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Abstract: Blackbody radiation, emitted from a furnace and described by a Planck spectrum, contains
(on average) an entropy of 3.9± 2.5 bits per photon. Since normal physical burning is a unitary process,
this amount of entropy is compensated by the same amount of “hidden information” in correlations
between the photons. The importance of this result lies in the posterior extension of this argument
to the Hawking radiation from black holes, demonstrating that the assumption of unitarity leads to
a perfectly reasonable entropy/information budget for the evaporation process. In order to carry out
this calculation, we adopt a variant of the “average subsystem” approach, but consider a tripartite
pure system that includes the influence of the rest of the universe, and which allows “young” black
holes to still have a non-zero entropy; which we identify with the standard Bekenstein entropy.

Keywords: black holes; unitarity; information; entropy; entanglement; Clausius entropy; Bekenstein
entropy; coarse-grained entropy

1. Introduction

Hawking’s 1976 calculation [1] of the thermal emission from a black hole is often interpreted in
terms of Clausius entropy, indicating that, starting from a star in some unknown pure state, after it
collapses to a black hole and subsequently evaporates, the system will (at the final stage) be in a mixed
state, with corresponding loss of information. This argument gave rise to the so-called black hole
information paradox, and there exist many very different proposals mooted to resolve it. For example,
the information is irremediably lost, or it is stored in remnants or baby universes, or perhaps one has
to appeal to the existence of new physical phenomena such as firewalls, fuzzballs, gravastars, etc. Most
of the current ideas are based on the maintenance of unitary, as in standard quantum mechanics, but
in some situations this assumption gives rise to non-standard physical effects—as in the case of the
Page proposal [2], which motivated, in part, the idea of firewalls [3].

In order to obtain a better understanding of this problem, we first considered a standard
unitary process, standard thermodynamic burning, in order to show the exact quantity of entropy
exchanged between the burning matter and the electromagnetic field, which (given unitarity) must
be compensated for with information hidden in correlations between the photons involved in the
process [4]. We have used this quite standard result as a starting point to understand what happens
with the entropy/information budget in general relativistic black hole evaporation. In this context, we
have constructed a specific model in which we have seen that there is no paradoxical behaviour [5].
So, we claim that maybe the evaporation process is relatively benign.
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2. Entropy/Information in Blackbody Radiation

We begin by considering the standard thermodynamics process of burning matter, where it is well
known that the underlying theory is unitary—at least as long as one uses standard quantum mechanics.
Unitarity implies strict conservation of the von Neumann entropy. We will use this fact to correctly
understand entropy budget when we calculate the entropy associated with the blackbody radiation.1

The application of standard statistical mechanics to a furnace with a small hole leads to the notion
of blackbody radiation. The reasoning that then gives rise to the Planck spectrum implies some coarse
graining (that is, we choose to measure some aspects of the emitted photons and ignore others). In this
process, every photon that escapes from the furnace transfers an amount of entropy to the radiation
field given by

S =
E
T

=
h̄ω

T
, (1)

where E = h̄ω is the energy of the photon and T is the temperature of the furnace. This is simply
the Clausius definition of entropy. For convenience, from now on, this single-photon definition
of entropy will be measured in terms of bits, converted from “physical” entropy by means of
the relation.

Ŝ2 =
S

kB ln 2
. (2)

Now take into account the effect of coarse graining the entropy, considering it in terms of the
von Neumann entropy, which is conserved under the evolution of the system. The information hidden
in the correlations hidden by the coarse graining process is simply

Icorrelations = Scoarse grained − Sbefore coarse graining. (3)

After these preliminary definitions, the next step is to calculate the average energy per photon
in blackbody radiation (using the Planck distribution). We see

〈E〉 = h̄〈ω〉 =
∫

ω f (ω)dω

f (ω)dω
=

π4

30 ζ(3)
kBT, (4)

where ζ is the Riemann zeta function. From this expression, it is straightforward to calculate, using the
definitions of Equations (1) and (2), the average entropy per blackbody photon. We find

〈Ŝ2〉 =
〈E〉

kB T ln 2
=

π4

30ζ(3) ln 2
≈ 3.897 bits/photon. (5)

The standard deviation, (simply coming from the fact that the Planck spectrum has a finite
width), is

σŜ2
=

√
〈E2〉 − 〈E〉2
kB T ln 2

=

√
10800ζ(3)ζ(5)

π8 − 1
π4

30 ζ(3) ln 2
≈ 2.522 bits/photon. (6)

Overall, the average entropy per photon in blackbody radiation is [4]:

〈Ŝ2〉 ≈ 3.897± 2.522 bits/photon. (7)

1 There are alternative non-extensive generalizations of the classical Clausius entropy—such as the Tsallis entropy. Classically,
the Tsallis entropy generalizes the Shannon entropy, and in a quantum situation it generalizes the von Neumann entropy.
However, considerations of the Tsallis entropy lie far beyond the scope of the present article—for now, we are trying
to understand the Hawking entropy budget using the standard tool of von Neumann entropy.
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This expression is relevant when the only thing that we know about the photon is that it was
emitted as part of some blackbody spectrum from a furnace at some (possibly unknown) temperature.
The result depends only on the shape of the Planck spectrum, the Clausius notion of entropy, and quite
ordinary thermodynamic reasoning.

Since we know that the underlying physics is unitary, this entropy must be compensated with an
equal quantity of information. That information would be hidden in the photon–photon correlations
that we did not take into account in our coarse graining procedure. The fact that even a standard unitary
burning process has a precisely quantifiable entropy/information budget should not really come as a
surprise, but it certainly does not seem to be a well-appreciated facet of quantum statistical mechanics.

3. Hawking Evaporation of Black Holes

Taking into account the previous result, now we are interested in applying it to the study
of the entropy budget associated with the evaporation process of a relativistic black hole. In order
to develop our study, we assume the existence of trapping or apparent horizons, which are enough
for the Hawking radiation to exist [6,7], but which also allow the information to escape from the
interior of the black hole. (Event horizons are not necessary for Hawking evaporation, and simply
lead to unnecessary confusion.) Moreover, we consider that the evaporation process is complete and
the whole process unitary—we shall then check whether this assumption is consistent, and whether
the information comes out throughout the Hawking radiation process. Specifically, the question is,
how is entropy encoded in this process? Does the information emerge continuously or only at late
stages of the evaporation process? (For instance, very late stages of the evaporation process, when
the black hole mass, curvature, and Hawking temperature all become Planck scale, might best be
viewed as a particle cascade, see for instance [8].) In order to understand the entropy/information
budget, we are going to calculate first the classical thermodynamic entropy and later the quantum
(entanglement) entropy, in order to compare and contrast them.

3.1. Thermodynamic Clausius Entropy in the Hawking Flux

The Bekenstein entropy lost by a Schwarzschild black hole (per emitted quanta) is

dS
dN

=
dS/dt
dN/dt

=
d(4πkBGE2/h̄c)/dt

dN/dt
= 8πkBE

dE
dN

=
1

TH

dE
dN

=
h̄〈ω〉
TH

=
kBπ4

30 ζ(3)
. (8)

In a similar way, the Clausius entropy gain of the external radiation field (per emitted quanta),
that is, the entropy gain of the Hawking flux, is

dS
dN

=
dE/TH

dN
=

h̄〈ω〉 dN
TH dN

=
h̄〈ω〉
TH

=
kBπ4

30 ζ(3)
. (9)

Both entropies are the same (as they certainly should be) and their measure in bits will be exactly
the same quantity that we calculated previously in the standard thermodynamic case [in Equation (7)],
dŜ2
dN = π4

30ζ(3) ln 2 ≈ 3.897 bits/quanta. So, it can be seen that throughout the whole evaporation process,
semi-classically, we have:

SBekenstein(t) + SClausius(t) = constant = SBekenstein,0. (10)

This is represented in Figure 1, showing that semi-classically everything holds together very
nicely. (This should not be at all surprising since the normalization constant in the Bekenstein entropy
was originally derived by integrating up the Clausius entropy in the Hawking flux.)

3.2. Entanglement Entropy in the Hawking Flux

In order to calculate the entanglement (von Neumann) entropy, we have adopted a variant
of a method developed by Page [9] that allows us to calculate the average subsystem entropy of
multipartite systems. We take the Hilbert space of the total system to split as the tensor product of
Hilbert subspaces corresponding to subsystems A and B, (for now taking into account only a bipartite
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system), HAB = HA ⊗HB, and also take the total space to be in a pure state. So, we can define the
subsystem density matrix of A as ρA = trB(|ψ〉〈ψ|), and ρB = trA(|ψ〉〈ψ|) for subsystem B. Then, each
subsystem has an associated subsystem von Neumann entropy, ŜA = −tr(ρA ln ρA), and similarly
ŜB = −tr(ρB ln ρB). Indeed, because the total system is in a pure state ŜA = ŜB.
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Figure 1. Clausius (thermodynamic) entropy balance: As the black hole Bekenstein entropy
(defined in terms of the area of the horizon) decreases, the Clausius entropy of the radiation increases,
to keep total entropy constant and equal to the initial Bekenstein entropy.

Taking a uniform average over all possible pure states of the total system,2 the central result that
Page obtained was that the subsystem entropy satisfies

Ŝn1,n2 = 〈ŜA〉 = 〈ŜB〉 . ln m, (11)

where n1 = dim(HA) and n2 = dim(HB) are the dimensions of the Hilbert spaces corresponding
to each subsystem, and m = min{n1, n2} is the minimum of dimension of the two Hilbert spaces.
Therefore, the subsystem entropy is very close to its maximum value, so that each subsystem is very
close to being in a maximally mixed state. By combining the exact result derived by Sen [10], and
the discussion carried out in reference [5], we can provide a strict limit to this entropy, given by

Ŝn1,n2 = 〈ŜA〉 = 〈ŜB〉 ∈
(

ln m− 1
2 , ln m

)
, (12)

so the average subsystem is within 1
2 nat of its maximum possible value.

4. Bipartite Entanglement

The specific model considered by Page [2] was a global system comprised of one subsystem that
corresponds to the Hawking radiation and another subsystem that corresponds to the black hole, for
which Hilbert spaces are given, respectively, byHHawking radiation = HR andHblack hole = HH. In this
bipartite system, initially, before the evaporation of the black hole starts, there is not yet any Hawking
radiation. Then, the Hilbert space HR is trivial, but the Hilbert space HH is enormous. (However,
note that one has to assume that the total system is in a pure state to apply Page’s argument.) As the
subsystem entropy is given by the minimum Hilbert space dimension, one has (ŜnH,nR)0 = 0, where
the subscript indicates the initial state, t = 0.

In the opposite way, once the evaporation is completed, there will be no black hole, so, its
Hilbert space dimension is trivial, and it is the Hawking radiation subspace which has an enormous

2 This uniform averaging process always makes sense mathematically; when applied to black holes, this mathematical process
is a “stand in” for the only partially known physics that thermalizes both the Hawking radiation and the evolving black
hole. Our initial input assumptions along these lines are certainly no stronger than those used in deriving the Page curve.
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Hilbert space dimension, giving (ŜnH,nR)∞ = 0, where now the subscript indicates the final state,
considered when t = ∞.

In order to calculate the entropy at intermediate states, it is necessary to consider that the evolution
is unitary, thus the total Hilbert space dimension is constant nH(t) nR(t) = nH0 = nR∞ . Under these
conditions, the average subsystem entropy will be given in terms of

ln min
{

nH(t),
nH0

nH(t)

}
. (13)

It is easy to find the maximum value of the average subsystem entropy, which is reached when
nH(t) ≈

√nH0 , at which stage it takes the value

ŜnH,nR(t = tPage) ≈
1
2

ln nH0 . (14)

This time at which the black hole has lost half of its entropy is called the “Page time”. It is
possible to represent the shape of the evolution of this subsystem entropy, as it can be seen in Figure 2.
The so-called “Page curve” [2] is the “entanglement entropy” curve.
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Figure 2. Page curves for entanglement entropy and asymmetric subsystem information: These are
derived under the “average subsystem” assumption applied to a pure-state bipartite system consisting
only of (black hole) plus the (Hawking radiation).

Page also calculated the (averaged) asymmetric subsystem information given by the expressions [2]

Ĩn1,n2 = ln n1 − Ŝn1,n2 , Ĩn2,n1 = ln n2 − Ŝn1,n2 ; (15)

which are also represented in Figure 2. These are the curves labelled “radiation subsystem information”
and “hole subsystem information". In order to get a better understanding of the information budget,
we have calculated the mutual entropy of the subsystems, given by

IA:B = SA + SB − SAB. (16)

In this bipartite system, it can be expressed as

IH:R = 2SH = 2SR. (17)

We have found that when we apply the “average subsystem” process to the mutual information,
and combine it with the asymmetric subsystem information, we have that the “sum rule” is satisfied:

〈 ĨH,R〉+ 〈 ĨR,H〉+ 〈 ÎH:R〉 ≈ ln (nHnR) ≈ constant ≈ ŜBekenstein,0. (18)

This sum rule is represented in Figure 3.
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The Page curve underlies much of the present discussion about the “information paradox”.
The main result implies that the black hole subsystem is maximally entangled with the radiation
subsystem. However, at the same time, if we sub-divide the Hawking radiation subsystem between
early and late radiation (respectively, before and after Page time), these two subsystems would be
also maximally entangled between them, and also with the black hole subsystem. The problem lies
in the fact that, due to the monogamy of entanglement, this is not possible, and it was one of the
motivations for the proposal of firewalls [3]. Nevertheless, we argue that this model misses much
of the relevant physics.
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Figure 3. Modified Page curves for the bipartite mutual information and the asymmetric subsystem
information: These are derived under the “average subsystem” assumption applied to a pure-state
bipartite system consisting only of (black hole) plus the (Hawking radiation).

There are some unacceptable aspects of the standard argument. For instance, the standard
argument assumes that the initial black hole (after formation but before any radiation is emitted) is
in a pure state, so that the initial subsystem entropy vanishes. That assertion is in tension with the
idea of relating the initial von Neumann entropy with the Bekenstein entropy of the black hole. That
the Bekenstein entropy is a coarse-grained von Neumann entropy characterizing the number of ways
in which the black hole could have formed is an old idea going back to the 1970s. Quantitatively,
this idea was first formalized by Bombelli et al. [11], and few years later was independently explored
by Srednicki [12], both groups calculating the scaling of entanglement entropy with area (see, also,
the reviews [13,14], and the recent article on coarse-graining [15]). We propose that these problematic
issues may be related to the consideration of an over-simplified (black hole)+(radiation) “closed box”
system, ignoring the environment. That is, we argue that we should instead consider a tripartite
system, in which we explicitly add the rest of the universe, (the environment), expecting a much better
physically more reasonable behaviour for the entropy budget.

5. Tripartite Entanglement

We now consider a tripartite system which consists of three subsystems, associated to the black
hole, the Hawking radiation, and rest of the universe (environment), respectively. So the Hilbert space
now is split in the form: HHRE = HH ⊗HR ⊗HE. Since we assume that the entire Universe is in a
pure state (SHRE = 0), now the entropy of the subsystems is given by SH(t) = SRE(t), SR(t) = SHE(t),
and SE(t) = SHR(t). In this case3, the initial subsystem entropies, (before the evaporation starts, when

3 If the universe is not in a pure state, the fix is simple: Divide the universe into observable and unobservable sectors.
Take the entire universe to be a pure state and trace over the unobservable portion of the universe; the observable part
of the universe is then described by a density matrix. Discard the unobservable part of the universe (it is merely a spectator)
and work with the black hole, the Hawking radiation, and the rest of the observable universe (environment). The same
argument applies, and we see that for all practical purposes we might as well (without loss of generality) assume the
universe is in a pure state.
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dim(HR)0 = 1), are SH0 = SE0 and SR0 = 0 = SHE0 . It is important to realise that after black hole
formation but before evaporation starts one has SH0 = SE0 = SBekenstein,0.

Starting from any stellar object, collapse and horizon formation (be it an apparent horizon,
trapping horizon, event horizon, or some notion of approximate horizon) is an extremely dramatic
coarse-graining process. We emphasize (since we have seen this point causes some considerable
confusion) that the end result of the collapse process is that the entropy of the newly formed black hole
is the Bekenstein entropy associated with the horizon. Indeed, the Bekenstein entropy is the entropy
associated with all possible ways in which the black hole could have been formed; not the entropy
of the original stellar object that underwent collapse; that stellar entropy is unknown and unknowable
after black hole formation, this merely being one side effect of the “no hair” theorems.

(Indeed, if one denies the applicability of Bekenstein entropy to the newly created black hole,
then it is absolutely no surprise that one rapidly ties oneself up in logical knots when considering
the Hawking emission process.)

More precisely: One can either appeal to Bekenstein’s original papers to get (entropy) ∝ (area),
and then fix the normalization constant using Hawking’s original papers [16,17]. Alternatively, if one
insists on working only with von Neumann entropy, then one can use Srednicki’s calculation showing
that generically (entropy) ∝ (area) for any surface we cannot look behind [12], and again fix the
normalization constant using Hawking’s original papers [17]. (See also Bombelli et al. calculations of
the von Neumann entropy implied by the existence of a horizon [11].)

The final entropies, when the black hole is completely evaporated (dim(HR)∞ = 1) are
SH∞ = 0 = SRE∞ and SR∞ = SE∞ . We assume that the evolution is unitary, so the total Hilbert space
is preserved. The environment does not participate directly in the evaporation process, since the role of
the environment is merely to allow the initial t = 0 black hole to have a non-zero entropy. After t = 0,
the environment evolves separately, that is, the unitary time evolution operator is the tensor product
of a unitary operator corresponding to the environment and another unitary operator corresponding to
the black hole and Hawking radiation subsystems, UHRE(t) = UHR(t)⊗UE(t). Thus, the total Hilbert
space of the environment and the total Hilbert space of the other two subsystems are independently
preserved during the evaporation process, and we can express the conservation of the Hilbert space
dimension as nE0 = nE(t) = nE∞ ≡ nE and nH(t) · nR(t) = nH0 = nR∞ .

We have computed the average entropy of the black hole and Hawking radiation subsystems,
taking as an additional assumption that (throughout the evolution) the Bekenstein entropy can be
interpreted as the entanglement entropy of the black hole,

ŜBekenstein(t) = 〈ŜH(t)〉 ≈ ln min
{

nH(t), nR(t) nE

}
≈ ln nH(t), (19)

〈ŜR(t)〉 ≈ ln min
{

nR(t), nH(t) nE

}
≈ ln nR(t). (20)

We have also obtained the sum of both averaged entropies. After some calculation

〈ŜH(t)〉+ 〈ŜR(t)〉 ≈ ln
[
nH(t) nR(t)

]
= constant = ln nH0 . (21)

This sum rule is represented in Figure 4. In the same way, we have obtained the average entropy
of the environment subsystem. It is important to note that this entropy only corresponds to that part
of the universe which is entangled with the other subsystems, it is not the entropy of the rest of the
universe. Calculation yields

〈ŜE(t)〉 = 〈ŜHR(t)〉 ≈ ln nH0 ≈ constant ≈ SBekenstein,0. (22)
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In this tripartite system, the mutual information between the Hawking radiation subsystem and
the black hole subsystem is more interesting, and is given by the expression

IH:R = SH + SR − SHR = SH + SR − SE. (23)
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Figure 4. Tripartite quantum (von Neumann) entropy balance: Under the “average subsystem”
assumption, now applied to a pure-state tripartite system consisting of (black hole) plus
(Hawking radiation) plus (rest of universe), the quantum (von Neumann) analysis reproduces the
Clausius (thermodynamic) analysis. As the black hole Bekenstein entropy decreases, the entanglement
entropy of the radiation increases, to keep total entropy approximately constant, at least to
within 1 nat. In the limit where the environment (rest of universe) becomes arbitrarily large,
the correspondence is exact.

It is possible to calculate the average mutual information, and one finally finds [5] that it is always
less than 1/2 nat during the whole evaporation process,

〈 ÎH:R〉 ≤
nHnR

2nE
=

nH0

2nE
≤ 1

2
. (24)

It is also interesting to note that if the environment becomes arbitrarily large, which is certainly
possible in this tripartite system without any loss of generality, then it can be seen that the previous
sum in Equation (21) becomes exact

lim
nE→∞

(
〈SH〉+ 〈SR〉

)
= lim

nE→∞
〈SE〉, (25)

and the mutual entropy is also exactly zero [5]

lim
nE→∞

〈IH:R〉 = 0. (26)

6. Discussion

First of all, we have obtained the numerical value of the entropy per photon emitted in black
body radiation, which, because the process is unitary, must be compensated by an equal “hidden
information” in the correlations. As is well known, there is no “information puzzle” in a standard
thermodynamic process, but we note that due to the coarse-graining [15], a specifically quantifiable
amount of entropy/information is nevertheless exchanged in the process [4].

From this starting point, we have applied these ideas to the consideration of general relativistic
black holes, calculating both the classical thermodynamic entropy and the Bekenstein entropy, and
seeing that they compensate perfectly. Once we have calculated the classical entropy, we then calculate
the quantum (entanglement) entropy, considering a model based on a tripartite system. The result
obtained is completely in agreement with the classical expected results, at least to within 1 nat.
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In contrast, the result previously obtained by Page, by considering a bipartite model that does not
interact with the environment, gives rise to not well-understood physics.

From our analysis, it can be seen that although when we restrict attention to any particular
subsystem we perceive an amount of entanglement entropy, (a loss of information), there exists
a complementary amount of entropy/information that is codified in the correlations between the
subsystems. Then, assuming the unitarity of the evolution of the (black hole) + (Hawking radiation)
subsystem, and working within the standard Page-like average-subsystem framework, we showed
that it seems that there is no pressing need for any unusual physical effect to enter into the process.
This implies a continuous purification of the Hawking radiation, and could lead to a completely
non-controversial and quite standard physical picture for the evaporation of a black hole. (Here, we are
taking into account only the semiclassical process of Hawking radiation, until a deeper understanding
of the underlying micro-physics of quantum gravity phenomena might be found.)
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