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Abstract: The observed constraints on the variability of the proton to electron mass ratio µ and
the fine structure constant α are used to establish constraints on the variability of the Quantum
Chromodynamic Scale and a combination of the Higgs Vacuum Expectation Value and the Yukawa
couplings. Further model dependent assumptions provide constraints on the Higgs VEV and the
Yukawa couplings separately. A primary conclusion is that limits on the variability of dimensionless
fundamental constants such as µ and α provide important constraints on the parameter space of new
physics and cosmologies.
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1. Introduction

Over the past two decades, there has been a renewed interest in measuring fundamental
dimensionless constants such as the proton to electron mass ratio µ and the fine structure constant α

in the early universe. Modulo some possibilities discussed at this conference, impressive constraints
on the variation of µ and α have been established over time periods that span a significant fraction
of the age of the universe. Here, the implications of those constraints are examined in terms of the
stability of three basic physics parameters: the Quantum Chromodynamic Scale ΛQCD, the Higgs
Vacuum Expectation Value ν and the Yukawa Couplings h. Previous reports of a possible variation of
α [1] spurred significant efforts to account for the variation in terms of varying ΛQCD, ν and h [2–10].
These efforts form the basis of the present work except that the process is reversed in that constraints
on the variability of the physics parameters is established in terms of the limits on the variability
of µ and α. Most of the earlier efforts limited the variability to only one of the physics parameters,
usually ΛQCD. In contrast, the work of [5] considered the possibility of all three parameters varying.
As such, it is the primary reference in this work.

2. Observational Constraints

There are relatively few constraints on the variation of µ since molecular spectra provide the
primary limits on the variability of µ [11] and only a few molecular spectra at high redshift exist. On the
other hand, radio observations of molecular spectra at moderate redshifts provide a significantly tighter
constraint on µ than exists for α. The current limits on both µ and α are given below.

2.1. µ Constraints

The constraints on ∆µ
µ come from optical observations of redshifted electronic transitions of

molecular hydrogen and from radio observations of methanol and ammonia molecules. The majority
of the H2 observations are at redshifts greater than two where the ultraviolet rest frame transitions
enter the optical bands and the current radio observations are all at redshifts less than one. The radio
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observations, however, are significantly more accurate than the optical H2 observations. The radio
observations of methanol in PKS1830-211 [12] (∆µ

µ = (−2.9 ± 10)× 10−8) at a redshift of 0.88582 is
currently the tightest constraint on a variation of µ. In spite of the relatively low redshift, the look back
time is greater than half the age of the universe. Figure 1 and Table 1 show all of the constraints on the
variation of µ with 1σ error bars. The radio observations are shown separately in Figure 2 since they
are barely visible in Figure 1.

Figure 1. All of the observational constraints on ∆µ/µ from radio (z < 1) and optical (z > 1)
observations plotted versus the scale factor a = 1/(1 + z). All constraints are at the 1σ level. The low
redshift radio constraints are difficult to see at the scale of this plot. The age of the universe in gigayears
is plotted on the top axis and in Figure 2.

Figure 2. The low redshift radio ∆µ/µ constraints at z = 0.6874 and z = 0.88582 plotted versus the
scale factor a = 1/(1 + z). The error bar at z = 0.6874 is 1σ, however, the error bar at z = 0.88582
(a = 0.53) includes systematic effects that increase the error to ±10−7. That is the primary constraint
utilized in this work.
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Table 1. Current best observational constraints on ∆µ
µ .

Object Redshift ∆µ/µ 1σ error Ref.

J1443+2724 4.224 −9.5 × 10−6 ±7.6 × 10−6 [13]
Q0347-383 3.0249 2.1 × 10−6 ±6. × 10−6 [14]
Q0528-250 2.811 3.0 × 10−7 ±3.7 × 10−6 [15]

Q J0643-5041 2.659 7.4 × 10−6 ±6.7 × 10−6 [16]
Q0405-443 2.5974 10.1 × 10−6 ±6.2 × 10−6 [17]
Q2348-011 2.426 −6.8 × 10−6 ±27.8 × 10−6 [18]

He0027-1836 2.402 −7.6 × 10−6 ±1.0 × 10−5 [19]
Q01232+082 2.34 1.9 × 10−5 ±1.0 × 10−5 [20]

J2123-005 2.059 5.6 × 10−6 ±6.2 × 10−6 [21]
PKS1830-211 0.88582 −2.9 × 10−8 ±5.7 × 10−8 [12]
B0218+357 0.6847 −3.5 × 10−7 ±1.2 × 10−7 [22]

2.2. α Constraints

Contrary to the case with µ, there are several thousand measurement of the fine structure
splitting at many redshifts of which several hundred are appropriate for testing for a variation of α.
In two cases [1,23], temporal changes in α are reported with [23] reporting both spatial and temporal
changes at the 10−5 level. (See the contributions by Webb et al. in these proceedings.) Subsequent
work by [24], however, sees no variation at the ∆α

α = (0.4 ± 1.7)× 10−6 at the 1σ level where the error
is the rms of the statistical and systematic errors. This is a significantly lower constraint than the
reported variation by [23] of ≈(−6.4 ± 1.2)× 10−6 and consistent with no change in α. Reference [24]
attributes the difference to known wavelength calibration errors in the previous analysis in [1,23]. For
the purposes of this work, the limits on a variation of α discussed in [24] are taken as the primary limit.

3. The Dependence of Fundamental Constants on the Physics Parameters

The numerical values of both α and µ depend on the values of the physics parameters ΛQCD,
ν and h. The following follows the discussion of [5] done for a different purpose but relevant to the
current analysis. The connection between the fundamental constants and the physics parameters is
probably most obvious for the proton to electron mass ratio µ where the physics parameters set the
mass of the proton and electron.

3.1. The Proton to Electron Mass Ratio

The fractional change of µ, dµ
µ by simple mathematics is

dµ

µ
=

dmp

mp
− dme

me
. (1)

The fractional change of the electron mass is easy since it is a fundamental particle whose mass is
set by the Higgs VEV and the electron Yukawa coupling such that me = heν, therefore

dme

me
=

dhe

he
+

dν

ν
. (2)

The mass of the proton, however, is much more complicated since it is a composite particle but
the fractional change is easier since the ratio eliminates some of the terms. In [5], the fractional change
of the proton mass is given by

dmp

mp
= a

dΛQCD

ΛQCD
+ b(

dh
h

+
dν

ν
). (3)
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Both a and b are scalars of order unity whose sum by dimensional requirements should equal
one to ensure that the proton has units of mass. Combining (2) and (3) gives

dµ

µ
= a

dΛQCD

ΛQCD
+ (b − 1)(

dh
h

+
dν

ν
). (4)

Here, the common assumption that although the Yukawa couplings have different values their
fractional changes dh

h should be the same is employed. Next, using (a + b) = 1 b is eliminated and the
fractional change of µ is

dµ

µ
= a[

dΛQCD

ΛQCD
− (

dh
h

+
dν

ν
)]. (5)

3.2. The Fine Structure Constant

Without additional information, (5) only constrains the combination of ΛQCD, ν, and h rather than
any of them individually. The observational constraints on dα

α can provide some of that information
since it constrains a different combination of the three parameters. From [5] dα

α depends on the three
parameters as

dα

α
= R−1[

dΛQCD

ΛQCD
− 2

9
(

dh
h

+
dν

ν
)]. (6)

A new model dependent parameter R is introduced that can range between unity and in excess of
100. In [5], R is taken as 36 based on unification arguments. For the purposes of this work, that value is
accepted partially since it is in the midrange of currently acceptable values. Both (5) and (6) effectively
depend on two variables, dΛQCD

ΛQCD
and ( dh

h + dν
ν ) which provides a mechanism for solving for dΛQCD

ΛQCD
as

a function of the constraints on the variance of µ and α and the model dependent parameters.

The Physics of R

Various authors use different models and assumptions to set the value of R. An example is [7]
who assumes that the variation in α is produced by temporal changes of the GUT unification scale MU
which also makes the physics parameters time variable. In this model R is given by

R =
2π

9α

∆b3
5
3 ∆b1 + ∆b2

(7)

where the bi are the beta function coefficients that scale Q = βi M < MU . At the unification scale
MU all of the beta functions are unified to bU . ∆bi is defined as ∆bi ≡ bU − bi. The different gauge
couplings αi(Q) (i = 1, 2, 3) are then given by

(αi(Q))−1 = (αU(MU))
−1 − bi

2π
ln(

Q
MU

) (8)

The GUT scale MU is allowed to change but αU(MPl) and MPl are held constant where MPl is the
Planck mass. At the unification scale, R is given by

R =
2π

9α

bU + 3
8
3 bU − 12

(9)

As bU becomes either positively or negatively large, the value of R approaches 36, the value used
in [5].
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4. Observational Constraints on dΛQCD
ΛQCD

The combination of constraints on the fractional variation of two fundamental constants µ and α

provides the opportunity to put constraints on the fractional variation of ΛQCD. Eliminating ( dh
h + dν

ν )

from (5) and (6) yields

dΛQCD

ΛQCD
=

dα

α

(b − 1)R
[(b − 1)− 2

9 a]
+

dµ

µ

2
9[(b − 1)− 2

9 a]
(10)

where both factors a and b from (3) have been retained. In [5] a = 0.76 and b = 0.24. Again invoking
(a + b) = 1 (10) simplifies to

dΛQCD

ΛQCD
=

9R
7

dα

α
− 2

7a
dµ

µ
. (11)

Eliminating dΛQCD
ΛQCD

provides a constraint on ( dh
h + dν

ν ) of

(
dh
h

+
dν

ν
) = (

9
7
)[R

dα

α
− 1

a
dµ

µ
]. (12)

Note that the leading terms on the right hand side of (11) and (12) are identical.

Individual Constraints on ∆ν
ν and ∆h

h

At the expense of additional model dependence, it is possible to individually constrain dν
ν and

dh
h . In the standard model, there is an established relationship between the fractional variation of the

Higgs VEV ν and the fractional variation of the Yukawa couplings h given by [5].

dν

ν
= S

dh
h

. (13)

The value of S is model dependent so the constraints on dν
ν and dh

h are doubly model dependent.
These constraints come from using (13) in (12). The ± in the ∆α

α and ∆µ
µ terms in Equations (14) and (15)

simply reflect that limits on dα
α and dµ

µ are plus or minus the quoted error. As stated in Section 5, the
terms are combined as a root mean square when evaluated.

∆ν

ν
=

9
7

S
(1 + S)

[(R
±∆α

α
)− 1

a
(
±∆µ

µ
)]. (14)

Similarly the limit on ∆h/h is

∆h
h

=
9
7

1
(1 + S)

[(R
±∆α

α
)− 1

a
(
±∆µ

µ
)]. (15)

5. Constraints from a Given Model

Since the discussion has followed the work of [5], the model used in that reference is used as
an example for producing constraints on the physics parameters. It is also a constraint on the particular
model as well. The values for the model dependent parameters in [5] are a = 0.76, b = 0.24 (which
add to one), R = 36 and S = 160. Note that with this parameter set and the observational constraints,
the common leading term, the α term, in (11) and (12) dominate the constraints on the parameters.
The constraints are

∆ΛQCD/ΛQCD ≤ ±7.9 × 10−5 (16)

∆ν/ν ≤ ±7.9 × 10−5 (17)

∆h/h ≤ ±4.9 × 10−7. (18)
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The look back time for the constraints is the average look back time of the α observations at a redshift
of 1.54 equal to 9.4 gigayears or roughly 70% of the age of the universe.

The observational constraints are evaluated via rms summing of the 1σ α and µ terms for each
parameter. This assumes that the 1σ errors are centered on zero rather than the “measured” values
of the observations. It was noted earlier that the R model parameter has a range of model values.
Figure 3 shows the variation of the limit on ∆ΛQCD/ΛQCD as a function of R.

1σ upper bound

1σ lower bound

0 20 40 60 80 100

-0.0002

-0.0001

0.0000

0.0001

0.0002

R

ΔΛQCD

ΛQCD

Figure 3. The figure indicates the 1σ variation of the limit on dΛQCD/ΛQCD as a function of the model
parameter R. The dashed line indicates the limit on dΛQCD/ΛQCD if the measured values of dα/α

and dµ/µ are used rather than the limits. The dot is at R = 36 which is the example value. Note that
although it is not apparent at the scale of the figure the limit on dΛQCD/ΛQCD at R = 0 is not zero but

rather the small 2
7a

dµ
µ term in (11) that does not depend on R.

6. A Model Dependent Limit on ∆α
α

The observational constraints on the physics parameters are dominated by the α term both because
of its less stringent observational limit and by the larger coefficient in the model of [5]. That model,
however, predicts a relationship between a variation of α and a variation of µ given by

dα

α
=

1
R

dµ

µ
. (19)

The model therefore predicts that the fractional variation of α should be smaller than the variation
of µ by a factor of 1/36. It is of some interest to see how the constraints on the physics parameters
change if this model dependent limit of ∆α

α ≤ ±2.8 × 10−9 on the fractional change of α is imposed.

The new constraint on dΛQCD
ΛQCD

is

∆ΛQCD

ΛQCD
≤ [±(2.8 × 10−9)

9R
7

± 10−7 2
7a

] ≤ ±1.7 × 10−7. (20)

Similar replacements in (14) and (15) yield constraints on the time variation of ν and h of

∆ν

ν
≤ (

9
7
)(

S
S + 1

)[±R(2.8 × 10−9)± 10−7

a
] ≤ ±2.1 × 10−7 (21)

∆h
h

≤ (
9
7
)(

1
S + 1

)[±R(2.8 × 10−9)± 10−7

a
] ≤ ±1.3 × 10−9. (22)

The net result of the model dependent limit on dα
α is a very stringent set of limits on the fractional

change of the parameters at the look back time of the µ constraints which is greater than half the age of
the universe. This constraint severely limits the parameter space of theories that predict significant
fractional changes in ΛQCD, ν or h.
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7. Conclusions

It is difficult to test for time variability of the primary particle physics parameters such as the
Quantum Chromodynamic Scale, the Higgs Vacuum Expectation Value and the Yukawa couplings.
It is, however, relatively easy to use spectra of objects in the early universe to test for time variability
of dimensionless fundamental constants whose numerical values depend on the physics parameters.
Individually, the constants only constrain a combination of the parameters but combining the
observational constraints on the variability of two or more constants provides model dependent
constraints on the fractional variability of the QCD scale and a combination of the fractional variability
of the Higgs VEV and the Yukawa couplings. Introduction of an additional model dependent parameter
sets limits on the fractional variability of the Higgs VEV and the Yukawa couplings separately.

The constraints on the fractional time variability of the physics parameters limits the parameter
space of new physics theories that require a time variability of any of the three basic physics parameters.
It is recommended that observed constraints on the variability of dimensionless fundamental
constants become another important tool in evaluating the validity of non-standard physics and
cosmology theories.

Conflicts of Interest: The author declares no conflict of interest.
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