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Abstract: From both a theoretical and an experimental point of view, Bose–Einstein condensates
are good candidates for studying gravitational analogues of black holes and black-hole lasers.
In particular, a recent experiment has shown that a black-hole laser configuration can be created in
the laboratory. However, the most considered theoretical models for analog black-hole lasers are
quite difficult to implement experimentally. In order to fill this gap, we devote this work to present
more realistic models for black-hole lasers. For that purpose, we first prove that, by symmetrically
extending every black-hole configuration, one can obtain a black-hole laser configuration with an
arbitrarily large supersonic region. Based on this result, we propose the use of an attractive square
well and a double delta-barrier, which can be implemented using standard experimental tools, for
studying black-hole lasers. We also compute the different stationary states of these setups, identifying
the true ground state of the system and discussing the relation between the obtained solutions and
the appearance of dynamical instabilities.

Keywords: black holes; quantum field theory in curved spacetime; Bose-Einstein condensates;
quantum transport, atomtronics
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1. Introduction

Hawking radiation is one of the most intriguing results of theoretical physics; using a semiclassical
model in which fields are quantized on top of a classical gravitational background, Hawking predicted
the spontaneous emission of radiation by the event horizon of a black hole (BH) [1,2]. Within a similar
scheme, Corley and Jacobson [3] showed that a bosonic field with a superluminal dispersion relation
in a metric with two horizons can give rise to a dynamical instability, the so-called black-hole laser
(BHL) effect. The problem is that the observation of such phenomena seems unlikely in the near future
due to the small effective temperature of emission, TH ' 62M�/M nK, with M� the mass of the Sun
and M the mass of the black hole. For instance, the microwave background temperature is 2.7 K, well
above the Hawking temperature TH .

An alternative way to study these effects was suggested by Unruh [4], who proved that
a subsonic-supersonic interface in a quantum fluid is the acoustic analog of an event horizon in
a BH. This pioneering work opened the door to the study of gravitational problems in the laboratory,
and since then, many analog setups have been proposed in systems as different as Fermi gases [5], ion
rings [6], polaritons [7] or, in a classical context, surface waves in a water tank [8].

Of particular interest are the analogues implemented in Bose–Einstein condensates (BEC),
first suggested by Garay et al. [9]. The main advantages of this kind of setup are the low temperature,
the relative ease of handling and the deep understanding of the quantum excitations. The analogue of
the Hawking radiation in this system is the spontaneous emission of entangled phonons by the acoustic
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horizon into the subsonic and supersonic regions [10–23], similar to the particle-antiparticle creation at
the event horizon of a BH. In addition, a flowing condensate presenting a finite-size supersonic region
(giving rise to a pair of acoustic horizons) provides the analog of a black-hole laser [16,24–29].

Regarding the experimental side, the first acoustic horizon in a BEC was produced by the Technion
group [30] with the help of a sharp negative potential created by a laser that locally accelerate the atoms.
Within this kind of setup, the first observation of the BHL effect was reported [31], although there is
still some discussion in the community about the interpretation of the experimental results [32–34].
Recently, the same group provided the first experimental evidence of the emission of Hawking
radiation by measuring the entanglement of the emitted phonons [35].

Most of the theoretical works present in the BEC analog literature deal with an extremely idealized
model, the so-called flat-profile configuration, in which the background condensate is homogeneous
and the horizons are created through a very specific spatial dependence of the coupling constant
and the external potential. Although this simple model is able to capture the essential features of
Hawking radiation, it is quite unrealistic from an experimental point of view. More realistic models
study the formation of acoustic BHs considering the flow of a condensate through a localized obstacle,
modeled by a delta barrier [36] or an optical lattice [20]; the waterfall configuration described in [37] is
a theoretical model of the actual experimental setups of [30,35].

The goal of this article is to extend the previous results and provide more realistic theoretical
models also for analog BHLs. For that purpose, we prove that each BH configuration can be
symmetrically extended to provide a BHL configuration. By applying this result to the waterfall
and the delta-barrier configurations described above, we obtain two new different black-hole
laser configurations that are created by using an attractive square well and a double delta-barrier,
respectively. For these configurations, we compute the different families of non-linear stationary
states that characterize the stability of the system, as well as its long-time behavior. We note that,
although stationary transport scenarios in a square well or a double delta-barrier have already been
studied in the literature [38,39], to the best of our knowledge, this is the first time that they have been
explicitly proposed for modeling black-hole lasers.

Apart from the intrinsic interest of finding new models from a theoretical point of view, these
configurations are also expected to be very useful in practice; in particular, the case where the
supersonic region is created using a square attractive well can be regarded as a model for studying the
experimental BHL of [31].

The scheme of the paper is the following. In Section 2, we revisit the basic theory of gravitational
analogues in BEC. The general relation between BH and BHL solutions is proven in Section 3.
In Sections 4 and 5, we study the different stationary states for BHL configurations with a square-well
and a double delta-barrier, respectively. Conclusions are presented in Section 6. Appendix A is devoted
to introducing the different elliptic functions used in this work, while Appendices B and C are devoted
to the technical details of the calculations presented in the main text.

2. Gravitational Analogues in Bose–Einstein Condensates

We first provide in this section a general introduction to Bose–Einstein condensates and
gravitational analogues. For more details, see, for instance, [14,39–41].

2.1. Effective One-Dimensional Configurations

We begin by reviewing how to reach an effective one-dimensional (1D) configuration, the so-called
1D mean-field regime [38,42]. For that purpose, we consider a 3D gas of N bosons of mass m near
T = 0 (more precisely, T � Tc, with Tc the critical temperature of the condensate), described by the
second-quantization Hamiltonian [43,44]:

Ĥ =

ˆ
d3x Ψ̂†(x)

[
− h̄2

2m
∇2 + Vext(x, t)

]
Ψ̂(x) +

g3D

2
Ψ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x) (1)
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where Vext(x, t) is the external potential, and the interaction between atoms is taken into account for
low momentum by a short-range potential, with g3D = 4πh̄2as/m the corresponding coupling constant
and as the s-wave scattering length [45,46].

In order to obtain an effective 1D configuration along the x-axis, we consider a total external
potential of the form Vext(x, t) = V(x, t) + Vtr(y, z), where V(x, t) only depends on the x coordinate,
while Vtr(y, z) = 1

2 mω2
trρ2 (ρ =

√
y2 + z2 being the radial distance to the x-axis) represents a transverse

harmonic trap, very usual in experimental setups. If the non-linear interacting term is sufficiently small,
we can treat it perturbatively and assume that the transverse motion is frozen to the corresponding
harmonic oscillator ground state and, hence, use the following approximation for the field operator:

Ψ̂(x) ' ψ̂(x)
e
− ρ2

2a2
tr

√
πatr

, atr =

√
h̄

mωtr
(2)

with atr being the transverse harmonic oscillator length. After integrating over the transverse degrees
of freedom, we arrive at the following 1D effective Hamiltonian:

Ĥ1D =

ˆ
dx ψ̂†(x)

[
− h̄2

2m
∂2

x + V(x, t)

]
ψ̂(x) +

g1D

2
ψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x) (3)

where we have absorbed the resulting zero-point energy h̄ωtr of the harmonic oscillator, and the
effective 1D constant coupling is g1D = 2h̄ωtras. More specifically, the condition for the approximation
of Equation (2) to be valid is that the non-linear interacting term is small compared to the transverse
confinement energy scale, g1Dn1D(x)� h̄ωtr, which can be simply put as n1D(x)as � 1, with n1D(x)
the 1D-density.

In the same fashion, the 3D canonical commutation rules for the field operator:

[Ψ̂(x), Ψ̂†(x′)] = δ(x− x′) , (4)

are reduced to the 1D version:
[ψ̂(x), ψ̂†(x′)] = δ(x− x′) , (5)

As we will only deal with 1D configurations, in the following, we omit everywhere the 1D index.

2.2. Gross–Pitaevskii and Bogoliubov—De Gennes Equations

Using the Hamiltonian of Equation (3) and the corresponding canonical commutation rules of
Equation (5), we write the equation of motion for the field operator ψ̂(x) in the Heisenberg picture:

ih̄∂tψ̂(x, t) = [ψ̂(x, t), Ĥ] =

[
− h̄2

2m
∂2

x + V(x, t)

]
ψ̂(x, t) + gψ̂†(x, t)ψ̂(x, t)ψ̂(x, t) (6)

Since there is a condensate, we can perform a mean-field approximation:

ψ̂(x, t) = ψ(x, t) + ϕ̂(x, t), (7)

with ψ(x, t) the Gross–Pitaevskii (GP) wave function [45] describing the condensate and ϕ̂(x, t)
representing the quantum fluctuations of the field operator. The time evolution of the GP wave
function is described by the time-dependent GP equation, a non-linear Schrödinger equation of
the form:

ih̄∂tψ(x, t) =

[
− h̄2

2m
∂2

x + V(x, t) + g|ψ(x, t)|2
]

ψ(x, t) (8)
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Assuming that the depletion cloud (i.e., the cloud formed by the atoms outside the condensate) is
negligible, ψ(x, t) is normalized to the total number of particles:

N =

ˆ
dx |ψ(x, t)|2 (9)

The conservation of the norm of the GP wave function is guaranteed by the same relation as in
the usual linear Schrodinger equation:

∂t|ψ(x, t)|2 + ∂x J(x, t) = 0, J(x, t) = − ih̄
2m

[ψ∗(x, t)∂xψ(x, t)− ψ(x, t)∂xψ∗(x, t)] (10)

with J(x, t) the current.
It is quite instructive to rewrite these equations in terms of the amplitude and phase of the wave

function, ψ(x, t) = A(x, t)eiφ(x,t),

∂tn(x, t) + ∂x[n(x, t)v(x, t)] = 0 (11)

−h̄∂tφ(x, t) = − h̄2

2mA(x, t)
∂2

x A(x, t) +
1
2

mv2(x, t) + V(x, t) + gn(x, t)

where J(x, t) = n(x, t)v(x, t) is the current and:

n(x, t) = A2(x, t), v(x, t) =
h̄∂xφ(x, t)

m
, (12)

are the mean-field density and flow velocity, respectively. Interestingly, the first line of Equation (11) is
the equivalent of the continuity equation for a hydrodynamical fluid. On the other hand, taking the
spatial derivative in the second line gives:

m∂tv(x, t) = −∂x

[
1
2 mv2(x, t) + V(x, t)

]
− 1

n(x,t)∂xP(x, t) + ∂x

[
h̄2

2m
√

n(x,t)
∂2

x
√

n(x, t)
]

, P(x, t) = gn2(x,t)
2 (13)

which can be regarded as the analog of the Euler equation for the velocity of a potential flow since the

pressure of a uniform condensate at equilibrium is P = gn2

2 . The only difference is the rightmost term,
which is a genuine quantum feature, as it contains h̄, and it is often called the quantum pressure term.
However, in the hydrodynamic regime, where the density of the condensate varies on a large scale
compared to the other terms, one can neglect the contribution of the quantum pressure and recover
the same equations as for an ideal potential fluid flow; this is the key point of the gravitational analogy
since the original analogy was precisely established for ideal potential fluid flows [4] (see also the
discussion in the next subsection).

On the other hand, to lowest order in the quantum fluctuations of the field operator, ϕ̂(x, t),
one finds from Equation (6) that:

ih̄∂tΦ̂(x, t) = M(x, t)Φ̂(x, t),

M(x, t) =

[
G(x, t) L(x, t)
−L∗(x, t) −G(x, t)

]
, Φ̂(x, t) =

[
ϕ̂(x, t)
ϕ̂†(x, t)

]
(14)

G(x, t) = − h̄2

2m
∂2

x + V(x, t) + 2g|ψ(x, t)|2, L(x, t) = gψ2(x, t)

which are known as the Bogoliubov–de Gennes (BdG) equations.
For time-independent potentials, V(x, t) = V(x), we can look for particular solutions of the form:

ψ̂(x, t) = [ψ0(x) + ϕ̂(x, t)]e−i µ
h̄ t (15)
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that are of special interest as they describe stationary configurations. In particular, the stationary wave
function ψ0(x) obeys the time-independent GP equation:

µψ0(x) =

[
− h̄2

2m
∂2

x + V(x) + g|ψ0(x)|2
]

ψ0(x) (16)

Note that the above equation is a non-linear eigenvalue problem. The presented amplitude-phase
decomposition greatly simplifies the stationary problem, as the continuity equation is reduced to:

∂x J(x) = 0 (17)

so the current J(x) = n(x)v(x) = J is constant. Using this fact, we can rewrite the equation for the
amplitude as a purely real second-order differential equation:

µA(x) = − h̄2

2m
A′′(x) +

mJ2

2A3(x)
+ V(x)A(x) + gA3(x) (18)

with ′ the spatial derivative. The phase is simply obtained from the relation:

φ(x) =
ˆ

dx
mv(x)

h̄
=

ˆ
dx

mJ
h̄A2(x)

(19)

Note that, if J 6= 0, neither the amplitude nor the flow velocity vanish.
For a fixed value of the number of particles, there can be several different solutions for the GP

Equation (16). The true ground state of the system is that minimizing the grand-canonical energy,
K = E− µN, with E the energy of the state (i.e., the expectation value of the Hamiltonian evaluated
for the GP wave function) and N the total number of particles. Indeed, by rewriting the expression for
K as a functional for the GP wave function:

K[ψ] =
ˆ

dx ψ∗(x)

[
− h̄2

2m
∂2

x + V(x)− µ

]
ψ(x) +

g
2
|ψ(x)|4, (20)

it can be seen that Equation (16) is precisely the condition for ψ0(x) to be an extreme of K. In that case,
K takes the simple form:

K[ψ0] = −
ˆ

dx
g
2
|ψ0(x)|4. (21)

Solutions of Equation (16) that are not a local minimum of K are energetically unstable as any
perturbation would induce the system to decay to a lower energy state. In physical terms, we can
understood the minimization of K as the minimization of the expectation value of Hamiltonian H with
the constraint of fixed total number of particles N, with the chemical potential µ playing the role of the
Lagrange multiplier.

With respect to the quantum fluctuations, ϕ̂(x, t), Equation (14) is now a stationary problem of
the form:

ih̄∂tΦ̂(x, t) = M(x)Φ̂(x, t),

M(x) =

[
G(x) L(x)
−L∗(x) −G(x)

]
, (22)

G(x) = − h̄2

2m
∂2

x + V(x) + 2g|ψ0(x)|2 − µ, L(x) = gψ2
0(x)
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As it is a linear equation, we can expand the field operator in terms of eigenmodes:

Φ̂(x, t) = ∑
n

γ̂nzn(x)e−iωnt + γ̂†
n z̄n(x)eiωnt

zn(x) =

[
un(x)
vn(x)

]
, z̄n(x) =

[
v∗n(x)
u∗n(x)

]
(23)

where the spinors zn satisfy the time-independent BdG equations:

M(x)zn(x) = εnzn(x), εn = h̄ωn (24)

Due to the structure of the equations, the conjugate z̄n is also a mode with energy −ε∗n.
An interesting property of the eigenvalue problem of Equation (24) is that it is non-Hermitian,

and thus, it can yield complex eigenvalues. In particular, eigenvalues with a positive imaginary
part correspond to dynamical instabilities, i.e., exponentially-growing modes: the presence of such
dynamical instabilities in a finite region of a condensate flow are the origin of the black-hole laser
effect, discussed in the next section.

Moreover, there is a Klein–Gordon type scalar product associated to the BdG eigenvalue problem,
given by:

(z1|z2) ≡ 〈z1|σz|z2〉 =
ˆ

d3x z†
1(x)σzz2(x) =

ˆ
d3x u∗1(x)u2(x)− v∗1(x)v2(x) , (25)

with σz = diag(1,−1) the corresponding Pauli matrix. Note that this scalar product is not positive
definite, so the norm of a given solution zn, defined as (zn|zn), can be positive, negative or zero. In fact,
the norm of the conjugate z̄n has the opposite sign to that of zn, (z̄n|z̄n) = −(zn|zn).

The utility of this scalar product is that, as usual, two modes zn, zm with different eigenvalues
εn, εm are orthogonal, as seen from the relation:

(εn − ε∗m)(zm|zn) = 0, (26)

from which it also follows that modes with complex frequency have zero norm.

2.3. Analog Configurations

Gravitational analogues in BEC appear when considering stationary condensate flows. We note
that, although for illustrative purposes, we restrict here to 1D configurations, the following discussion
can be straightforwardly adapted for general 3D stationary flows. First, we analyze 1D homogeneous
stationary flows, characterized by GP plane waves of the form ψ0(x) =

√
neiqx+φ0 , with n the density

of the condensate, q its momentum and φ0 some phase. After removing the phase of the condensate
from the field operator, ϕ̂(x, t) → eiqx+φ0 ϕ̂(x, t), it is straightforward to show that the eigenmodes
of the BdG Equation (24) are plane waves with wave vector k and frequency ω, giving rise to the
following dispersion relation:

[ω− vk]2 = Ω2(k) = c2k2 +
h̄2k4

4m2 = c2k2
[

1 +
(kξ)2)

4

]
(27)

with c =
√

gn/m the sound velocity, v = h̄q/m the constant flow velocity, ξ ≡ h̄/mc the so-called
healing length and Ω the comoving frequency. The above dispersion relation gives four different
wavevectors for a given value of the frequency. In fact, Equation (27) is just the usual Bogoliubov
dispersion relation for phonons in a condensate at rest, Ω(k), shifted by the Doppler effect due to
the fluid velocity v. For convention, we take the flow velocity and comoving frequency as positive
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(v, Ω > 0) throughout this work. In this way, the flow is supersonic when v > c and subsonic
when v < c.

The dispersion relation for subsonic (supersonic) flows is schematically represented in left (right)
panel of Figure 1, where the blue (red) curves represents the sign +(−) branches of the dispersion
relation, ω±(k) = vk±Ω(k), and also positive (negative) normalization according to the scalar product
of Equation (25). Indeed, the − branch is just the dispersion relation of the conjugate modes of the
+ branch, ω−(k) = −ω+(−k) (see Equation (24) and the related discussion). For subsonic flows, for a
given real frequency, there are only two propagating modes (i.e., modes with purely real wavevector),
and the other two solutions have a complex wave vector. On the other hand, for supersonic flows,
in the window −ωmax < ω < ωmax, all four modes are propagating, where the threshold frequency
ωmax is ωmax = maxk ω−(k) and is marked by a horizontal dashed line in the right of Figure 1.
Outside this window, we recover essentially the same structure of subsonic flows, and only two
modes are propagating. The presence of negative energy modes for −k0 < k < 0 in the + branch
of the supersonic dispersion relation, with h̄k0 = 2m

√
v2 − c2, arises due the energetic instability of

supersonic flows, as first argued by Landau. As a result, the introduction of a time-independent
perturbation in a supersonic flow gives rise to the emission of Bogoliubov–Čerenkov radiation [47],
characterized by the wave vector k0.

Figure 1. Schematic plot of the Bogoliubov–de Gennes (BdG) dispersion relation for a subsonic (left)
and a supersonic (right) flow.

The previous magnitudes can be extended to non-homogeneous configurations by taking
c(x) ≡

√
gn(x)/m and v(x) as defined in Equation (12). In a similar way, we say that the flow

is subsonic where v(x) < c(x) and supersonic where v(x) > c(x). It is precisely in this context
where the gravitational analogy with astrophysical black holes arises. For that purpose, we rewrite
Equation (22) in terms of the relative quantum fluctuations, ϕ̂(x, t) ≡ ψ0(x)χ̂(x, t),

ih̄Dtχ̂(x, t) =
[

T(x) + mc2(x)
]

χ̂(x, t) + mc2(x)χ̂†(x, t) (28)

T(x) = − h̄2

2mn(x)
∂xn(x)∂x.

with Dt = ∂t + v(x)∂x the comoving derivative. Gathering this equation with its complex conjugate
and defining the hermitic fields:

χ̂+(x, t) ≡ 1
2

[
χ̂(x, t) + χ̂†(x, t)

]
(29)

χ̂−(x, t) ≡ − i
2

[
χ̂(x, t)− χ̂†(x, t)

]
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gives a pair of equations of the form:

h̄Dtχ̂+(x, t) = T(x)χ̂−(x, t) (30)

h̄Dtχ̂−(x, t) = −
[

T(x) + 2mc2(x)
]

χ̂+(x, t)

The above fields are related to physical magnitudes as ρ̂(x, t) = 2n(x)χ̂+(x, t) and
φ̂(x, t) = χ̂−(x, t), with ρ̂, φ̂ the density and phase fluctuations, respectively. Note that the first
line of the above equation results from linearizing the continuity equation, while the second line results
from linearizing the equation for the phase (see Equation (11)).

Now, if we assume that the background condensate varies on a sufficiently large scale, in the
long-wavelength limit, we can neglect the contribution of T(x) at the r.h.s. of the second line
of Equation (30), which precisely amounts to work in the hydrodynamic regime where all of the
contributions arising from the quantum pressure are neglected. In this approximation, we can write
the equation for the phase fluctuations as:[

1
n(x)

∂xn(x)∂x − Dt
1

c2(x)
Dt

]
φ̂(x, t) = 0 (31)

which can be rewritten as the relativistic Klein–Gordon equation for a massless scalar field φ̂ on
a metric gµν,

�φ̂ ≡ 1√−g
∂µ(
√
−ggµν∂νφ̂) = 0 (32)

with the effective stationary metric gµν given by:

gµν(x) =
n(x)
c(x)


−[c2(x)− v2(x)] −v(x) 0 0

−v(x) 1 0 0
0 0 1 0
0 0 0 1

 (33)

Thus, the points where c(x) = v(x) are the horizons of the acoustic metric gµν(x), analogous to
astrophysical event horizons. Using a simple physical picture, for acoustic phonons (long-wavelength
excitations), the dispersion relation of Equation (27) has the form ω±(k) ' (v ± c)k, so they are
dragged away by a supersonic flow and, hence, trapped in the supersonic side of an acoustic horizon
in the same way as light is trapped inside the event horizon of a black hole. Nevertheless, although the
above derivation was done for phonons, the analog of the Hawking effect still holds when considering
the complete superluminal dispersion relation in a black hole (BH) configuration [14,40], where modes
with a sufficiently large wave vector in the supersonic region can travel upstream and escape unlike
in gravitational black holes, where nothing escapes. A BH configuration is defined as that with
two asymptotic homogeneous regions, one subsonic and one supersonic, with flow traveling from
subsonic to supersonic, while if the flow goes from supersonic to subsonic, we have a white hole (WH)
configuration, the time reversal of a BH (which just amounts to taking the complex conjugate of the
GP wave function). Invoking the continuity of the wave function, a BH configuration implies that, at
least, one acoustic horizon is formed, that is a point where v(x) = c(x).

In the same fashion, a configuration with two asymptotic homogeneous subsonic regions and
displaying a pair of acoustic horizons (corresponding to a black and a white hole) is the analog of
a black-hole laser (BHL). Specifically, the BHL effect in this setup is characterized by the appearance
of dynamical instabilities in the BdG spectrum. As supersonic flows are energetically unstable, one
can expect this instability to occur for sufficiently large supersonic regions between the two horizons.
A more physical insight of the process can be given using a semiclassical picture [26]: negative energy
radiation emitted at the BH impacts at the WH, and due to the superluminal dispersion relation, some
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of the reflected modes are able to travel upstream and hit the BH again, stimulating further emission.
This process originates a self-amplifying emission that gives rise to a dynamical instability in the flow.

2.4. Solutions of the Homogeneous Gross—Pitaevskii Equation

We finally end this section by reviewing the different stationary solutions of the homogeneous GP
equation as they are the building blocks of most of the theoretical analog models due to their analytical
tractability, serving also as a basis for the calculations presented in this work. In homogeneous
problems, the external potential V(x) is constant, and it can be reabsorbed into the definition of the
chemical potential. In that case, the resulting equation for the amplitude, Equation (18), is analogous
to the Newtonian equation of motion of a classical particle in a potential with the role of position and
time played here by the amplitude of the wave function and the spatial coordinate x, respectively.
Then, it can be integrated to obtain:

1
2

A′2 + W(A) = EA (34)

W(A) =
m
h̄2

(
mJ2

2A2 + µA2 − g
2

A4
)

The quantity EA is the “energy” of the classical particle, and we refer to it as the amplitude energy,
while W(A) is the corresponding amplitude potential.

As a first step, we study the equilibrium points of W(A) as they give the homogeneous plane
wave solutions, A(x) = A, which can be obtained from the zeros of Equation (18):

gn3 − µn2 +
mJ2

2
= 0, n = A2 (35)

This polynomial equation for the density only has (two) real positive roots whenever:

J ≤

√
8µ3

27mg2 (36)

In the rest of the work, we will assume that the condition of Equation (36) is fulfilled and denote
the largest root as n = n0; the associated flow velocity is constant and equal to v0 = J/n0. In order
to simplify the calculations, we rescale the wave function as ψ0(x) → √

n0ψ0(x), so it becomes
dimensionless, and take units such that h̄ = m = c0 = 1, with c0 =

√
gn0/m the sound velocity

associated to the density n0. Length, time and energy are measured in units of ξ0 = h̄/mc0, t0 = ξ0/c0

and E0 = mc2
0, respectively. Furthermore, we will refer to v0 as v for simplicity. In this system of units,

the amplitude of the homogeneous solution with density n0 is just A = A0 = 1 and the associated
current simply reads J = v, while the chemical potential is µ = 1+ v2/2. Indeed, v also represents now
the value of the Mach number of the flow (that is, the dimensionless ratio between the flow velocity
and the speed of sound, v(x)/c(x)).

With the help of these considerations, we rewrite Equation (35) as:

0 = n3 − µn2 +
J2

2
= (n− 1)

(
n2 − v2

2
n− v2

2

)
(37)

from which we immediately obtain the density of the other homogeneous solution:

np = A2
p =

v2 +
√

v4 + 8v2

4
(38)

By construction, np < n0 = 1, which implies that v < 1, and hence, the homogeneous solution
n = n0 = 1 is necessarily subsonic (note that the limit value v = 1 corresponds to the degenerate
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case Ap = A0 = 1). The flow velocity of the solution n = np, vp, is obtained from the conserved
current npvp = J = v. As in these units the sound speed is just the square root of the density,
c(x) =

√
n(x) = A(x), the Mach number of the solution A = Ap is vp/cp = v/n3/2

p . By defining
z ≡ 8/v2 and observing that the function f (z) = z2/3 − 1−

√
1 + z increases monotonically for z > 0,

we conclude that the solution A = Ap corresponds to a supersonic flow since f (z) only has one zero at
z = 8 (v = 1).

We also study the non-homogeneous solutions of Equation (34). For that purpose, we represent
the amplitude potential W(A) in Figure 2. The local minimum corresponds to the homogeneous
supersonic solution Ap =

√np (which means that it is a stable fixed point) and the local maximum to
the homogeneous subsonic solution A0 =

√
n0 = 1 (which means that it is an unstable fixed point).

Figure 2. Left plot: representation of the amplitude potential W(A) (black solid line). We depict some
values of the amplitude energy EA corresponding to qualitatively different solutions; EA = W(A0) is
plotted in the black thick line; W(Ap) < EA < W(A0) is plotted in the solid blue line; EA > W(A0)

is plotted in the red dashed line; and EA < W(Ap) is plotted in the green dashed-dotted line.
The homogeneous solutions A = A0 and A = Ap are marked with a black dot. Right panel: orbits in
the space (A, A′) associated with the values of the amplitude energy shown in the left panel, which
can be obtained from the relation A′2 = 2[EA −W(A)]. The horizontal black line marks A′ = 0.

Rewriting Equation (34) in terms of the density gives the simplified equation:

n′2 = 4(n− n1)(n− n2)(n− n3), (39)

with the densities ni, i = 1, 2, 3 computed from the zeros of the equation W(A) = EA, equivalent to
obtaining the roots of the following polynomial equation in terms of the density:

n3 − 2µn2 + 2EAn− v2 = (n− n1)(n− n2)(n− n3) = 0 (40)

Several cases can be distinguished depending on the value of the amplitude energy EA. First,
for W(Ap) < EA < W(1), the three roots of Equation (40) are real, and we order them such that
0 < n1 < n2 < n3. The case n1 < n(x) < n2 corresponds to the oscillating solution represented by the
the closed blue line of right Figure 2. By integrating Equation (39), we find that:

ˆ
dn

2
√
(n− n1)(n2 − n)(n3 − n)

= ±(x− x0) (41)
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with x0 some integration constant arising from the translational invariance of the problem. The solution
of the previous indefinite integral is given in terms of elliptic functions. The resulting phase of the
wave function is computed from Equation (19), obtaining:

ψ0(x) = Λ(x, n1, n2, n3,−
√

n3 − n1x0) (42)

where:

Λ(x, n1, n2, n3, α) ≡
√

n(x, n1, n2, n3, α)eiφ(x,n1,n2,n3,α) (43)

n(x, n1, n2, n3, α) ≡ n1 + (n2 − n1)sn2(
√

n3 − n1x + α, ν), ν ≡ n2 − n1

n3 − n1

φ(x, n1, n2, n3, α) ≡ φ(0) +
v

n1
√

n3 − n1
Θ
(√

n3 − n1x + α, α, n1, n2, n3, ν
)

Θ (u2, u1, n1, n2, n3, ν) ≡ Π
[

am(u2, ν), 1− n2

n1
, ν

]
−Π

(
am(u1, ν), 1− n2

n1
, ν

)
with φ(0) some global phase. We refer the reader to Appendix A for the precise definition of the
different elliptic functions used along this work.

The case n(x) > n3 for the same value of EA corresponds to a solution that grows indefinitely;
see the blue curve for A > 1 in the right plot of Figure 2. Moreover, for high values of n, n′ ∝ n3/2,
and then, the solution blows up at some finite value xbu as n(x) ∼ (x− xbu)

−2. The same reasoning
holds for EA < W(Ap) (the green dashed-dotted line of Figure 2) or EA > W(1) (the red dashed line
of Figure 2). These exploding solutions are not relevant for the present work, so we ignore them in
the following.

Finally, we consider the degenerate cases EA = W(Ap) and EA = W(A0). For EA = W(Ap),
n1 = n2 = np. One possible solution corresponds to the stable fixed point of the homogeneous
supersonic solution n(x) = np, described by the plane wave:

ψ0(x) =
√

npeivpx (44)

The other possible solution corresponds to n(x) > n3, which blows up in a similar way to the
exploding solutions described above.

The other degenerate case is EA = W(1), where the roots satisfy n2 = n3 = 1 and n1 = v2.
For n(x) = 1, the solution is the subsonic plane wave:

ψ0(x) = eivx (45)

For n(x) 6= 1, we get from Equation (41):

ˆ
dn

2
√
(n− 1)2(n− v2)

= ±(x− x0) (46)

For n(x) < 1, we obtain:

n(x) = v2 + (1− v2) tanh2
[√

1− v2(x− x0)
]

(47)

which is of the same form of Equation (43) after taking into account that sn(u, 1) = tanh(u). The phase
of the wave function can be obtained analytically in a simple form, and we can write the total wave
function as:

ψ0(x) = eivxe−iφ0
(

v + i
√

1− v2 tanh
[√

1− v2(x− x0)
])

(48)

being φ0 some constant phase. This solution represents a soliton with zero velocity [46].
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On the other hand, taking n > 1 in Equation (46) gives the so-called shadow soliton solution [27]:

ψ0(x) = eivxe−iφ0
(

v + i
√

1− v2cotanh
[√

1− v2(x− x0)
])

(49)

Although this solution also blows up at a finite value of x, it is quite relevant for the computation
of stationary states in BHL configurations; see Section 4 and 5.

3. General Relation between Black Holes and Black-Hole Lasers

After introducing the basic concepts and techniques of gravitational analogues in BEC, we proceed
to prove one of the central results of this work, which states that every compact BH solution can
be used to produce a BHL configuration with an arbitrary large homogeneous supersonic region,
explicitly showing the mechanism to construct such BHL configuration. We define a compact BH
solution as that in which a homogeneous supersonic flow is reached at a finite point, x = xH . Indeed,
this is the situation of all of the BH configurations usually appearing in the literature [37].

The proof is straightforward. Consider a compact BH configuration, which satisfies a
time-independent GP equation of the form:

µψ0(x) =

[
− h̄2

2m
∂2

x + VC(x) + g|ψ0(x)|2
]

ψ0(x) (50)

For simplicity, we consider that the BH is produced only with the help of an external potential, but
the generalization to situations in which the coupling constant (like the flat-profile configuration) or
the mass are space-dependent is trivial. By definition of compact BH configuration, VC(x > xH) = Vsp

is homogeneous, and the GP wave function is of the form:

ψ0(x) =

{
ψC(x) x < xH

Aspeiqspx, x ≥ xH
(51)

with Asp, qsp the supersonic amplitude and momentum and ΨC(x) the part of the wave function
that describes the subsonic-supersonic transition. Without loss of generality, we choose the origin of
coordinates such that xH = −X/2, with X > 0.

The idea for obtaining a BHL configuration is to replicate the same structure of the potential and
the GP wave function for x > 0. This can be done by taking the spatial and time reverse of the wave
function and the potential. Explicitly, we consider the GP wave function:

ψ0(x) =


ψC(x) x < −X

2
Aspeiqspx, −X

2 ≤ x ≤ X
2

ψ∗C(−x) x > X
2

(52)

which satisfies the following GP equation:

µψ0(x) =

[
− h̄2

2m
∂2

x + VBHL(x) + g|ψ0(x)|2
]

ψ0(x) (53)

where the potential VBHL(x) is given by:

VBHL(x) =

{
VC(x) x < 0

VC(−x) x > 0
(54)

The wave function of Equation (52) describes a BHL configuration with a homogeneous supersonic
flow in a region of size X. Indeed, since X is not fixed, we can construct a supersonic region of arbitrary
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length with this solution. Therefore, we conclude that every BH solution can be extended to produce
a BHL configuration.

Now, with the help of the previous result, we study the BHL configurations arising from some
well-known BH configurations, shown in the lower and upper row of Figure 3, respectively. One of
the most considered BH configurations is the flat-profile configuration (upper left of Figure 3), in
which the GP wave function is a global plane wave, so the condensate density n and flow velocity v
are homogeneous in all of the space. In order to fulfill the homogeneity condition, the 1D coupling
strength g (x) and the external potential V (x) must satisfy that g(x)n + V(x) is constant. In particular,
in order to construct a BH solution, g(x) is chosen to be a step function with a downstream value
g(x) = g2 such that the resulting flow is supersonic. Although the experimental implementation of
this configuration is extremely challenging due to the required high precision in the control of both the
external potential and the local coupling constant, it is considered in many theoretical works [12–14]
because of its analytical simplicity.

x

c(
x
)

x

c(
x
)

x
c(
x
)

x

c(
x
)

x

c(
x
)

x

c(
x
)

Figure 3. Schematic plot of the spatial profile of sound (blue) and flow (red) velocities for typical
black hole (BH) (upper row) and the corresponding black-hole laser (BHL) (lower row) configurations.
Left column: flat-profile configuration, where the shaded area represents the region with different
values of the coupling constant, g(x) = g2. Central column: delta-barrier configuration, where the
arrows represent the position of the delta potential. Right column: waterfall configuration, where the
shaded area represents the region in which the negative step potential V(x) = −V0 is present.

More realistic configurations are displayed in the central and right panels of the upper row of
Figure 3, corresponding to the delta-barrier and waterfall configurations, respectively; the point is
that these configurations only require simple external potentials that are achievable with the use of
standard experimental tools as blue-detuned (for repulsive potentials) or red-detuned (for attractive
potentials) lasers. For instance, the delta-barrier configuration models the BH arising from the flow of
a condensate through a localized obstacle [36], represented by a repulsive delta potential; by Galilean
invariance, this configuration is similar to launching the obstacle against the condensate. On the other
hand, the waterfall configuration uses an attractive step potential to accelerate the flow and create a
supersonic current. In fact, this model provides a realistic description of the actual setups of [30,35], in
which a negative step potential created with the help of a laser is swept along a trapped condensate,
finding a good agreement with the experimental data [35].

Regarding the BHL side, the associated flat-profile BHL of lower left Figure 3 has been already
considered in the literature in both analytical and numerical studies [27–29]. Specifically, [27] provided
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a detailed study not only of the associated dynamical instabilities of the flow, but also of the different
non-linear stationary solutions existing for fixed chemical potential and current as they describe the
potential quasi-stationary states of the system for long times, once the dynamical instability has already
grown up. In fact, it was shown that the appearance of each dynamical instability is associated with the
appearance of a stationary solution with lower grand-canonical energy K than the initial homogeneous
plane-wave solution.

On the other hand, [28,29] extended the previous analytical work with numerical simulations
of the time evolution of the initially unstable homogeneous solution in order to study the non-linear
saturation of the instability. In particular, [29] found that the system only presents two kinds of
asymptotic behaviors: it either reaches the GP ground state or a regime of continuous emission of
solitons (CES) in which the system emits trains of solitons with perfect periodicity, providing in this
way the closest analog of an actual optical laser.

Following these results, in order to provide more realistic models for black-hole lasing, we study
in the rest of the work the BHL configurations associated with the delta-barrier and the waterfall
configurations, depicted in the lower center and right panel of Figure 3, respectively. Specifically,
due to energy and particle number conservation [27], we only aim at the GP stationary solutions
asymptotically matching at ±∞ the corresponding subsonic plane wave solution. Several reasons
motivate this choice: first, solutions with lower grand-canonical energy and continuously connected
to the initial BHL solution are expected to also characterize the appearance of dynamically-unstable
modes [27]. In addition, there should not be substantial differences in the linear regime with respect to
the usual flat-profile BHL. Moreover, thinking in a realistic implementation, the computed stationary
solutions should still govern the late time dynamics once the system enters into the non-linear
regime [27,29] regardless of the specific mechanism giving rise to the initial growth of the instability at
short times [32–34].

Although the explained protocol to create BHL configurations applies for any arbitrary compact
BH configuration, for illustrative purposes, we focus on these two particular cases as they provide
simple analytical models of realistic experimental scenarios and extend well-known models in the
literature. Of particular interest is the BHL resulting from the waterfall configuration as it corresponds
to an attractive potential well, and hence, it is expected to capture the essential features of the actual
BHL configuration of the experiment of [31], in which the laser cavity is created by sweeping along the
condensate the effective potential well arising from the combination of the background trap and the
negative step potential.

In order to simplify the notation and match the results of Section 2.4, we set units in the rest of
this work such that h̄ = m = c0 = 1, where c0 is the asymptotic subsonic speed of sound. Once in
these units, it is easy to check that for the BHL configurations considered in this work, the problem is
completely determined by only two parameters: the asymptotic subsonic flow velocity v (which is
also the subsonic Mach number in these units) and the size of the supersonic region X, since the
amplitudes of the different potentials are functions of v. This contrasts to the case of the flat-profile
BHL configuration, where there are three degrees of freedom, v, X, c2, with c2 the supersonic sound
speed [29].

For both configurations, we first present the general structure of the problem and then describe
the main features and the conditions of existence for the different families of stationary solutions;
technical details of the computations are given in Appendices B, C, to which the interested reader
is referred.
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4. Attractive Square Well

4.1. General Structure

As a first step, we present the BH solution corresponding to the waterfall configuration, where the
external potential is given by:

V(x) = −V0θ(x− xH), V0 =
1
2

(
v2 +

1
v2

)
− 1 (55)

where θ(x) is the step function and xH the point where the step is placed. The corresponding GP wave
function is given by:

ψ0(x) = ψBH(x) =

{
eivxe−iφ0

(
v + i
√

1− v2 tanh
[√

1− v2 (x− xH)
])

x < xH

vei x
v , x ≥ xH

(56)

with φ0 some phase to make the wave function continuous at x = xH . Following the procedure
described in Section 3, the associated BHL configuration is created by using an attractive square well
potential of size X,

V(x) = −V0θ

(
x +

X
2

)
θ

(
X
2
− x
)

. (57)

We note that the different stationary solutions of a condensate flowing through an attractive
square well were first addressed in [38]. Here, we restrict to the specific case where V0 is given by
Equation (55), so a BHL solution as that of the lower right of Figure 3 exists, described by the GP
wave function:

ψ0(x) = ψBHL(x) =


eivxe−iφ0

(
v + i
√

1− v2 tanh
[√

1− v2
(

x + X
2

)])
x < −X

2

vei x
v , −X

2 ≤ x ≤ X
2

eivxeiφ0
(

v + i
√

1− v2 tanh
[√

1− v2
(

x− X
2

)])
x > X

2

(58)

In order to find the remaining stationary solutions that asymptotically match the subsonic
plane-wave solution eivx on both sides, we use the phase-amplitude decomposition and consider
Equation (34). The asymptotic boundary conditions fix the current to J = v and the amplitude energy
outside the well to EA = E1 = 1

2 + v2. Accordingly, two different regions can be distinguished:
Region 1 corresponds to the exterior of the square well, |x| > X/2, while Region 2 corresponds to its
interior, |x| < X/2. The equation for the amplitude reads in each region as:

A′2

2
+ Wi(A) = Ei, Wi(A) =

v2

2A2 −
A4

2
+ µi A2 (59)

where Wi(A), Ei are the amplitude potential and the conserved amplitude energy for the i = 1, 2
regions, with µ1 = µ = 1 + v2/2 and µ2 = µ1 + V0 = v2 + 1

2v2 . Invoking the continuity of the wave
function and its derivative, we find the matching condition at both edges:

E2 − E1 = V0nW , nW ≡ n
(
±X

2

)
(60)

As E1 is fixed, we only need to find the possible values of E2, which make the GP wave function
satisfy both Equations (59) and (60).

The situation is schematically depicted in the left of Figure 4: outside the well, the orbits follow
the dashed black line as they must asymptotically match the subsonic plane wave on both sides, while
the other curves represent possible solutions inside the well.
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Thus, there are only three possible solutions outside the well: shadow solitons, with amplitude
A(x) > 1; regular solitons, with A(x) < 1; and the homogeneous subsonic plane wave, A(x) = 1.
On the other hand, as the amplitude at x = ±X

2 must be the same, the only possible solution inside the
well is a cnoidal wave, as that of Equation (43), where ni, i = 1, 2, 3 are now the roots of the equation:

n3 − 2µ2n2 + 2E2n− v2 = 0 (61)

For convention, we choose the wave function such that it is real at x = 0, φ(0) = 0.
The matching of the cnoidal wave (see Equation (43)) at x = ±X

2 gives two equations:

n
(
±X

2
, n1, n2, n3, α

)
= nW (62)

Since n1, n2, n3, nW are functions of E2, the above system gives two conditions for two variables,
α and E2. Due to the periodicity of the elliptic functions, the possible solutions for a given length X
are discretized by an index m = 0, 1, 2 . . . representing the number of complete periods inside the
well. As a result, we only need to compute the corresponding values of E2, α, labeled as Em

2 , αm, and
the associated parameters nm

W , nm
i , νm (see Equations (43) and (60)) to determine the wave function;

the details of this calculation are given in Appendix B.
We now discuss the different families of stationary solutions depending on the three possible

cases for the wave function outside the well.

4.2. Homogeneous Plane Wave

In this case, the wave function outside the well is the homogeneous subsonic plane wave, and it is
the most simple one, as it represents a limit of the other two families of solutions. This type of solution
only appears for some critical values of the length X = XH

m , m = 0, 1, 2 . . ., and the corresponding GP
wave function is:

ψ0(x) = ψH
m (x) =


eivxe−iφ0 x < −XH

m
2

Λ(x, nH
1 , nH

2 , nH
3 , 0) −XH

m
2 ≤ x ≤ XH

m
2

eivxeiφ0 x > XH
m
2

(63)

where the critical values nH
1,2,3, XH

m are given in Appendix B.1. Note that m = 0 corresponds to
X = XH

0 = 0 and the trivial solution of a homogeneous subsonic plane wave in whole space as there is
no attractive well.

The orbit in phase space inside the well associated with this family of solutions is depicted as a
red solid line in left Figure 4, while the density profile for ψH

m (x), m = 1, 2, 3, is shown in the central
panels of the same figure.

4.3. Asymptotic Shadow Solitons

The resulting GP wave function for this family of solutions reads:

ψ0(x) = ψSH
m (x) ≡


eivxe−iφ0

(
v + i
√

1− v2cotanh
[√

1− v2(x + x0)
])

x < −X
2

Λ(x, nm
1 , nm

2 , nm
3 , αm) −X

2 ≤ x ≤ X
2

eivxeiφ0
(

v + i
√

1− v2cotanh
[√

1− v2(x− x0)
])

x > X
2

(64)

with φ0, x0 chosen such that the wave function and its derivative are continuous, x0 satisfying
x0 − X/2 < 0.
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As the solutions outside the well are shadow solitons, 1 ≤ nm
W < nSH , where nSH is the density

obtained from the intersection between the dashed black line and the solid blue line in left Figure 4,

nSH =
ESH

2 − E1

V0
, ESH

2 = W2(A2), A2 =

√
1 +
√

1 + 8v4

2v
(65)

The limit case nm
W = 1 corresponds to Em

2 = EH
2 and ΨSH

m (x) = ΨH
m(x). In particular, the function

ΨSH
0 (x) is continuously connected to the homogeneous subsonic plane wave solution, and since it

has the larger amplitude inside the well, it represents the true ground state of the system, as can be
inferred from Equation (21). Hence, the BHL solution ΨBHL(x) of Equation (58) should be dynamically
unstable for any length X > 0 of the well. However, since ΨBHL(x) for X = 0 corresponds to a perfect
soliton, and it is not continuously connected to the ground state, the expected instability should be
just the acceleration of the soliton [48], rather than the growth of a lasing mode, at least for small
cavity lengths 0 < X < XC

0 in which there is no room for other solutions (see discussion in the next
section). A detailed computation of the BdG spectrum should be carried out in order to confirm the
previous hypothesis.

On the other hand, the upper limit nm
W = nSH is a strict inequality, as it corresponds to

Em
2 = ESH

2 , so the wave function is a soliton inside the well, giving rise to an infinite size X. Therefore,
EH

2 ≤ Em
2 < ESH

2 , and the m-th solution only exists for lengths:

XH
m ≤ X < ∞ (66)

The density profile of ψSH
m (x) for m = 0, 1, 2 is represented in the rightmost panel of Figure 4.
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Figure 4. Leftmost panel: orbits in the space (A, A′) corresponding to Equation (59). The thick dashed
black line gives the possible solutions outside the well with amplitude energy E1. The dashed-dotted
green line describes the arbitrary oscillatory solution inside the well, while the solid red line corresponds
to the limit solution within the well that matches the homogeneous subsonic plane wave outside of
it. The solid thick blue line marks the limit orbit associated with the subsonic fixed point, analogous
to that of the dashed curve, inside the well. Central panels: density profile of ψH

m (x), m = 1, 2, 3 for
v = 0.5, corresponding to well lengths XH

1 = 1.8568, XH
2 = 3.7137 and XH

3 = 5.5705. The vertical
dashed lines mark the limits of the square well. Rightmost panel: density profile of ψSH

m (x), m = 0, 1, 2
for v = 0.5 and X = 7.

4.4. Asymptotic Solitons

When the solutions outside the well corresponds to solitons, things are more intriguing than in
the previous cases. We mainly distinguish between symmetric solutions, where the density has even
parity and the GP wave function satisfies ψ0(x) = ψ∗0 (−x), and asymmetric solutions, with no spatial
symmetry.

4.4.1. Symmetric Solutions

For solutions with symmetric character, the solitons out of the well either both contain a minimum
in the density (complete-soliton solutions) or not (incomplete-soliton solutions).
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Incomplete-Soliton Solutions

In this case, the GP wave functions reads:

ψ0(x) = ψS
m(x) ≡


eivxe−iφ0

(
v + i
√

1− v2tanh
[√

1− v2(x + x0)
])

x < −X
2

Λ(x, nm
1 , nm

2 , nm
3 , αm) −X

2 ≤ x ≤ X
2

eivxeiφ0
(

v + i
√

1− v2tanh
[√

1− v2(x− x0)
])

x > X
2

(67)

For incomplete-soliton solutions, x0 satisfies X/2− x0 > 0.
Since the solutions outside the well are solitons, v2 ≤ nm

W ≤ 1. The lower boundary nW = v2 gives

the same solution of Equation (58), in which nm
1 = nm

2 = nm
W = v2 and Em

2 = EC
2 ≡ E1 + v2V0 = 1 + v4

2 ,
existing for arbitrary length X. Hence, this family of solutions is continuously connected to the BHL
configuration described by ψBHL(x). A more detailed analysis of the limit nm

W → v2 (see Appendix B.3)
shows that these solutions appear at the critical lengths XC

m, given by Equation (A14), and can be
understood as small amplitude perturbations on top of the GP wave function of Equation (58),
described by the BdG equations. Precisely, in this limit, all of the elliptic functions are reduced to
trigonometric functions, and the cnoidal wave to a regular sinusoidal wave with wavevector k0,
resulting from the corresponding BdG plane-wave solutions with zero frequency for the supersonic
flow inside the well (see the right of Figure 1 and the related discussion). Indeed, as the dynamically
unstable modes arising from the BHL effect are expected to first show as zero-frequency BdG
modes [27], the critical lengths XC

m should also signal the appearance of a new dynamical instability.
The upper limit, nm

W = 1, gives ψSOL
m (x) = ψH

m+1(x), merging with the ψSH
m+1(x) solutions. Then,

the m-th solution of Equation (67) only exists for:

X ∈ [XC
m, XH

m+1] (68)

The density profile for the incomplete-soliton solutions m = 0, 1, 2 is represented in the upper
row of Figure 5.
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Figure 5. Density profile of the solutions containing solitons outside the square well. The vertical
dashed lines mark the limits of the cavity. Upper row: m = 0, 1, 2 incomplete-soliton solutions for
v = 0.5 and well lengths X = 1.33, X = 3.07 and X = 4.81, respectively. Central row: m = 0, 1, 2
complete-soliton solutions for v = 0.5 and well lengths X = 0.46, X = 1.97 and X = 3.78, respectively.
Lower row: m = 1, 2, 3 asymmetric solutions for v = 0.5 and well lengths X = 1.74, X = 3.48 and
X = 5.22, respectively.

Complete-Soliton Solutions

The wave function is of the same form as that of Equation (67), but with x0 satisfying X/2− x0 < 0.
This family of solutions is also continuously connected to ψBHL(x) and the limit nm

W = v2 gives the
same length as for incomplete-soliton solutions, X = XC

m. The upper limit nm
W = 1 gives X = XH

m and
ψSOL

m (x) = ψH
m (x), merging with the ψSH

m (x) solutions. For m = 0, XC
0 > XH

0 = 0; however, for m
sufficiently large, XC

m < XH
m . Thus, the m = 0 complete-soliton solution is limited to the range:

X ∈ [0, XC
0 ] (69)

while for m ≥ 1, we can only generally say that:

X ∈ [X̃m, max(XC
m, XH

m )] (70)

with X̃m ≤ min(XC
m, XH

m ); check Appendix B.3 for the details.
The density profile for the complete-soliton solutions m = 0, 1, 2 is represented in the central row

of Figure 5.

4.4.2. Asymmetric Solutions

These solutions are not symmetric with respect to the well and are characterized by one
complete (incomplete) soliton at the left and one incomplete (complete) soliton at the right, one case
corresponding to the spatial reverse of the density profile of the other. In particular, they contain an
exact integer number of periods m = 1, 2, 3 inside the well (see Eq. (A15)), with m = 0 giving the trivial
solution of no well, X = 0. The corresponding GP wave function reads:

ψ0(x) = ψA
m(x) ≡


eivxe−iφL

(
v + i
√

1− v2tanh
[√

1− v2
(

x + X
2 ± δx

)])
x < −X

2

Λ(x, nm
1 , nm

2 , nm
3 , αm) −X

2 ≤ x ≤ X
2

eivxeiφR
(

v + i
√

1− v2tanh
[√

1− v2
(

x− X
2 ± δx

)])
x > X

2

(71)

where δx > 0, φL, φR are chosen such that the wave function and its derivative are continuous and
± corresponds to the case of complete-incomplete (incomplete-complete) solitons.

In the same fashion as the symmetric families, in the limit nm
W → v2, the asymmetric solutions

are continuously connected to ψBHL(x), appearing at the critical lengths XA
m given by Equation (A18),

while in the upper limit nm
W → 1, they converge to the homogeneous ψH

m (x) solutions.
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Hence, the m-th asymmetric solution is restricted for lengths:

X ∈ [XA
m , XH

m ], (72)

The density profile for the asymmetric solutions m = 1, 2, 3 is represented in the lower row of
Figure 5.

5. Double Delta-Barrier

5.1. General Structure

The potential corresponding to a single delta-barrier configuration is:

V(x) = Zδ(x− xH), Z =

√
W(1)−W(Ap)

2A2
p

(73)

with W(A) given by Equation (34), Ap the supersonic amplitude of Equation (38) and xH the point
where the barrier is placed. Such a delta potential originates a discontinuity in the derivative of ψ0(x)
of the form ψ′0(x+H)− ψ′0(x−H) = 2Zψ0(xH). The resulting GP wave function is:

ψ0(x) = ψBH(x) =

{
eivxe−iφ0

(
v + i
√

1− v2 tanh
[√

1− v2(x + x0)
])

x < xH

Apeivpx, x ≥ xH
(74)

The constants x0, φ0 are fixed by imposing the continuity of ψ0(x) and its derivative at x = xH .
The associated BHL configuration is described by a cavity of length X placed between two

delta barriers,

V(x) = Z
[

δ

(
x +

X
2

)
+ δ

(
x− X

2

)]
(75)

This configuration was studied in [39] in order to look for resonant BH configurations,
which enhance the spontaneous Hawking signal [17]. Here, we focus only on looking for stationary
BHL solutions, as in the previous section. In particular, by construction, a BHL solution as that of the
lower central part of Figure 3 exists, described by the GP wave function:

ψ0(x) = ψBHL(x) =


eivxe−iφ0

(
v + i
√

1− v2 tanh
[√

1− v2 (x + x0)
])

x < −X
2

Apeivpx −X
2 < x < X

2

eivxeiφ0
(

v + i
√

1− v2 tanh
[√

1− v2 (x− x0)
])

x > X
2

(76)

with x0, φ0 chosen such that the wave function and its derivative are continuous.
As in the computation for the square well, we distinguish two different regions: Region 1

corresponds to the exterior of the cavity, |x| > X/2, while Region 2 corresponds to its interior,
|x| < X/2. In each region, we have that:

A′2

2
+ W(A) = Ei, (77)

where Ei is the conserved amplitude energy for the i = 1, 2 regions, E1 = 1
2 + v2 fixed by the asymptotic

subsonic behavior.
The wave function is continuous everywhere, and the only effect of the two delta barriers is to

introduce a discontinuity in the derivative of the wave function given by:

ψ′0

(
±X+

2

)
− ψ′0

(
±X−

2

)
= 2Zψ0

(
±X

2

)
(78)



Universe 2017, 3, 54 21 of 33

which, in terms of the amplitude, reads:

A′
(
±X+

2

)
− A′

(
±X−

2

)
= 2ZA

(
±X

2

)
≡ 2ZA± (79)

Thus, we can understand the effect of the delta barriers as “instantaneously accelerating” the
classical particle described by Equation (77).

As a result of the above considerations, the only possible choice for the wave function outside the
cavity is the soliton solution, as the other solutions would monotonically increase. The same reasoning
restricts even more the possibilities, and the solitons must satisfy:

A′
(
±X±

2

)
≷ 0 (80)

Inside the cavity, the solution corresponds to a cnoidal wave, with the phase chosen such that
φ(0) = 0 for convention.

By joining Equations (77), (79) and (80), we find that the energy inside the cavity is related to the
amplitude at the edges through:

E2 = E1 − 2ZA±

(√
2 [E1 −W(A±)]− ZA±

)
(81)

Hence, the value of E2 is determined by the cnoidal waves arising from Equation (77) that are
compatible with Equation (81). In particular, as Ep ≤ E2 < E1, with Ep ≡ W(Ap), the amplitudes at
the edges of the cavity must be in the range:

Ainf < A± < Asup (82)

where Ainf < Asup < 1 are obtained from the roots of the equation:

2 [E1 −W(A)]− Z2 A2 = 0 (83)

As for the square well, the possible solutions are labeled by a discrete index m = 0, 1, 2 . . .
representing the number of complete periods of the cnoidal wave inside the cavity, and the wave
function is determined once Em

2 , αm are obtained; the details of this computation are provided in
Appendix C.

In order to classify the different families of solutions, we first distinguish between symmetric and
asymmetric solutions, in analogy to the discussion presented in Section 4.4.

5.2. Symmetric Solutions

Symmetric solutions satisfy:

A+ = A− ≡ AW (84)

A′
(

X±

2

)
= −A′

(
−X∓

2

)
and then, the matching equations at the edges of the cavity read:

E2 = E1 − 2ZAW

(√
2 [E1 −W(AW)]− ZAW

)
(85)

nW = n
(
±X

2
, n1, n2, n3, α

)
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with nW = A2
W . Since the first line gives the density at the edges nW as an implicit function of E2,

the second line is a similar matching condition as that of Equation (62); the only difference is that now,
nW is a much more complicated function of E2. In fact, there are two different solutions for AW < 1 for
a given value of the amplitude energy E2 in the range Ep < E2 < E1, one satisfying Ap < AW < Asup

and the other one Ainf < AW < Ap.
As the signs of the derivatives at the edges outside the cavity are fixed by Equation (80), we classify

the solutions according to the sign of the derivatives at the internal side of the edges of the cavity,
x = ±X∓/2. The limit values between the different solutions are obtained from:

0 = A′
(
±X∓

2

)
= 2ZA

(
±X

2

)
∓ A′

(
±X±

2

)
= 2ZA± −

√
2 [E1 −W(A±)] (86)

which yields a similar equation to Equation (83):

[E1 −W(A)]− 2Z2 A2 = 0 (87)

This equation has two solutions for A < 1, A = Aq and, by construction, A = Ap, with Aq < Ap.
The energies associated with these solutions are E2 = Eq ≡W(Aq) and E2 = Ep < Eq.

Following the above considerations, we distinguish three families of solutions: S+,
for Ap < AW < Asup; S−, for Aq < AW < Ap; and SD, for Ainf < AW < Aq.

5.2.1. S+ Solutions

In this case:

A′
(
−X+

2

)
> 0, Ap < AW < Asup, Ep < E2 < E1 (88)

The corresponding wave function for this family of solutions is:

ψ0(x) = ψS+
m (x) = ψS

m(x, x0, φ0, nm
1 , nm

2 , nm
3 , αm) ≡


eivxe−iφ0

(
v + i
√

1− v2tanh
[√

1− v2(x + x0)
])

x < −X
2

Λ(x, nm
1 , nm

2 , nm
3 , αm) −X

2 < x < X
2

eivxeiφ0
(

v + i
√

1− v2tanh
[√

1− v2(x− x0)
])

x > X
2

(89)
We proceed to discuss the two limit values for the energy Em

2 . In analogy to the square well,
Em

2 = Ep gives ψS+
m (x) = ψBHL(x), which exists for an arbitrary length. Following the results of

Section 4.4, we analyze the limit Em
2 → Ep (see Appendix C.1.1 for the details), in which we find that

these solutions appear at the critical lengths X = XC
m, given by Equation (A23). As for the square well,

they can be understood as small perturbations on top of the GP wave function ψBHL(x), described by
the zero-frequency BdG plane waves with wavevector k0 in the supersonic region.

Reasoning in the same way, the critical lengths XC
m are expected to also describe the appearance

of new dynamical instabilities. Indeed, the family of solutions ψS+
m (x) has lower grand-canonical

energy than ψBHL(x); specifically, ψS+
0 (x) is the ground state of the system. Note that, in contrast to

the square well, here, the ground state is continuously connected to ψBHL(x), and ψBHL(x) should only
be dynamically unstable for finite lengths X > XC

0 > 0. Thus, we expect to find in this case a perfect
correspondence between dynamical instabilities and stationary solutions with lower grand-canonical
energy than the BHL solution of Equation (76), in the same lines of [27].

The upper limit, Em
2 = E1, corresponds to the soliton solution, which gives an infinite value for

the cavity length X. Hence, the m-th S+ solution only exists for:

XC
m ≤ X ≤ ∞ (90)

The density profile of ψS+
m (x) for m = 0, 1, 2 is represented in left Figure 6.
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Figure 6. Density profile of the symmetric solutions for the double-delta configuration. The vertical
dashed lines mark the limits of the cavity. Left panel: m = 0, 1, 2 S+ solutions for v = 0.2 and X = 7.
Central panels: m = 0, 1, 2 S− solutions for v = 0.2 and X = 0.25, 3, 5.76, respectively. Right panel:
m = 0, 1, 2 SD solutions for v = 0.2 and X = 10.

5.2.2. S− Solutions

In this case:

A′
(
−X+

2

)
< 0, Aq < AW < Ap, Ep < E2 < Eq (91)

The wave function is given by the same formal expression of Equation (89). This family of
solutions is also continuously connected to ψBHL(x), and the small amplitude limit near Ep gives the
same critical lengths X = XC

m as the S+ solutions. The upper limit, Em
2 = Eq, only appears for discrete

values of the length, X = Xq
m, given by Equation (A26); note that X = Xq

0 = 0 corresponds to a trivial
single delta-barrier configuration with amplitude 2Z.

The conditions for the existence of these solutions satisfy similar properties as those of
complete-soliton solutions for the square well: for m = 0, XC

0 > Xq
0 = 0, while for m sufficiently large,

XC
m < Xq

m. Hence, reasoning in the same way, the m = 0 S− solution is limited to the range:

X ∈ [0, XC
0 ] (92)

while for m ≥ 1, we can only generally say that:

X ∈ [X̃m, max(XC
m, Xq

m)] (93)

with X̃m ≤ min(XC
m, XH

m ); check Appendix C.1.2 for the details.
The density profile of the S− solutions for m = 0, 1, 2 is represented in the central panels of

Figure 6.

5.2.3. SD Solutions

In this case:

A′
(
−X+

2

)
> 0, Ainf < AW < Aq, Eq < E2 < E1 (94)

and this family of solutions is disconnected from the supersonic homogeneous solution with E2 = Ep.
The wave function is also formally given by Equation (89).

The limit solution Em
2 = Eq corresponds to the upper limit of the m + 1 S− solutions, while

Em
2 = E1 is the soliton solution giving infinite cavity length, so the condition for the existence of the

m-th SD solution is:
Xq

m+1 ≤ X ≤ ∞ (95)

The density profile of the SD solutions for m = 0, 1, 2 is represented in right Figure 6.

5.3. Asymmetric Solutions

For asymmetric solutions:
A+ 6= A− (96)
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and the matching equations at the edges of the cavity are Equation (81) and:

n± = n
(
±X

2
, n1, n2, n3, α

)
, n± = A2

± (97)

Following the discussion after Equation (85), there are two possible values for A± for
Ep < E2 < E1. Since A+ 6= A−, either A− < A+ or A+ < A−, we fix them by imposing A− < A+

(the contrary case would just give the wave function resulting from the spatial inversion of n(x)).
This choice implies that Ap < A+ < Asup, and we distinguish two families of solutions according to
the value of A−: AC, for Aq < A− < Ap; and AD, for Ainf < A− < Aq.

5.3.1. AC Solutions

The wave function takes the form:

ψ0(x) = ψAC
m (x) ≡


eivxe−iφ−

(
v + i
√

1− v2tanh
[√

1− v2(x + x−)
])

x < −X
2

Λ(x, nm
1 , nm

2 , nm
3 , αm) −X

2 < x < X
2

eivxeiφ+

(
v + i
√

1− v2tanh
[√

1− v2(x− x+)
])

x > X
2

(98)

with x±, φ± chosen such that the wave function and its derivative are continuous.
As the energy satisfies Ep < Em

2 ≤ Eq, this family of solutions is also continuously connected to

the BHL solution of Equation (76). In this limit, the critical lengths of the cavity are X = XA,p
m , with

XA,p
m given by Equation (A30), while the opposite limit, Em

2 = Eq, gives the critical lengths X = XA,q
m ,

with XA,q
m given by Equation (A31).

Therefore, the m-th AC solution only exists for:

X ∈ [XA,p
m , XA,q

m ] (99)

The density profile of AC solutions for m = 0, 1, 2 is represented in Figure 7.
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Figure 7. Density profile of the asymmetric solutions for the double-delta configuration. The vertical
dashed lines mark the limits of the cavity. Leftmost panels: m = 0, 1, 2 AC solutions for v = 0.2 and
X = 2, 4.76, 7.51, respectively. Rightmost panel: m = 0, 1, 2 AD solutions for v = 0.2 and X = 10.

5.3.2. AD Solutions

The wave function for this family of solutions is given by the same formal expression of
Equation (98) and the energy satisfies Eq < Em

2 < E1. Reasoning as for the SD solutions, the m-th
solution only exists for:

XA,q
m ≤ X ≤ ∞ (100)

The density profile of AD solutions for m = 0, 1, 2 is represented in the rightmost panel of Figure 7.

6. Conclusions and Outlook

In this work, we have analyzed the use of more realistic models for black-hole lasers in
Bose–Einstein condensates. First, we have proven a general result that associates a black-hole laser
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configuration to every compact black-hole solution. As an application, we have proposed two new
black-hole laser configurations based on the waterfall and the delta-barrier configurations usually
considered for studying analog black holes. In order to characterize them, we have provided a complete
classification of the different families of non-linear stationary solutions as they are key to understand
the stability of the system, as well as its non-linear behavior.

Future works should explore in greater detail these configurations. For instance, a computation
of the linear BdG spectrum would provide a further insight into the stability of the system and the
dynamics of the system at short times. Once obtained, a natural task would be to relate the appearance
of dynamical instabilities with some of the families of stationary solutions presented in this work,
following the ideas outlined in the main text.

On the other hand, in a similar way to [28,29], the non-linear black-hole lasing regime could be
explored by a numerical simulation of the time-dependent Gross–Pitaevskii equation describing the
evolution of the instability of the initial black-hole laser solutions ψBHL(x). According to the results
of [29], only two scenarios are expected for late times: either the system converges to the ground state of
the system or it enters in a regime of continuous emission of solitons (CES). The characterization of the
resulting phase diagram would provide more numerical data that could be useful for the elaboration of
a more quantitative theory of the CES regime, which is currently lacking. We note that the production
of such a soliton laser is of potential interest in quantum transport scenarios or the emergent field of
atomtronics [49,50].

From an experimental point of view, the two black-hole laser configurations here presented
describe more realistic scenarios than the typically-used flat-profile configuration, as they provide
simple models of external potentials that are easy to implement with standard experimental tools.
Consistently, a more realistic numerical simulation should also take into account the complete time
evolution of the configuration from the beginning, not just starting from the black-hole laser solution
ψBHL(x): as discussed in [32–34], the time dependence of the problem is essential in the determination
of the mechanism triggering the instability. However, regardless of the specific transient of the system,
the obtained stationary solutions should still be of great relevance in the non-linear dynamics occurring
at long times after the onset of the instability. Among all of them, the family of SH solutions for the
attractive well and S+ solutions for the double delta-barrier are of special importance as they represent
the true ground state of the system.

In addition, as a direct application of the results of the work, the black-hole laser model using
an attractive square well is particularly interesting, as it is expected to also provide a good description
of the actual experimental configuration of [31], much more accurate than the flat-profile configuration.
In particular, following the reasoning of the above paragraph, the corresponding stationary states are
expected to play a key role in the description of future extensions of the experiment [31] exploring the
non-linear dynamics.
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on the topic. This work has been supported by the Israel Science Foundation.
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Appendix A. Elliptic Functions

We briefly present in this Appendix the definition of the different elliptic functions appearing
throughout this work; see [51,52] for more details. The incomplete elliptic integral of the first kind is
defined as:

F(φ, ν) ≡
ˆ φ

0

dϕ√
1− ν sin2 ϕ

, 0 ≤ ν ≤ 1 (A1)

and the Jacobi amplitude am(u, ν) is defined as its inverse function in the argument φ for fixed ν so
u = F [am(u, ν), ν].
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The Jacobi elliptic functions sn(u, ν), cn(u, ν) are defined as:

sn(u, ν) ≡ sin [am(u, ν)] (A2)

cn(u, ν) ≡ cos [am(u, ν)]

As a consequence of the previous relations, sn(u, ν) and cn(u, ν) are periodic functions with period
4K(ν), K(ν) ≡ F(π

2 , ν) being the complete elliptic integral of the first kind, and satisfy sn2(u, ν) +

cn2(u, ν) = 1. In particular, in the limit of ν = 0, they reduce to the usual trigonometric functions,
sn(u, 0) = sin u, cn(u, 0) = cos u and K(0) = π

2 , while in the upper limit, ν = 1, sn(u, 1) = tanh u
and K(1) = ∞.

Another interesting function that appears when studying stationary solutions of the GP equation
in an infinite well [20] is the incomplete elliptic integral of the second kind:

E(φ, ν) ≡
ˆ φ

0
dϕ

√
1− ν sin2 ϕ (A3)

with E(ν) ≡ E(π
2 , ν) being the complete elliptic integral of the second kind.

Finally, the function Π(φ, m, ν) is the incomplete elliptic integral of the third kind:

Π(φ, m, ν) ≡
ˆ φ

0

dϕ

(1−m sin2 ϕ)
√

1− ν sin2 ϕ
(A4)

and it appears when computing the phase of a cnoidal wave; see Equation (43).

Appendix B. Computation of the Non-Linear Solutions of the Attractive Square Well

We provide in this Appendix the technical details of the computation of the different families of
stationary states for the attractive square well.

Appendix B.1. Homogeneous Plane Wave

As the wave function outside the well is the homogeneous subsonic plane wave, the amplitude
at the edges of the well is fixed to nW = 1, so the amplitude energy inside the well is also fixed to
the value:

EH
2 = E1 + V0 =

3
2

v2 +
1

2v2 −
1
2

(A5)

The roots of Equation (61) are now nH
2 = nW = 1 and:

nH
1,3 =

2EH
2 − v2 ∓

√
(2EH

2 − v2)2 − 4v2

2
(A6)

As E2 is fixed, this solution only exists for certain critical lengths X = XH
m , computed from

Equation (62):

XH
m =

2mK
(
νH)√

nH
3 − nH

1

, νH =
nH

2 − nH
1

nH
3 − nH

1
(A7)

while αm = (m + 1)K(νm).
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Appendix B.2. Subsonic Shadow Solitons

In the case where the wave function outside the well corresponds to shadow solitons, the matching
condition of Equation (62) takes the form:

√
n3 − n1

X
2
+ α = 2(m + 1)K(ν)− sn−1

(√
nW − n1

n2 − n1
, ν

)
(A8)

−
√

n3 − n1
X
2
+ α = sn−1

(√
nW − n1

n2 − n1
, ν

)
from which we find that the amplitude energy Em

2 is computed through the implicit equation:

X = XSH
m (Em

2 ), XSH
m (E2) ≡ 2

(m + 1)K(ν)− sn−1
(√

nW−n1
n2−n1

, ν
)

√
n3 − n1

, (A9)

and αm = (m + 1)K(νm).

Appendix B.3. Subsonic Solitons

Appendix B.3.1. Symmetric Solutions

Incomplete-Soliton Solutions

In this case, the matching condition of Equation (62) gives:

√
n3 − n1

X
2
+ α = 2mK(ν) + sn−1

(√
nW − n1

n2 − n1
, ν

)
(A10)

−
√

n3 − n1
X
2
+ α = −sn−1

(√
nW − n1

n2 − n1
, ν

)
from which we obtain that:

X = XSOL
m (Em

2 ), XSOL
m (E2) ≡ 2

mK(ν) + sn−1
(√

nW−n1
n2−n1

, ν
)

√
n3 − n1

(A11)

and αm = mK(νm).
The limit nm

W → v2 gives νm → 0, and then, all of the elliptic functions are reduced to trigonometric
functions. Specifically, for small values of the parameter:

δm
2 ≡ Em

2 − EC
2 (A12)

we find from Equations (60) and (61) that:

nm
W = v2 +

δm
2

V0

nm
1,2 ' v2 ± δnm, δnm =

√
2δm

2
M2

p−1
, Mp = 1

v2

nm
3 ' 1

v2 ,

(A13)

Mp being the supersonic Mach number. Then, as K(0) = π
2 , we find from Equation (A11) that the

lengths in this limit are:

X = XC
m ≡ XSOL

m (Em
2 → EC

2 ) =

(
m +

1
2

)
πv√

1− v4
=

(2m + 1)π
k0

, k0 = 2

√
1
v2 − v2 (A14)
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Complete-Soliton Solutions

The matching condition here is formally analogous to that of Equation (A8), so Em
2 is computed

from Equation (A9), and αm takes the same value; the difference is that now, one has to take into
account that the solutions outside the well are solitons, and then, nm

W is in the range v2 ≤ nm
W ≤ 1.

From Equations (92) and (93), we can expect the behavior of XSH
m (E2) in Equation (A8) to be highly

non-monotonic in the range EC
2 ≤ E2 ≤ EH

2 for m ≥ 1. This trend can be observed in Figure A1, where
XSH

m (E2) and XSOL
m (E2) are represented.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

2

4

6

8

10

12

Figure A1. Plot of XSH
m (E2) (solid lines) and XSOL

m (E2) (dashed lines) as a function of ∆ ≡ (E2 −
EC

2 )/(EH
2 − EC

2 ) in the range ∆ ∈ [0, 1]. The horizontal solid and dashed-dotted lines correspond to the
limit values X = XC

m and X = XH
m , respectively.

Appendix B.3.2. Asymmetric Solutions

The matching condition of Equation (62) reads:

√
n3 − n1

X
2
+ α = 2mK(ν)± sn−1

(√
nW − n1

n2 − n1
, ν

)
(A15)

−
√

n3 − n1
X
2
+ α = ±sn−1

(√
nW − n1

n2 − n1
, ν

)
with m = 1, 2, 3 . . . the number of complete periods inside the well. The value of Em

2 is computed from:

X = XA
m(Em

2 ), XA
m(E2) ≡

2mK(ν)√
n3 − n1

(A16)

and then:

αm = mK(νm)± sn−1

(√
nm

W − nm
1

nm
2 − nm

1
, ν

)
(A17)

Following a similar calculation as for the symmetric families, the small amplitude limit nm
W → v2

gives the critical lengths:

XA
m ≡ XA

m(Em
2 → EC

2 ) =
mπv√
1− v4

(A18)
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Appendix C. Computation of the Non-Linear Solutions of the Double Delta-Barrier

Appendix C.1. Symmetric Solutions

We provide in this Appendix the technical details of the computation of the different families of
stationary states for the double delta-barrier.

Appendix C.1.1. S+ Solutions

The matching condition of Equation (85) gives the same formal relations of Equation (A8), so
αm = (m + 1)K(νm) and the possible energies inside the cavity are obtained from:

X = XS+
m (Em

2 ), XS+
m (E2) ≡ 2

(m + 1)K(ν)− sn−1
(√

nW−n1
n2−n1

, ν
)

√
n3 − n1

, (A19)

We recall that nW(E2) is now a much more complicated function of E2.
Following the discussion associated with Equation (A12), we compute the solution in the

small amplitude limit near ΨBHL(x), expanding all of the magnitudes in terms of the parameter
δm

2 ≡ Em
2 − Ep. The roots nm

1,2 are computed from Equation (A13), where the supersonic Mach number
is now:

Mp =
v

A3
p

(A20)

The remaining root is nm
3 ' v2/n2

p. On the other hand, as:

A′
(
−X+

2

)
' 2Z(A− Ap),

d2W
dA2

∣∣∣∣
A=Ap

= 2
√

v4 + 8v2 1− np

np
(A21)

from Equation (77), we get:

nm
W − np ' 2Ap(Am

W − Ap) ' 2np

√
δm

2

2Z2np +
√

v4 + 8v2(1− np)
(A22)

Using these results, we find that the critical lengths are:

X = XC
m ≡ XS+

m (Em
2 → Ep) =

mπ + ϕ0√
v2

n2
p
− np

=
2mπ + 2ϕ0

k0
, k0 = 2

√
v2

n2
p
− np (A23)

ϕ0 = 2 arcsin

(√
1− r

2

)
, r = np

√√√√ 2(M2
p − 1)

2Z2np +
√

v4 + 8v2(1− np)

where we have used the identity:

arcsin

(√
1 + x

2

)
+ arcsin

(√
1− x

2

)
=

π

2
(A24)
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Appendix C.1.2. S− Solutions

The matching condition of Equation (85) gives the same formal relations of Equation (A10), so
αm = mK(νm), and the possible energies inside the cavity are obtained from:

X = XS−
m (Em

2 ), XS−
m (E2) ≡ 2

mK(ν) + sn−1
(√

nW−n1
n2−n1

, ν
)

√
n3 − n1

, (A25)

The small amplitude limit near Ep for this family of solutions gives the same critical lengths
X = XS−

m (Em
2 → Ep) = XC

m as the S+ solutions. The upper limit, Em
2 = Eq, only appears for discrete

values of the length,

X = Xq
m ≡ XS−

m (Eq) =
2mK(νq)√

nq
3 − nq

1

, νq =
nq

2 − nq
1

nq
3 − nq

1
(A26)

nq
i being the corresponding roots for E2 = Eq, with nq

1 = nq.
The behavior of XS−

m (E2) in Equation (A25) in the range Ep ≤ E2 ≤ Eq is also highly
non-monotonic for m ≥ 1, similar to that of XSH

m (E2) in Figure A1.

Appendix C.1.3. SD Solutions

The matching condition of Equation (85) is the same as for S+ solutions, so αm = (m + 1)K(νm),
and the possible energies Em

2 inside the cavity are computed from Equation (A19).

Appendix C.2. Asymmetric Solutions

Appendix C.2.1. AC Solutions

In this case, the asymmetric matching condition of Equation (97) gives:

√
n3 − n1

X
2
+ α = 2(m + 1)K(ν)− sn−1

(√
n+ − n1

n2 − n1
, ν

)
(A27)

−
√

n3 − n1
X
2
+ α = −sn−1

(√
n− − n1

n2 − n1
, ν

)
from which we obtain that:

X = XAC
m (Em

2 ), XAC
m (E2) ≡

2(m + 1)K(ν) + sn−1
(√

n−−n1
n2−n1

, ν
)
− sn−1

(√
n+−n1
n2−n1

, ν
)

√
n3 − n1

, (A28)

and:

αm = (m + 1)K(νm)−
1
2

[
sn−1

(√
nm
+ − nm

1
nm

2 − nm
1

, ν

)
+ sn−1

(√
nm
− − nm

1
nm

2 − nm
1

, ν

)]
(A29)

The limit Em
2 → Ep gives the critical lengths:

X = XA,p
m ≡ XAC

m (Em
2 → Ep) =

(
m + 1

2

)
π + ϕ0√

v2

n2
p
− np

(A30)

while, in the opposite limit, Em
2 = Eq,

X = XAC
m (Eq) = XA,q

m , XA,q
m ≡

2(m + 1)K(νq)− sn−1
(√

nq
+−nq

1
nq

2−nq
1

, νq
)

√
nq

3 − nq
1

, (A31)
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with nq
+ the density of the Aq

+ > Ap solution to Equation (81) for E2 = Eq.

Appendix C.2.2. AD Solutions

The asymmetric matching condition of Equation (97) gives now:

√
n3 − n1

X
2
+ α = 2(m + 1)K(ν)− sn−1

(√
n+ − n1

n2 − n1
, ν

)
(A32)

−
√

n3 − n1
X
2
+ α = sn−1

(√
n− − n1

n2 − n1
, ν

)
which yields:

X = XAD
m (Em

2 ), XAD
m (E2) ≡

2(m + 1)K(ν)− sn−1
(√

n+−n1
n2−n1

, ν
)
− sn−1

(√
n−−n1
n2−n1

, ν
)

√
n3 − n1

, (A33)

and:

αm = (m + 1)K(νm) +
1
2

[
sn−1

(√
nm
− − nm

1
nm

2 − nm
1

, ν

)
− sn−1

(√
nm
+ − nm

1
nm

2 − nm
1

, ν

)]
(A34)

where Eq < Em
2 < E1.
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