cos θ dφ

)
(112)

and the constraint (107) becomes

q2 =

(
κ − 4Λ

3
n2
)
(m2 + n2)

(
1 +

Λ
36α

)
. (113)

11 Due to the convention of [66] there is no κ in the transformations.
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An interesting point is that the radial coordinate is redefined in [66] when obtaining the stationary
solution from the static one.

Note that the BBMB solution and its NUT version are obtained from the limit

Λ, α −→ 0, with − Λ
36α
−→ 1, (114)

which also implies q = 0 from the constraint (107). Since no other modifications are needed, the
derivation from the JN algorithm also holds in this case.

5.3. Ungauged N = 2 BPS Solutions

A BPS solution is a classical solution which preserves a part of the supersymmetry. The BPS
equations are obtained by setting to zero the variations of the fermionic partners under a supersymmetric
transformation. These equations are first order and under some conditions their solutions also solve the
equations of motion.

In [64] (Section 3.1) (see also [79] (Section 2.2) for a summary), Behrndt, Lüst and Sabra obtained
the most general stationary BPS solution for N = 2 ungauged supergravity. The metric for this class of
solutions reads

ds2 = f−1(dt + Ω dφ)2 + f dΣ2, (115)

with the 3-dimensional spatial metric given in spherical or spheroidal coordinates

dΣ2 = hij dxidxj = dr2 + r2(dθ2 + sin2 θ dφ2) (116a)

=
ρ2

r2 + a2 dr2 + ρ2dθ2 + (r2 + a2) sin2 θ dφ2, (116b)

where i, j, k are flat spatial indices (which should not be confused with the indices of the scalar fields).
The functions f and Ω depend on r and θ only.

Then the solution is entirely given in terms of two sets of (real) harmonic functions12 {HΛ, HΛ}

f = e−K = i(X̄ΛFΛ − XΛ F̄Λ), (117a)

εijk∂jΩk = 2 e−KAi = (HΛ∂i HΛ − HΛ∂i HΛ), (117b)

FΛ
ij =

1
2

εijk∂k HΛ, GΛ ij =
1
2

εijk∂k HΛ, (117c)

i(XΛ − X̄Λ) = HΛ, i(FΛ − F̄Λ) = HΛ. (117d)

The object Ωi is the connection of the line bundle corresponding to the fibration of time over the
spatial manifold (its curl is related to the Kähler connection). Its only non-vanishing component is
Ωφ ≡ Ω = ωH.

Starting from the metric (115) in spherical coordinates with Ω = 0, one can use the JN algorithm
of Section 4 with

ft = f−1, fr = f , fΩ = r2 f , (118)

leading to the formula (93). The function Ω reads

Ω = ωH = a(1− f̃ ) sin2 θ + 2n cos θ. (119)

12 We omit the tilde that is present in [64] to avoid the confusion with the quantities that are transformed by the JNA.
No confusion is possible since the index position will always indicate which function we are using.
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Then one needs only to find the complexification of f and to check that it gives the correct ω, as
would be found from the Equation (117). However it appears that one cannot complexify directly f
since it should be viewed as a composite object made of complex functions. Therefore one needs to
complexify first the harmonic functions HΛ and HΛ (or equivalently XΛ), and then to reconstruct the
other quantities. Nonetheless, Equation (117) ensure that finding the correct harmonic functions gives
a solution, thus it is not necessary to check these equations for all the other quantities.

In the next subsections we provide two examples,13 one for pure supergravity as an appetizer,
and then one with nv = 3 multiplets (STU model).

5.3.1. Pure Supergravity

As a first example we consider pure (or minimal) supergravity, i.e., nv = 0 [64] (Section 4.2).
The prepotential reads

F = − i
4
(X0)2. (120)

The function H0 and H0 are related to the real and imaginary parts of the scalar X0

H0 =
1
2
(X0 + X̄0) = Re X0, H̄0 = i(X0 − X̄0) = −2 Im X0, (121)

while the Kähler potential is given by

f = e−K = X0X̄0. (122)

The static solution corresponds to

H0 = X0 = 1 +
m
r

(123)

Performing the JN transformation for the angular momentum gives

X̃0 = 1 +
m(r + ia cos θ)

ρ2 . (124)

This corresponds to the second solution of which is stationary with

ω =
m(2r + m)

ρ2 a sin2 θ. (125)

Alternatively one can use the JN algorithm to add a NUT charge. In this case using the rule

r −→ 1
2
(r + r̄) = Re r = r′ (126)

must be use for transforming f and r2 (in front of dΩ), leading to

X0 = 1 +
m + in

r
. (127)

Note that it gives

f̃ =
(

1 +
m
r

)2
+

n2

r2 . (128)

13 They correspond to singular solutions, but we are not concerned with regularity here.
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It is slightly puzzling that the above rule should be used instead of the two others in (76).
One possible explanation is the following: in the seed solution shift the radial coordinate such that
r = R−m and apply the JN transformation in this coordinate system. It is clear that every function
of r is left unchanged while the tensor structure transforms identically since dr = dR. After the
transformation one can undo the coordinate transformation. As we mentioned earlier the algorithm
is very sensible to the coordinate system and to the parametrization (but it is still not clear why the
R-coordinate is the natural one). This kind of difficulty will reappear in the SWIP solution (Section 5.5).

5.3.2. STU Model

We now consider the STU model nv = 3 with prepotential [64] (Section 3)

F = −X1X2X3

X0 . (129)

The expressions for the Kähler potential and the scalar fields in terms of the harmonic functions
are complicated and will not be needed (see [64] (Section 3) for the expressions). Various choices for
the functions will give different solutions.

A class of static black hole-like solutions are given by the harmonic functions [64] (Section 4.4)

H0 = h0 +
q0

r
, Hi = hi +

pi

r
, H0 = Hi = 0. (130)

These solutions carry three magnetic pi and one electric q0 charges.
Let us form the complex harmonic functions

H0 = H0 + i H0, Hi = Hi + i Hi. (131)

Then the rule for complex function leads to

H0 = h0 +
q0(r + ia cos θ)

ρ2 , Hi = hi +
pi(r + ia cos θ)

ρ2 , (132)

for which the various harmonic functions read explicitly

H0 = h0 +
q0r
ρ2 , Hi = hi +

pir
ρ2 , H0 =

q0a cos θ

ρ2 , Hi =
pia cos θ

ρ2 . (133)

This set of functions corresponds to the stationary solution of [64] (Section 4.4) where the magnetic
and electric dipole momenta are not independent parameters but obtained from the magnetic and
electric charges instead.

5.4. Non-Extremal Rotating Solution in T3 Model

The T3 model under consideration corresponds to Einstein–Maxwell gravity coupled to an axion
σ and a dilaton φ (with specific coupling constants) and the action is given by (147) with M = 1.
This model can be embedded in N = 2 ungauged supergravity with nv = 1, equal gauge fields
A ≡ A0 = A1 and prepotential14

F = −i X0X1, (134)

14 This model can be obtained from the STU model by setting the sections pairwise equal X2 = X0 and X3 = X1 [80]. It is also
a truncation of pure N = 4 supergravity.
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The dilaton and the axion corresponds to the complex scalar field

τ = e−2φ + i σ. (135)

Sen derived the rotating black hole for this theory using the fact that it can be embedded in
heterotic string theory [62].

The static metric, gauge field and the complex field read respectively

ds2 = − f1

f2
dt2 + f2

(
f−1
1 dr2 + r2 dΩ2

)
, (136a)

A =
fA
f2

dt, (136b)

τ = e−2φ = f2 (136c)

where
f1 = 1− r1

r
, f2 = 1 +

r2

r
, fA =

q
r

. (137)

The radii r1 and r2 are related to the mass m and the charge q by

r1 + r2 = 2m, r2 =
q2

m
. (138)

Applying the Janis–Newman algorithm with rotation, the two functions f1 and f2 are complexified as

f̃1 = 1− r1r
ρ2 , f̃2 = 1 +

r2r
ρ2 . (139)

The final metric in BL coordinates is given by

ds2 = − f̃1

f̃2

[
dt− a

(
1− f̃2

f̃1

)
sin2 θ dφ

]2

+ f̃2

(
ρ2dr2

∆
+ ρ2dθ2 +

∆
f̃1

sin2 θ dφ2
)

(140)

for which the BL functions are

g(r) =
∆̂
∆

, h(r) =
a
∆

(141)

with
∆ = f̃1ρ2 + a2 sin2 θ, ∆̂ = f̃2ρ2 + a2 sin2 θ. (142)

Once fA has been complexified as

f̃A =
qr
ρ2 (143)

the transformation of the gauge field is straightforward

A =
f̃A

f̃2
(dt− a sin2 θ dφ)− qr

∆
dr. (144)

The Ar depending solely on r can again be removed thanks to a gauge transformation.
Finally the scalar field is complex and is transformed as

τ = 1 +
r2r̄
ρ2 . (145)

The explicit values for the dilaton and axion are then

e−2φ = f̃2, σ =
r2a cos θ

ρ2 . (146)
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This reproduces Sen’s solution and it completes the computation from [25] which could not derive
the gauge field nor the axion. It is interesting to note that for another value of the dilaton coupling we
cannot use the transformation [50,52].15

5.5. SWIP Solutions

Let us consider the action [65,81]

S =
1

16π

∫
d4x

√
|g|
(

R− 2(∂φ)2 − 1
2

e4φ (∂σ)2 − e−2φFi
µνFiµν + σ Fi

µν F̃iµν

)
(147)

where i = 1, . . . , M. When M = 2 and M = 6 this action corresponds respectively to N = 2
supergravity with one vector multiplet and to N = 4 pure supergravity, but we keep M arbitrary. The
axion σ and the dilaton φ are naturally paired into a complex scalar

τ = σ + i e−2φ. (148)

In order to avoid redundancy we first provide the general metric with a, n 6= 0, and we explain
how to find it from the restricted case a = n = 0. The stationary Israel–Wilson–Perjés (SWIP) solutions
correspond to

ds2 = − e2UW(dt + Aφ dφ)2 + e−2UW−1dΣ2, (149a)

Ai
t = 2 e2U Re(ki H2), Ãi

t = 2 e2U Re(ki H1), τ =
H1

H2
, (149b)

Aφ = 2n cos θ − a sin2 θ( e−2UW−1 − 1), (149c)

e−2U = 2 Im(H1H̄2), W = 1−
r2

0
ρ2 . (149d)

This solution is entirely determined by the two harmonic functions

H1 =
1√
2

eφ0

(
τ0 +

τ0M+ τ̄0Υ
r− ia cos θ

)
, H2 =

1√
2

eφ0

(
1 +

M+ Υ
r− ia cos θ

)
. (150)

The spatial 3-dimensional metric dΣ2 reads

dΣ2 = hij dxidxj =
ρ2 − r2

0
r2 + a2 − r2

0
dr2 + (ρ2 − r2

0)dθ2 + (r2 + a2 − r2
0) sin2 θ dφ2. (151)

Finally, r0 corresponds to

r2
0 = |M|2 + |Υ|2 −∑

i

∣∣∣Γi
∣∣∣2 (152)

where the complex parameters are

M = m + in, Γi = qi + ipi, (153)

m being the mass, n the NUT charge, qi the electric charges and pi the magnetic charges, while the
axion–dilaton charge Υ takes the form

Υ = −1
2 ∑

i

(Γ̄i)2

M . (154)

15 The authors of [51] report incorrectly that [50] is excluding all dilatonic solutions.
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The latter together with the asymptotic values τ0 are defined by

τ ∼ τ0 − i e−2φ0
2Υ
r

. (155)

The complex constant ki are determined by

ki = − 1√
2
MΓi + ῩΓ̄i

|M|2 − |Υ|2
. (156)

As discussed in the previous section, the transformation of scalar fields is different depending
on one is turning on a NUT charge or an angular momentum. For this reason, starting from the case
a = n = 0, one needs to perform the two successive transformations

u = u′ − 2in ln sin θ, r = r′ + in, m = m′ + in, (157a)

u = u′ + ia cos θ, r = r′ − ia cos θ, (157b)

the order being irrelevant (for definiteness we choose to add the NUT charge first), the reason being
that the transformations of the functions are different in both cases (as in Section 5.3.1). The group
properties of the JN algorithm ensure that the metric will be transformed as if only one transformation
was performed. Then the metric and the gauge fields are directly obtained, which ensures that the
general form of the solution (149) is correct. For that one needs to shift r2 by r2

0 in order to bring the
metric (151) to the form (116). This modifies the function but one does not need this fact to obtain the
general form. Then one can shift by −r2

0 before dealing with the complexification of the functions.
See [65] (p. 17) and Section 5.3.1 for discussions about the changes of coordinates. Since all the functions
and the parameters depend only onM, H1 and H2, it is sufficient to explain their complexification.

The function W is transformed as a real function. On the other hand H1 and H2 are complex
harmonic functions and should be transformed accordingly. For the NUT charge one should use
the rule

r −→ Re r. (158)

Then one can perform the second transformation (157b) in order to add the angular momentum
by applying the usual rules (76). On can see that it yields the correct result.

Finally let us note that it seems possible to also start from pi = 0 and to turn them on using
the transformation

qi = q′i = qi + ipi, (159)

using different rules for complexifying the various terms (depending whether one is dealing with a
real or a complex function/parameter).

5.6. Gauged N = 2 Non-Extremal Solution

The simplest deformation of N = 2 supergravity with nv vector multiplets consists in the so-called
Fayet–Iliopoulos (FI) gauging. It amounts to gauging (nv + 1) times the diagonal U(1) group of the
SU(2) part of the R-symmetry group (automorphism of the supersymmetry algebra). The potential
can be entirely written in terms of the quantities defined in Appendix A and of the (nv + 1) coupling
constants gI , where I = 0, . . . , nv.

We consider the model with prepotential (see also Section 5.4)

F = −i X0X1. (160)

for which the potential generated by the FI gauging is
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V(τ, τ̄) = − 4
τ + τ̄

(
g2

0 + g0g1(τ + τ̄) + g2
1|τ|

2). (161)

The goal of this section is to derive the NUT charged black hole from [69] using the JN algorithm.16

The seed solution is taken to be Equation (4.22) from [69] with j = N = 0

ft = κ −
2mr− 2`2 ∑I gI

∣∣ZI
∣∣2

fΩ
+

fΩ

`2 , (162a)

fΩ = r2 − ∆2 − δ2, (162b)

f I =
(r− ∆)QI − δ PI

fΩ
, (162c)

τ =
g0

g1

r + ∆− iδ
r− ∆ + iδ

. (162d)

where the following quantities have been defined

m =
`2P0

∆
g2

1
[
− (P1)2P0 + (Q1)2P0 − 2Q0Q1P1]+ g2

0P0
∣∣Z0
∣∣2

|Z0|2
, (163a)

δ = −∆
Q0

P0 . (163b)

The independent parameters are given by QI (electric charges), PI (magnetic charges),
gΛ (FI gaugings), ∆ (scalar charge) and Λ = −3/`2 (the cosmological constant).

In order to perform the complexification the functions are first rewritten as

ft = κ −
2 Re(mr̄)− 2`2 ∑I gI

∣∣ZI
∣∣2

fΩ
+

fΩ

`2 , (164a)

fΩ = |r|2 − ∆2 − δ2 = |r|2 −
∆2
∣∣Z1
∣∣2

Im(Z1)2 , (164b)

f I =
Re(QI r̄) Im Z1 − ∆ Im(ZI Z1)

Im Z1 fΩ
, (164c)

τ =
g0

g1

r̄ + ∆− iδ
r̄− ∆ + iδ

. (164d)

Applying the transformations (70) with (73a) gives (omitting the primes)

f̃t = κ +
4n2

`2 −
2mr + 2

(
κ + 4n2/`2) n2 − 2`2 ∑I gI

∣∣ZI
∣∣2

f̃Ω
+

f̃Ω

`2 , (165a)

f̃Ω = r2 + n2 − ∆2 − δ2, (165b)

f̃ I =
(QIr + PIn) Im Z1 − ∆ Im(ZI Z1)

Im Z1 f̃Ω
, (165c)

τ̃ =
g0

g1

r + ∆− i(δ + n)
r− ∆ + i(δ− n)

. (165d)

16 The original derivation is due to D. Klemm and M. Rabbiosi and has not been published. I am grateful to them for allowing
me to reproduce it here.
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The last step is to simplify these expressions

f̃t = κ +
4n2

`2 −
2mr + 2κn2 + 8n4/`2 − 2`2 ∑I gI

∣∣ZI
∣∣2

f̃Ω
+

f̃Ω

`2 , (166a)

f̃Ω = r2 + n2 − ∆2 − δ2, (166b)

f̃ I =
QI(r− ∆) + PI(n− δ)

f̃Ω
, (166c)

τ̃ =
g0

g1

r + ∆− i(δ + n)
r− ∆ + i(δ− n)

. (166d)

It is straightforward to check that the form of the metric and gauge fields are correctly reproduced
by the algorithm given in Section 4 for the tensor structure. In total this reproduces the Equation (4.22)
and formulas below in [69] with j = 0.

An important thing that we learn here is that the mass parameter needs to be transformed as if it
was not composed of other parameters.
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Appendix A. Review of N = 2 Ungauged Supergravity

In order for this review to be self-contained we recall the basic elements of N = 2 supergravity
without hypermultiplets – we refer the reader to the standard references for more details [82–84].

The gravity multiplet contains the metric and the graviphoton

{gµν, A0} (A1)

while each of the vector multiplets contains a gauge field and a complex scalar field

{Ai, τi}, i = 1, . . . , nv. (A2)

The scalar fields τi (the conjugate fields (τi)∗ are denoted by τ̄ ı̄) parametrize a special Kähler
manifold with metric gi ̄. This manifold is uniquely determined by an holomorphic function called
the prepotential F. The latter is better defined using the homogeneous (or projective) coordinates XΛ

such that

τi =
Xi

X0 . (A3)

The first derivative of the prepotential with respect to XΛ is denoted by

FΛ =
∂F

∂XΛ . (A4)

Finally it makes sense to regroup the gauge fields into one single vector

AΛ = (A0, Ai). (A5)

One needs to introduce two more quantities, respectively the Kähler potential and the
Kähler connection

K = − ln i(X̄ΛFΛ − XΛ F̄Λ), Aµ = − i
2
(∂iK ∂µτi − ∂ı̄K ∂µτ̄ ı̄). (A6)
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The Lagrangian for the theory without gauge group is given by

L = −R
2
+ gi ̄(τ, τ̄) ∂µτi∂ντ̄ ı̄ + IΛΣ(τ, τ̄) FΛ

µνFΣ µν −RΛΣ(τ, τ̄) FΛ
µν ?FΣ µν (A7)

where R is the Ricci scalar and ?FΛ is the Hodge dual of FΛ. The matrix

N = R+ i I (A8)

can be expressed in terms of F. From this Lagrangian one can introduce the symplectic dual of FΛ

GΛ =
δL

δFΛ = RΛΣFΣ − IΛΣ ?FΣ. (A9)
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