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1. Introduction

The analytic extension for the Schwarzschild de-Sitter (S-dS) space has been done in [1].

In such a case, the scale r0 =
( 3

2 rsr2
Λ
)1/3

, with rΛ = 1/
√

Λ and rs = 2GM defining the cosmological
constant scale and the Schwarzschild scale respectively, appeared as the distance where the
0–0 component of the S-dS metric takes a minimum value. Some interesting analysis about the
physical consequences of this scale, has been done in [2–8]. In massive gravity theories, a similar scale
appears and it is called Vainshtein radius [9,10]. In General Relativity (GR), the scale r0 represents
the location of the static observer. This is the case because in the S-dS space we cannot define as
static observers, those located at the infinity as we did for the cases of asymptotically flat spaces. The
only observer who does not feel gravity (excluding free-falling condition) and as a consequence, the
only observer who can be considered as static, is the one located at r0. This was the key point for the
analysis done by Bousso and Hawking in order to find the appropriate expression for the temperature
of a black hole immersed inside a de-Sitter space [3]. The location of the static observers at the scale r0

is equivalent to a normalization of the time-like Killing vector with respect to such observers. This is
the main reason because of which in [3,5] there is a minimal temperature for the black hole in the S-dS
space. Note that since the scale r0 represents a local maximum if we find the effective potential for a
test particle moving around the source [8,11–21], then it represents the distance after which there are
no bound orbits. This means that the cosmological constant in GR is relevant at scales larger than r0,
this is just analogous to the role of the Vainshtein radius (rV) in massive gravity, where rV is the scale
after which the effect of the extra-degrees of freedom becomes to be relevant. Here we analyze the
S-dS solution in massive gravity and we find the conditions under which the black-hole temperature,
as it is defined by static observers in massive gravity, agrees with the black-hole temperature as
it is measured by analogous observers in the standard formulation of gravity (GR). Since massive
gravity is supposed to approach to GR at scales where the gravitational field is strong, then it is
expected that the same amount of particles at the event horizon are created in massive gravity if
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we compare with the case formulated in GR. However, this does not guarantee that the observers
defined in both theories and satisfying the same conditions, will agree with the final result. This is the
case because in massive gravity the Stückelberg function T0(r, t) defines a preferred notion of time.
This is equivalent to say that in this theory the extra-degrees of freedom will create a distortion in the
notions of time [22,23], and as a consequence, an apparent non-conservation of the energy-momentum
tensor [24]. Then in general, observers defined in massive gravity will measure different temperatures
with respect to the observers living in the theory of GR, even if they are defined by using the same
conditions. However, we can find the conditions under which the observers defined in GR will agree
with those defined in massive gravity. For this purpose, it is convenient to define in massive gravity the
black-hole temperature by using the Killing vector in the direction of the Stückelberg function T0(r, t).
Only the observers defining the time coordinate as T0(r, t) will agree in the results of temperature
obtained in the GR case. Any other observer, defining the time arbitrarily, will disagree with the
results obtained by equivalent observers in GR. Then the conditions under which the temperature as
it is defined in massive gravity agrees with the one defined in GR, impose some constraints in the
functional behavior of the Stückelberg fields. The paper is organized as follows: In Section 2, we derive
the standard solution of S-dS inside GR together with the conserved quantities for test particles and
the event horizons for the solution. In Section 3, we find the critical points for the effective potential
of a test particle inside GR. The critical points correspond to the circular orbit conditions obtained
from the derivatives of the effective potential. In the Section 4, we explain the expression for the
black-hole temperature inside GR by using the appropriate normalization for the time-like Killing
vector. This normalization imposes a limit for the minimum value which the black-hole temperature
can take. In Section 5, we explain the S-dS solution in the non-linear massive gravity theory and
then we define the conserved quantities and equations of motion for a test particle. In Section 6,
we derive the black-hole temperature in massive gravity and then we find the necessary conditions
which the Stückelberg functions, as they are defined by the static observers, have to satisfy such
that we get the standard results of GR corresponding to the black-hole temperature inside massive
gravity. In massive gravity we use the same normalization of the Killing vector as in GR, but this time
we define the Killing vector in the direction of the Stückelberg function instead of defining it in the
time-direction. In Section 7, we make the expansion up to second order of the action in massive gravity
in a free-falling frame of reference. This corresponds to the simplest case and it provides the scenario
for understanding how the number of degrees of freedom can change for different observers and how
the masses corresponding to different modes fluctuates. Finally, in Section 8, we conclude.

2. The Schwarzschild De-Sitter Metric in Static Coordinates

The Schwarzschild-de Sitter (S-dS) metric in static coordinates, is defined by

ds2 = −eν(r)dt2 + e−ν(r)dr2 + r2dθ2 + r2 sin2 θdφ2, (1)

where

eν(r) = 1− rs

r
− r2

3r2
Λ

. (2)

Here rs = 2GM is the Schwarzschild radius and rΛ = 1√
Λ

is the cosmological constant scale.
If we want to find the equations of motion for the S-dS metric, the work is simplified if we use the
symmetries of the solution. We know that there are four killing vectors, three for spatial symmetry
and one for time translations. Each of these Killing vectors will be related to a constant of motion for
a free particle [25]. If Kµ is a Killing vector, it is well known that

Kµ
dxµ

dλ
= Constant, (3)
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is a constant of motion. We can define an additional constant of motion given by

gµν
dxµ

dλ

dxν

dλ
= −ε. (4)

This is a constant of motion along the path of the test particle [25]. In Equation (4) ε = 1 for
massive particles and ε = 0 for massless particles. The quantity associated with the invariance
under spatial rotations is the angular momentum. We can think about the angular momentum as
a three-vector with magnitude (one component) and direction (two components). Conservation of the
direction of angular momentum means that the particle will move over a plane, we can choose this to
be the equatorial plane of our coordinate system. If the particle is not initially over the plane, we can
rotate the coordinate system until that condition is satisfied. Then we can choose the angle [25]

θ =
π

2
. (5)

We then have two remaining Killing vectors corresponding to the conserved quantity related to
time translations and the magnitude of angular momentum. The conservation under time translations
is obtained from the time-like Killing vector

Kµ = (∂t)
µ = (1, 0, 0, 0). (6)

The Killing vector related to the angular momentum conservation is given by

Rµ = (∂φ)
µ = (0, 0, 0, 1). (7)

If we lower the index, then we obtain

Kµ = (−eν(r), 0, 0, 0). (8)

Thus

Kµ =

(
−
(

1− rs

r
− r2

3r2
Λ

)
, 0, 0, 0

)
, (9)

Rµ = (0, 0, 0, r2). (10)

From Equation (3), the two conserved quantities are

E = −Kµ
dxµ

dλ
= eν(r) dt

dτ
, (11)

L = Rµ
dxµ

dλ
= r2 dφ

dτ
, (12)

where L is the magnitude of the angular momentum, and τ = λ is the proper time.
Developing explicitly Equation (4) for massive test particles, we obtain

− 1 = g00

(
dt
dτ

)2
+ gii

(
dxi

dτ

)2

. (13)

If we introduce the S-dS metric given by Equation (1) and additionally we use the results (11)
and (12), then we get

1
2

(
dr
dτ

)2
+

L2

2r2 −
rsL2

2r3 −
rs

2r
− 1

6
r2

r2
Λ

=
1
2

(
E2 +

L2

3r2
Λ
− 1

)
= C, (14)
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where C is a constant depending on the initial conditions of motion, we can define the effective
potential as

Ue f f (r) = −
rs

2r
− 1

6
r2

r2
Λ
+

L2

2r2 −
rsL2

2r3 . (15)

Then Equation (14) is equivalent to

1
2

(
dr
dτ

)2
+ Ue f f (r) =

1
2

(
E2 +

L2

3r2
Λ
− 1

)
= C. (16)

The first term on the right-hand side of Equation (15) is the Newtonian gravitational potential,
the second term is the Λ contribution (it reproduces a repulsive effect), the third term is the centrifugal
force and it takes the same form in Newtonian gravity and General Relativity. The last term is the
General Relativity correction to the effective potential. This last contribution is important at short
scales, i.e., comparable to the gravitational radius 2GM. Normally rΛ >> rs and if rΛ ≈ rs, then the
black-hole is near its maximum mass value before it becomes a naked singularity. The event horizons
for the black-hole solution are obtained by the condition

0 = 1− rs

2r
− r2

3r2
Λ

, (17)

and they are given explicitly by

rCH = −2rΛ cos
(

1
3

(
cos−1

(
3rs

2rΛ

)
+ 2π

))
, (18)

rBH = −2rΛ cos
(

1
3

(
cos−1

(
3rs

2rΛ

)
+ 4π

))
,

where rCH is the Cosmological Horizon and rBH is the Black Hole event horizon. The S-dS solution
previously defined in Equation (1) is only valid for the region between the two event horizons such
that we can still define static observers. If rΛ ∼ rs, then rCH ∼ rBH and then our coordinate system is
inappropriate since the region between the two event horizons is very small (negligible) [3]. Then it
is impossible to define static observers in most of the spacetime. Under the condition rΛ >> rs,
the results obtained in (18) can be expanded as [2]

rCH ≈
√

3rΛ −
1
2

rs, rBH ≈ rs +
1
6

r4
s

r3
Λ

. (19)

3. Circular Orbit Conditions for the Effective Potential with Λ

We can now obtain the critical points for the effective potential obtained from Equation (15).
For illustration purposes, we start the analysis with the case where the Cosmological Constant vanishes
(Λ = 0). This case is important because the condition Λ 6= 0 will only affect the local physics at
astrophysical scales or larger. Then any result at the solar system scale for example, will not be affected
by the condition Λ 6= 0. We know that the effective potential for a massive test particle is given by [25]

Ue f f (r)Λ=0 = − rs

2r
+

L2

2r2 −
rsL2

2r3 . (20)

Taking the derivative with respect to r of this equation we then obtain

dUe f f (r)Λ=0

dr
=

rs

2r2 −
L2

r3 +
3rsL2

2r4 = 0, (21)
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which can be expressed as

r2
c −

2L2

rs
rc + 3L2 = 0, (22)

where we have defined rc as the distance at which the orbits for a test particle are circular. The solutions
for the previous equation are

rc =
L2 ±

√
L4 − 3r2

s L2

rs
. (23)

If L→ ∞, then we get

rc ≈
L2 ± L2

(
1− 3r2

s
2L2

)
rs

=

(
2L2

rs
,

3
2

rs

)
. (24)

The first result corresponds to the stable equilibrium [25] and the second circular orbit scale is
proportional to the Schwarzschild radius and it corresponds to an unstable equilibrium. The minimum
angular momentum in order to get bound orbits is obtained as the discriminant of Equation (23) is
zero, in such a case

Lmin =
√

3rs. (25)

If the angular momentum takes this value, the two distances for circular orbits obtained in
Equation (23) become to be the same and they correspond to a saddle point condition defined by

rcx = 3rs. (26)

Since this result corresponds to the saddle point condition, it can be found equivalently if we
solve simultaneously the equations obtained from the vanishing condition for the first and second
derivatives of the effective potential defined by Equation (20). If we replace the second solution
obtained in Equation (24)

(
rc =

3
2 rs
)

inside Equation (21), we obtain

dUe f f (r)
dr Λ=0

=
2

9rs
− 8L2

27r3
s
+

8L2

27r3
s
=

2
9rs

. (27)

Then the scale rc = 3
2 rs is not an exact solution of Equation (22). This scale becomes to be

an exact solution if the approximation L >> rs is satisfied. In such a case, the term corresponding
to the Newtonian contribution and given by rs

r2 is negligible in Equation (21) at short scales r. At the
moment of evaluating the case with Λ 6= 0, the short distance behavior of the potential will be
the same as in the present case because the Λ effects will be only relevant at scales larger than
r0 = (3GMr2

Λ)
1/3. In massive gravity theories, the Vainshtein scale plays an analogous role as we will

verify later. Then under the previous condition, for short scales (r → rs), the effective potential can be
approximated as follows

Ue f f (r)Λ=0 ≈
L2

2r2 −
rsL2

2r3 . (28)

As a proof of this statement, we can take the derivative with respect to r from the previous equation

dUe f f (r)
dr Λ=0

≈ − L2

r3 +
3rsL2

2r4 . (29)

If we set this result to zero, then we obtain

r1 =
3
2

rs, (30)

which corresponds to the second solution given in Equation (24). The Figure 1 illustrates the effective
potential curve for scales where the gravitational radius GM is the dominant one. The second circular
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orbit located at r2 = 2L2

rs
(see Equation (24)) is not an exact solution of Equation (21) neither. This can

be seen by replacing r2 in Equation (21) and verifying that

Figure 1. The effective potential affecting the motion of a test particle at scales where the scale GM is
important. Here β is the ratio between the maximum angular momentum scale (to be defined later)
and the ordinary angular momentum here defined as L = rl .

dUe f f (r)Λ=0

dr
=

3r5
s

32L6 , (31)

evaluated at r = r2. In fact, r2 becomes an exact solution only if the term 3rs L2

2r4 (GR contribution)
from Equation (21) is neglected. Then for large scales, under the assumption L >> rs, as far as the
cosmological constant effects are neglected, the effective potential (Λ = 0) is defined by

Ue f f (r)Λ=0 ≈ −
rs

2r
+

L2

2r2 , (32)

ignoring then the GR contribution which mix the scales rs with L. In order to verify this assumption,
we can calculate the extremal condition for the potential (32), obtaining then

dUe f f (r)
dr Λ=0

≈ rs

2r2 −
L2

r3 = 0, (33)

from which we can obtain the result r2 defined previously. The Figure 2 illustrates the effective
potential curve at large scales under the condition L >> rs. This portion of the curve corresponds to
the stable orbit condition. This part of the effective potential will not suffer any modification when the
cosmological constant effects are included.

The Case with Λ 6= 0

We can repeat the previous arguments. Then the full effective potential with the inclusion of the
Λ term is given by

Ue f f (r) = −
rs

2r
− r2

6r2
Λ
+

L2

2r2 −
rsL2

2r3 . (34)
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At large scales, with L >> rs, the previous potential can be approximated to

Ue f f (r) ≈ −
rs

2r
− r2

6r2
Λ
+

L2

2r2 , (35)

where again we have ignored the GR correction term − rs L2

2r3 due to the same arguments exposed
previously. The condition dUe f f (r)/dr = 0 in Equation (35) gives the condition

r4 − 3
2

r2
Λrsr + 3r2

ΛL2 = 0. (36)

This is a reduced fourth order polynomial as has been defined in Appendix A. We can compare
with the standard reduced form defined by Equation (A7). After following a standard procedure,
we can define the discriminant for the quartic polynomial (36) as follows

D = −64r6
ΛL6 +

81
64

r8
Λr4

s , (37)

in agreement with the result defined in Equation (A18) in Appendix B. This discriminant plays
an analogous role to the root square term in a quadratic polynomial equation as it is the case in
Equation (23). The type of solution obtained depends on the sign of the discriminant. In fact, it can be
demonstrated that if D < 0, then there are no real solutions. If D > 0, we can get real solutions. Then
D = 0 represents a limit where we get the largest possible angular momentum such that still bound
orbits are possible. The maximum angular momentum is defined by

Lmax =
32/3

4
(r2

s rΛ)
1/3. (38)

This condition is coincident with the result obtained in [6]. The solutions for Equation (36),
when D > 0, are defined by

r∗1 =
2L2

rs
, r∗2 = 41/3

√
rΛLmax −

1
2β2

√
rΛLmax. (39)

The first solution is coincident with the second solution found for Equation (22). The second
solution is new since it comes from the Λ contribution, which was excluded previously. By using here
the result (38), we can express r∗2 as

r∗2 =

(
3
2

rsr2
Λ

)1/3
− 1

4β2 (3rsr2
Λ)

1/3 = r′0, (40)

where β ≡ Lmax/L. This solution corresponds to the local maximum illustrated in the Figure 3.
The condition L = Lmax is equivalent to β = 1, which corresponds to a second saddle point condition
different to the one defined previously for the result (25). This new saddle point is located at large
scales defined by

r∗1 = r∗2 =
√

rΛLmax = rx. (41)

If we use Equation (38) in the previous solutions, then we get

r∗1 = r∗2 = rx =
(3)1/3

2
(rsr2

Λ)
1/3, (42)

which is the same result obtained in [6] by using different methods.
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Figure 2. Effective potential valid for scales satisfying rs << r << r0 and L >> rs for a particular
value of β. The shape of the figure will not change for different values of β. Here rl = L is the angular
momentum scale.

Figure 3. Effective potential scales of the order r ≈ r0 and L >> rs for some specific value of β.

4. The Role of r0(β = 0) in the Black-Hole Thermodynamics in S-dS Space

The black-hole surface gravity, can be defined as [3]

κBH,CH =

(
(Kµ∇µKγ)(Kα∇αKγ)

−K2

)1/2

r=rBH ,rCH

. (43)

The labels BH and CH, correspond to the Black Hole Horizon and the Cosmological Horizon
respectively. From Equation (18), the two horizons are the same when the mass of the Black Hole takes
its maximum value given by
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Mmax =
1
3

m2
pl

mΛ
, (44)

where mpl corresponds to the Planck mass and mΛ =
√

Λ. If the mass of a Black Hole is larger than the
value given by Equation (44), then we have a naked singularity. As M = Mmax, the two event horizons
are equally defined as rBH = rCH = rΛ = 1√

Λ
. Then a thermodynamic equilibrium is established.

As has been explained in [3], if M→ Mmax, then the metric defined in Equation (1) obeys the condition
eν(r) → 0 everywhere. Then this coordinate system becomes inappropriate. In agreement with the
results obtained in [26], we can select a better coordinate system by defining

9M2Λ = 1− 3ω2, 0 ≤ ω � 1, (45)

where ω is a parameter related to the mass of the black-hole. In these coordinates, the degenerate case
(when the two horizons become the same), corresponds to ω → 0. We must then define the new radial
and the new time coordinates to be

τ =
1

ω
√

Λ
ψ, r =

1√
Λ

(
1−ωcosχ− 1

6
ω2
)

. (46)

In these coordinates, the Black Hole horizon corresponds to χ = 0 and the Cosmological horizon
to χ = π [3]. Then the metric (1) can be expressed as

ds2 = −r2
Λ

(
1 +

2
3

ωcosχ

)
sin2χdψ2 + r2

Λ

(
1− 2

3
ωcosχ

)
dχ2 + r2

Λ(1− 2ωcosχ)dΩ2
2, (47)

after a standard coordinate transformation. The previous metric has been expanded up to first
order in ω. Equation (47) is then the appropriate metric to be used as the mass of the Black Hole
is near to its maximum value defined by Equation (44). For any value taken by the mass of the
black-hole, the normalization of the time-like Killing vector corresponding to the conservation under
time-translations is defined by

γt =

(
1−

(
3rs

2rΛ

)2/3
)−1/2

, (48)

with γt being the normalization factor for the time-like Killing vector defined by

K = γt
∂

∂t
. (49)

In an asymptotically flat space, it is standard to define γt → 1 when r → ∞. However, for the
S-dS case, since we can only define the static observer at the scale r0, then it is standard to normalize
the time-like Killing vector as in Equation (49) with the γt factor defined by Equation (48). For the
case with β 6= 0, where the angular momentum effects for the observer will appear, the corresponding
corrections have to be done for the previous normalization factor. When the mass of the black hole
satisfies M = Mmax, then ω → 0 in Equation (45) and the black-hole temperature takes its minimum
possible value defined by

2πTmin=κBH
min =

1
rΛ

, (50)

where κ is the surface gravity. Later we will see how in massive gravity theories, an analogous
expression for the black-hole temperature appears. For any value taken by the black-hole mass,
the black-hole temperature is defined by

κBH,CH =
1

2
√

U(r0)

∣∣∣∣∂U
∂r

∣∣∣∣
r=rBH ,rCH

, (51)
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where r0 is the location of the static observer inside the S-dS solution. Other relevant analysis for the
black-hole temperature in the S-dS solution in GR have been done in [3].

5. The Schwarzschild De-Sitter Solution in Massive Gravity

Here we will make a review of the derivation of the S-dS solution inside massive gravity. We then
start by obtaining the field equations from the variation of the action

S =
1

2κ2

∫
d4x
√
−g(R + m2U(g, φ)). (52)

with the effective potential depending on two free parameters as

U(g, φ) = U2 + α3U3 + α4U4. (53)

By convenience, here we redefine the free-parameters as follows

α = 1 + 3α3, β = 3(α3 + 4α4). (54)

Here in addition

U2 = Q2 −Q2, U3 = Q3 − 3QQ2 + 2Q3, U4 = Q4 − 6Q2Q2 + 8QQ3 + 3Q2
2 − 6Q4, (55)

and
Q = Q1 Qn = Tr(Qn)

µ
ν, (56)

Qµ
ν = δ

µ
ν −Mµ

ν, (57)

(M2)
µ

ν = gµα fαν, (58)

fµν = ηab∂µφa∂νφb, (59)

and then the field equations obtained from the variation of Equation (52) are defined as

Gµν = −m2Xµν. (60)

The energy momentum tensor defined by

Xµν =
δU

δgµν −
1
2

Ugµν. (61)

We can constraint the background solution to behave as the standard S-dS solution of GR. In such
a case, the following result has to be satisfied

m2Xµν = Λgµν. (62)

Then we get the solution

ds2 = gttdt2 + grrdr2 + grt(drdt + dtdr) + S2
0r2dΩ2

2, (63)

with

gtt = − f (S0r)(∂tT0(r, t))2, grr = − f (S0r)(∂rT0(r, t))2 +
S2

0
f (S0r)

,

gtr = − f (S0r)∂tT0(r, t)∂rT0(r, t), (64)
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where f (S0r) = 1− 2GM
S0r −

1
3 ΛS2

0r2. In this previous solution, all the degrees of freedom are inside
the dynamical metric. The fiducial metric in this case is simply defined by Minkowski. It was found
in [27,28] that the generic solution defined by Equation (64), can be classified in two families depending
on the relation between the two free-parameters of the theory. The solutions are then defined as

5.1. Solution with a Degenerate Vacuum

In this particular solution, the condition β = α2 is satisfied. Then the Stückelberg function defined
by T0(r, t) is arbitrary. For this case, the scale factor is defined as

S0 =
α

1 + α
, (65)

and the cosmological constant, due to the constraint imposed in Equation (62) has to satisfy
the condition

Λ =
m2

α
, (66)

as can be easily verified.

5.2. Solution with Single Vacuum

For this solution, it was found that the function T0(r, t) is constrained to behave as a solution of
the following equation

(T′0)
2 =

1− f (S0r)
f (S0r)

(
S2

0
f (S0r)

− Ṫ2
0

)
. (67)

Note that the solution for this equation has the Finkelstein form as has been demonstrated
in [27,28]. In general the function T0(r, t) has the following solution in this case

T0(r, t) = S0t + A(r, t), (68)

where A(r, t) is some function depending on spacetime. For the stationary case, A(r, t) only has
dependence on r. In order to satisfy the constraint (67), here we have [27]

A(r, t) = A(r) = ±
∫ S0r ( 1

f (u)
− 1
)

. (69)

For this solution in addition, the scale factor is defined as

S0 =
α + β±

√
α2 − β

1 + 2α + β
, (70)

and the cosmological constant for this case is defined as

Λ = −m2
(

1− 1
S0

)(
2 + α− α

S0

)
. (71)

Note that independent of the type of solution, the final result can be expressed as in Equation (64).
In the analysis of the motion of a test particle, it is enough to consider the situation where the solution
is expressed in the form (64).

5.3. The Effective Potential in dRGT Massive Gravity

Having the generic solution for the spherically symmetric case, then we can proceed to calculate
the equations of motion for a test particle moving under the influence of a spherically symmetric
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source inside the massive gravity formulation. Our derivation will be based in the solution formulated
in Equation (64) for a general Stückelberg function T0(r, t). The equation to be analyzed is

− 1 = g00

(
dt
dτ

)2
+ gii

(
dxi

dτ

)2

+ 2g0i

(
dt
dτ

)(
dxi

dτ

)
. (72)

Note that in this case the non-diagonal terms in the t− r components will be relevant since we
cannot gauge them away as in the GR case. Here instead of defining a conserved quantity in the
direction of t, we define a conserved quantity in the direction of the Stückelberg function T0(r, t)
as follows

ε = −KT0(r,t)
dT0(r, t)

dλ
= −KT0(r,t)

(
Ṫ0(r, t)

dt
dλ

+ T′0(r, t)
dr
dλ

)
, (73)

with KT0(r,t) = γt f (S0r) (1, 0, 0, 0). Here γt is a normalization factor, analogous to the one introduced
in [3]. This previous relation is complemented with the standard conserved angular momentum
already defined in Equation (12). Then in this case we obtain the following equation of motion for
a test particle

1
2

(
d(S0r)

dr

)2

− GM
S0r
− 1

6
Λ(S0r)2 +

L2

2(S0r)2 −
GML2

(S0r)3 = A =
1
2

(
ε2 − 1 +

1
3

ΛL2
)

. (74)

Here A is a constant of motion. Then the potential will behave exactly as in the GR case,
although there is a big difference in the behavior of the kinetic terms. In fact, for the case of massive
gravity, the quantity associated to the time-translations is not conserved as in the case of GR. This can
be observed from Equation (73). Here the conservation is only well defined in the direction of T0(r, t).
Then what is in reality conserved is a combination of a quantity defined in the direction of the ordinary
time t and a quantity defined in the spatial direction (r). Then although the potential term will have
exactly the same behavior as in the case of GR, the combination of the kinetic term representing radial
translations, together with the kinetic term representing temporal translations, will be combined such
that their superposition (up to some factors), is a constant of motion. Then there is no conservation
under time-translations in the usual sense in this case. This is a big difference with respect to the GR
case, where there is conservation under ordinary time-translations. Another difference of the present
case with respect to GR is how we define the scale r0 for the potential (74). In this case, such scale
will depend on the graviton mass and on the two free-parameters of the theory through the constants
Λ and S0 [27]. It is not difficult to visualize that r0 = rV corresponds to the Vainshtein scale and it
can be calculated in the same way as we did for the case of r0 in GR. Then we can still use one of the
solutions of the quartic equation defined in Equation (36) as the Vainshtein scale. The Vainshtein scale
then becomes

rV ≈
1
S0

(
3GM

Λ

)1/3
, (75)

up to some small corrections due to the angular momentum, analogous to the corrections found in
Equation (40) for the case of ordinary gravity. Note that in this case S0 and Λ will take different values
depending on the relations between the two free-parameters.

5.3.1. The Case of One Free-Parameter

In this case, S0 = α
1+α and Λ = m2

α . Then

rV =

(
α

1 + α

)(
3GMα

m2

)1/3
. (76)

This scale clearly depends on the graviton mass [27].
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5.3.2. The Case of Two Free-Parameters

In this case S0 is a function of the two free-parameters as it has been defined in [27]. In addition

Λ = −m2
(

1− 1
S0

)(
2 + α− α

S0

)
. (77)

Then rV can be defined correspondingly.

6. Black-Hole Thermodynamics Inside the Non-Linear Formulation of Massive Gravity

The expression for the black-hole temperature inside the non-linear formulation of massive gravity
for the S-dS solution, will not be different to the one defined previously for the GR case as far as we
use the Killing vector in the direction of T0(r, t) instead of using the ordinary time-like Killing vector
as follows

KT0(r,t) = γt
∂

∂T0(r, t)
= γt

(
1

Ṫ0(r, t)
Kt +

1
T′0(r, t)

Kr
)

. (78)

Here we constraint KT0(r,t) = (1, 0, 0, 0). In addition, Kr is the unit vector which marks the radial
component of KT0(r,t). γt is the normalization factor. We can now normalize this Killing vector as
we did with the time-like Killing vector Kt for the case of GR. Here however, the static observer is
located at the scale rV corresponding to the Vainshtein scale and in order to agree with the GR results,
this observer must define his/her time-coordinate in the direction of T0(r, t). This imposes some
extra-constraints in the type of observers able to define the black-hole temperature as in GR. Any other
observer defining a different notion of time, will disagree with the results obtained in GR, even if this
observers is also located at the same scale. The difference will be more evident for observers located at
larger scales than rv (in massive gravity) or r0 (in GR). The notion of time then is an important concept
in massive gravity and it is related to how we define the vacuum and the conservation laws. Here we
normalize the Killing vector in the direction of T0(r, t) as

K2 = KµKµ = gµνKµKν = γ2
t (gT0T0)|r=rV = −γ2

t

(
1−

(
3rs

2rΛ

)2/3
)

= −1. (79)

Note that here since we are considering the Killing vector in the direction T0(r, t), then we have
to consider the metric component gT0T0 in Equation (79). This component can be obtained from the
result (64) if we rewrite the metric (63) as

ds2 = gT0T0 dT2
0 (r, t) + grrdr2 + S2

0r2dΩ2
2, (80)

where dT0(r, t) = Ṫ0(r, t)dt + T′0(r, t)dr. If we compare the results (63) and (64) with Equation (80),

then we conclude that gT0T0 = − f (S0r) = −
(

1− 2GM
S0r −

1
3 ΛS2

0r2
)

. This justifies the previous results.
Then we conclude that the normalization factor is

γt =

(
1−

(
3rs

2rΛ

)2/3
)−1/2

, (81)

consistent with the result obtained inside GR in Equation (48). Note however that here we are
normalizing the Killing vector in the direction T0(r, t) instead of the Killing vector in the time-direction
t. In addition the normalization is done with respect to the observers located at r = rV , namely,
the Vainshtein scale. If we want to get the constraints for the Stückelberg function T0(r, t), consistent
with the normalization (79) and with the conservation law (73), we have to expand Equation (79) in
the alternative form

K2 = KµKµ = gµνKµKν = γ2
t

(
gtt(Kt)2 + gT0(r,t)

rr (Kr)2 + 2gtrKtKr
)
= −1. (82)
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Here gT0(r,t)
rr corresponds to the radial component of the metric living in the subspace formed

by the vector KT0(r,t). In other words, the components of the Killing vector in the direction of the
Stückelberg function T0(r, t) can be defined as

KT0(r,t) = ((a, b), 0, 0, 0) = (1, 0, 0, 0). (83)

Here a and b define the components of KT0(r,t) inside a 2-dimensional subspace formed by
Kt and Kr taken as unit vectors. This is the subspace where the conservation law (73) is valid.
Then in general we can express KT0(r,t) = aKt + bKr, consistent with the definition (78). Then here
gT0(r,t)

rr = − f (S0r)T′20 (r, t) in Equation (82). Taking into account this analysis, together with the
solutions (64), then we find that Equation (82) can be simplified to

K2 = − f (S0rV)γ
2
t

(
Ṫ2

0 (r, t) + T′0(r, t)2 + 2Ṫ0T′0(r, t)
)
= −1, (84)

taking into account that inside the 2-dimensional subspace expanded by KT0(r,t), Kt = (1, 0) and
Kr = (0, 1). If this previous result is consistent with Equation (79), then the following constraint has to
be satisfied

T′20 (r, t) + Ṫ2
0 (r, t) + 2T′0(r, t)Ṫ0(r, t) = 1. (85)

This expression can be reduced as(
T′0(r, t) + Ṫ0(r, t)

)2
= 1. (86)

This result is consistent with the conservation law defined in Equation (73) with the appropriate
definitions for Kt and Kr. Within this scenario, the definition of surface gravity for black-holes in
Massive gravity agrees with the standard definition of GR. This is true as far as the observers are
constrained to move in the spacetime defined by the condition (85). This condition is general and it
applies for both cases, namely, for the case where the vacuum is degenerate or for the case where the
vacuum is single, taking into account that massive gravity is in essence a σ-model. The Stückelberg
trick as has been used in this paper can be found in [29]. Note that the observers can define any location
in space r or any notion of time t. In other words, they can move arbitrarily. However, those observers
satisfying the constraint (85), will agree with the results of GR. For general motion, the results obtained
from GR will disagree with the results obtained in massive gravity.

7. The Number of Propagating Degrees of Freedom and Lorentz Violation

The previous analysis has been based in solutions with non-trivial Stückelberg functions. In some
scenarios this can be understood as Lorentz violating theories [30,31]. The Lorentz violation is, however,
at the background level due to the non-triviality of the Stückelberg functions. This can be considered
as spontaneous symmetry breaking, since the action itself still respects the violated symmetries. In the
previous analysis, the number of degrees of freedom can fluctuates from two to five depending on
how the observers define the notion of time. If an observer defines the time arbitrarily, then he/she
will describe five degrees of freedom in general. On the other hand, the observers defining the time in
agreement with the Stückelberg function T0(r, t), will describe two degrees of freedom. However, if we
describe a black-hole with spherical symmetry, then we will not have tensor perturbations and we
can just limit the analysis to three degrees of freedom in four dimensions. This can be perceived
better if we expand the Lagrangian density in the action (52) up to second order. For simplicity we
will work in a free falling frame where we can ignore the scales of gravity. This will help us to make
a cleaner analysis. The free-falling condition here is different with respect to the one in GR because the
dynamical metric in a free-falling frame does not necessarily goes to Minkowski, unless the Stückelberg
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function is trivial. By keeping the stationary condition, in a free-falling frame and for an arbitrary
Stückelberg function, we get the dynamical

ds2 = S2
0

(
−dt2 + dr2

[
1−

(
T′0(r, t)

S0

)2
]
− 2

T′0(r, t)
S0

dtdr + r2dΩ2

)
. (87)

Here we will consider the non-trivial contribution T′0(r, t) as a radial fluctuation of the Stückelberg
function. In this special case Ṫ0(r, t) = S0 and T′0(r, t) is arbitrary. In general we can assume T0(r, t) =
S0t + At(r, t). If we consider At(r, t)/S0t small, then the radial fluctuations of the Stückelberg function
inside the 2-dimensional subspace correspond to perturbations. Such fluctuations live inside the
space where we defined the Killing vector KT0(r,t). In general, the metric (87) is a consequence of the
Stückelberg trick applied as

gµν =

(
∂Yα

∂xµ

)(
∂Yβ

∂xν

)
g′αβ, (88)

with Y0(r, t) = T0(r, t) and Yr = S0r. If we expand Yα(x) = Sxα + Aα(x), then At(x) is non-trivial
and Ar(x) = 0 in the example developed here. By considering Aα(x) as perturbations, the dynamical
metric would be Minkowski at the background level. The kinetic terms of the action will not change
under the presence of the extra-degrees of freedom because they enter via the Stückelberg trick
defined in Equation (88). This is the case because the Stückelberg trick looks like (but is completely
different) a coordinate transformation from the GR perspective. Then we only have to worry about the
perturbations of the massive action. In a free-falling frame, up to second order, the massive action is
defined as

√
−gU(g, φ) ≈

(
1 +

1
2

h− 1
4

hα
βhβ

α +
1
8

h2
)(

2 + 6α(1 + α)

(1 + α)4

)
−
(

1 +
1
2

h
)(
− h

1 + α
+

2T′0(r, t)(1 + α)2

α3 h0r −
T′0(r, t)2(1 + α)3

α4

)
+ ... (89)

We can see that the radial fluctuations of the time-component of the Stückelberg function affects
the number of degrees of freedom perceived by an observer. If T0(r, t) becomes trivially the ordinary
time coordinate, then the number of degrees of freedom is reduced to the ordinary case of GR taking
into account that the massive term will become an ordinary cosmological constant. In conclusion,
the number of degrees of freedom described by an observer will depend on the way how he/she
defines the time coordinate with respect to the Stückelberg function. An observer defining T0(r, t) v t,
will perceive T′0(r, t) = 0 and will recover GR. Any other observer will perceive more degrees of
freedom. Note that here for simplicity Ṫ0(r, t) = S0. A non-trivial contributions coming from Ṫ0(r, t)
will also affect the number of degrees of freedom perceived by observers. In addition, if we evaluate
the second derivatives with respect to the graviton field in Equation (89), we will obtain a mass matrix.
In such a case, the eigenvalues of the matrix would correspond to the masses of each mode, namely,
m00, mij, etc. These are the mass fluctuations of the modes and they will depend on the non-trivial
contributions of the Stückelberg function. In any other frame different to the free-falling one, the scales
of gravity will appear but the analysis will be qualitatively the same. A similar analysis has been
developed in [32,33] where massive gravity was analyzed as a gravitational σ-model.

8. Conclusions

In this paper, we have found the conditions which an observer in Massive gravity has to satisfy
in order to agree with the black-hole temperature obtained originally in GR. The conditions impose
some constraints in the functional behavior on the spacetime paths which the observers have to follow.
The result is general in the sense that it is independent on whether the vacuum solution in massive
gravity is single or degenerate, taking into account that massive gravity is a gravitational σ-model.
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The conditions to be satisfied by the Stückelberg fields come from the normalization of the Killing
vector in the direction of T0(r, t) defined previously in this paper. Note that the observers can take any
arbitrary path in the spacetime. However, if they follow the paths marked by the constraints over the
Stückelberg functions, as those defined in this paper, then they will find the same temperature as in
GR inside the scenario of massive gravity. The analysis done in this paper illustrates in addition the
coincidence between the scales r0 in GR and rV in massive gravity. Other authors have derived some
interesting analysis about the black-hole thermodynamics in massive gravity [34,35], however they
did not consider the fact that in reality in massive gravity theories, the amount of particles emitted by
the event horizon never changes. What in reality is different is the way how the observers define the
notions of vacuum in massive gravity. For example, the modification for the black-hole temperatures
found in [34,35] are correct as far as we consider arbitrary observers located at scales where the
extra-degrees of freedom of the theory become relevant and in addition if the observers define the
time direction arbitrarily. However, when the gravitational field is strong, the deviations with respect
to GR must be small if the theory is consistent. For this reason, in [22,23], it was found that the
periodicity of the poles of the propagator is distorted for the case of a scalar field moving around
a source in massive gravity. This creates an apparent modification of the black-hole temperature
in this theory. However, the reality is that if the observer defines the time coordinate in agreement
with T0(r, t), such modifications with respect to GR disappear. In this paper in addition we have
demonstrated that different observers can define different degrees of freedom depending on how they
define the time-coordinate with respect to the Stückelberg function. An observer defining the local
time in agreement with T0(r, t) will define the same degrees of freedom as in GR. On the other hand,
an observer defining the time arbitrarily with respect to T0(r, t) will perceive more degrees of freedom.
This is related to the way how we define the local masses for the different modes mij. These masses
will depend on the non-trivial contributions coming from the Stückelberg function. By using these
approaches, it would be interesting to analyze possible phase transitions for black-hole solutions in a
similar way as has been done in [36]. Other interesting approaches have been developed in [37,38].

Acknowledgments: I.A. is supported by the JSPS Post Doctoral fellow for oversea researchers. I thank the referees
of this paper for the important comments.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. General Solution of a Fourth-Order Polynomial

The standard form of a fourth-order equation can be taken to be

Ax4 + Bx3 + Cx2 + Dx + E = 0 (A1)

in order to get the reduced form of this equation, we need to do the following variable change

y ≡ x +
B

4A
. (A2)

Solving for x, we get

x = y− B
4A

. (A3)

Replacing this result inside of Equation (A1), we get

A
(

y− B
4A

)4
+ B

(
y− B

4A

)3
+ C

(
y− B

4A

)2
+ D

(
y− B

4A

)
+ E = 0. (A4)
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Developing parenthesis, we obtain

A

(
y4 −

(
B
A

)
y3 +

3
8

(
B
A

)2
y2 − 1

16

(
B
A

)3
y +

(
B

4A

)4
)
+

B

(
y3 − 3

4

(
B
A

)
y2 +

3
16

(
B
A

)2
y− 1

64

(
B
A

)3
)
+ C

(
y2 − B

2A
y +

1
16

(
B
A

)2
)

+ D
(

y− B
4A

)
+ E = 0. (A5)

Regrouping common factors and dividing by A, we get

y4 +

(
− 3

8

(
B
A

)2
+ C

A

)
y2 +

(
1
8

(
B
A

)3
− CB

2A2 +
D
A

)
y− 3

256

(
B
A

)4
+ 1

16
C
A3 B2 − DB

4A2 +
E
A = 0. (A6)

The standard reduced fourth-order equation is given by

y4 + Py2 + Qy + K = 0. (A7)

Comparing this form with (A6), we obtain

P =
C
A
− 3

8

(
B
A

)2

Q =
1
8

(
B
A

)3
− CB

2A2 +
D
A

K =
E
A
− DB

4A2 +
1

16
CB2

A3 −
3

256

(
B
A

)4
. (A8)

The associated cubic equation of (A7) is

z3 + 2Pz2 + (P2 − 4K)z−Q2 = 0, (A9)

where P, Q and K are given in (A8). Given the solutions of the associated third-order Equation (A9),
the solutions for the reduced Equation (A7) are given by

y1 =
1
2
(
√

z1 +
√

z2 −
√

z3)

y2 =
1
2
(
√

z1 −
√

z2 +
√

z3)

y3 =
1
2
(−
√

z1 +
√

z2 +
√

z3)

y4 =
1
2
(−
√

z1 −
√

z2 −
√

z3). (A10)

The solutions of the associated third-order Equation (A9), must satisfy the following

Q =
√

z1
√

z2
√

z3. (A11)

Appendix B. General Solution of a Third-Order Polynomy

The standard form of a third-order polynomy is given by

ax3 + bx2 + cx + d = 0. (A12)
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The normal form is obtained by dividing with respect to a the result as follows

x3 + rx2 + sx + t = 0, (A13)

where obviously, we have

r =
b
a

s =
c
a

t =
d
a

, (A14)

with the extra condition a 6= 0. The reduced form of the third-order Equation (A13), requires the
change of variable

y ≡ x +
r
3

, (A15)

and the reduced form is given by
y3 + py + q = 0, (A16)

with the corresponding coefficients given by

p = s− r2

3
q =

2
27

r3 − rs
3
+ t, (A17)

where r, s and t are given in (A14). On the other hand, it is necessary to establish a classification criteria
for the reduced third-order equation given in (A16), the criteria is based in a parameter D given by

D ≡
( p

3

)3
+
( q

2

)2
. (A18)

Also for the same classification, it is necessary to find an auxiliary parameter given by

R ≡ sign(q)

√
|p|
3

. (A19)

where q and p are defined in eqns. (A16) and (A17). On the other hand, we define an auxiliary angle φ,
which is defined depending of the following cases:

Case (i). p < 0, D 6 0.

In this case, the auxiliary angle is defined as

cos φ ≡ q
2R3 , (A20)

with the corresponding solutions

y1 = −2R cos
φ

3

y2 = −2R cos
(

φ

3
+

2π

3

)
y3 = −2R cos

(
φ

3
+

4π

3

)
. (A21)

Case (ii). p < 0, D > 0.

In this case, the auxiliary angle is defined as

cosh φ ≡ q
2R3 , (A22)
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and the corresponding solutions are

y1 = −2R cosh
φ

3

y2 = R cosh
φ

3
+ i
√

3R sinh
φ

3

y3 = y2∗ = R cosh
φ

3
− i
√

3R sinh
φ

3
. (A23)

Case (iii). p > 0, D > 0.

In this section, we define the auxiliary angle to be

sinh φ ≡ q
2R3 (A24)

with the corresponding solutions

y1 = −2R sinh
φ

3

y2 = R sinh
φ

3
+ i
√

3R cosh
φ

3

y3 = y2∗ = R sinh
φ

3
− i
√

3R cosh
φ

3
. (A25)

In the mentioned three cases, D is defined in Equation (A18); p is defined in Equations (A16)
and (A17), and the parameter R is defined in Equation (A19).
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