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Abstract: One important ingredient in the study of cosmological evolution is the equation of state of
the primordial matter formed in the first stages of the Universe. It is believed that the first matter
produced was of hadronic nature, probably the quark–gluon plasma which has been studied in
high-energy collisions. There are several experimental indications of self-similarity in hadronic
systems—in particular in multiparticle production at high energies. Theoretically, this property was
associated with the dynamics of particle production, but it is also possible to relate self-similarity
to the hadron structure—in particular to a fractal structure of this system. In doing so, it is found
that the thermodynamics of hadron systems at equilibrium must present specific properties that
are indeed supported by data. In particular, the well-known self-consistence principle proposed by
Hagedorn 50 years ago is shown to be valid, and can correctly describe experimental distributions,
mass spectrum of observed particles, and other properties of the hadronic matter. In the present
work, a review of the theoretical developments related to the thermodynamical properties of hadronic
matter and its applications in other fields is presented.
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1. Introduction

One of the most striking features of high-energy collisions (HECs) is the formation of a system in
thermodyanmical equilibrium which subsequently decays through the emission of several particles.
In spite of the fact that evidence of the existence of such a system—which received the name
“fireball”—was already present in the 1950s [1], the idea of fireballs was somewhat challenged by
experimental data as the collision energy increased. Today there is no doubt that the outcomes of HEC
is mostly determined by the decay of a fireball, but the complete thermodynamical description is
still controversial.

The existence of hadronic matter at thermodynamical equilibrium also has important
consequences in other areas: such matter was possibly the first produced during the evolution of
the early universe. It is also conjectured that the effects of such a system in neutron stars has strong
implications for the stability of those objects. In this work, a brief review on the idea of fireball and on
the description of its thermodynamical properties is presented. It is shown that the self-similarity of
hadronic systems can be a relevant aspect of those properties, and that Tsallis statistics can be the best
framework for its description.

One of the first and most fruitful attempts to describe the thermodynamics of fireballs was the
one advanced by Rolf Hagedorn [2]. The crucial point in his theory was evident already in the very
definition of fireballs, which was proposed by Hagedorn as: fireball is (*) a statistically equilibrated
system formed by an undetermined number of fireballs, each of them in turn being (goto *). This is an unusual
definition for a physical system, since it is recursive: the word fireball appears in its own definition
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and it could therefore be regarded as useless. However, Hagedorn succeded in obtaining the entire
thermodynamics of fireballs based essentially on that definition, as is shown below.

Hagedorn’s Self-Consistence Principle

Since fireballs are made of fireballs, Hagedorn conceived an ideal gas of such systems,
which should be itself a fireball. Then, the partition function can be written as [2],

log[1 + Z(Vo, T)] =
Vo

2π2

∫ ∞

0
dm

∫ ∞

0
dp p2×[

ρF(m)log[1 + exp(−β
√

p2 + m2)− ρB(m)log[1− exp(−β
√

p2 + m2)]

]
,

(1)

where β = 1/T, and ρF(B)(m) is the mass spectrum of fermions (bosons) in the gas. After Taylor
expansion of the logarithm at the right-hand side, one obtains

log[1 + Z(Vo, T)] =
Vo

2π2

∞

∑
n=1

1
n

∫ ∞

0
dm

∫ ∞

0
dp p2ρ(n; m) exp{−nβ

√
p2 + m2} , (2)

where
ρ(n; m) = ρB(m)− (−1)nρF(m) , (3)

Vo is the gas volume, and for energies high enough only the term corresponding to n = 1 is
relevant. In this case, ρ(n = 1; m) = ρ(m) is the hadron mass spectrum of a gas composed of fermions
and bosons, and it corresponds to the sum of the fermions and bosons mass spectra given above.

As it happens for any system, the partition function can also be written in terms of the density of
states, σ(E), as

Z(Vo, T) =
∫ ∞

0
σ(E) exp{−βE}dE . (4)

Obviously, one must necessarily have

Z1 = Z2 , (5)

where Z1 and Z2 are the two forms of partition function in Equations (2) and (4), respectively.
In general, ρ(m) and σ(E) are distinct functions, but in the case of fireballs, since the internal

energy of the gas can be related, they must be related to one another. In fact, Hagedorn imposes the
so-called weak-constraint

log[ρ(m)] = log[σ(E)] , (6)

meaning that both functions must be of the same order of magnitude. In addition, he considered that
such equality should hold only asymptotically.

Most of the work performed by Hagedorn, as described in Ref. [2], was to look for function ρ(m)

and σ(E) that simultaneously satisfy Equations (5) and (6). It results that such functions exist and have
the form

ρ(m) = m−5/2exp[m/kTo] (7)

and
σ(E) = Eaexp[E/kTo] , (8)

where To and a are constant parameters. With these functions, both forms of the partition function
reduce to

Z(T) ∼
[

1
β− βo

]a+1
(9)

where β = 1/T and βo = 1/To and a + 1 = γVo/(2π2β3/2), and γ is a constant.
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These are important results of the Hagedorn’s theory that can be directly verified experimentally.
The energy distribution of the particles in the fireball, or equivalently the transverse momentum (pT)
distribution, which is easier accessed in experiments, is given by

d2N
dpTdy

(y = 0) =
gV

(2π)2 pTmTexp
(

mT − µ

T

)
, (10)

where mT =
√

p2
T + m2 and µ is the chemical potential, so by fitting such formula to data the

temperature, T, is obtained. It was verified that for collisions at sufficiently high energies the
temperature of the formed fireball is independent of the collision energy of particle species, in
accordance with the theoretical predictions.

The mass spectrum in Equation (7) can be fitted to the observed number of hadronic states as
a function of mass, obtaining the parameter To. It was found that the the formula for ρ(m) indeed
describes the observed mass spectrum above ∼800 MeV, and To can be obtained. It was fundamental
for the success of Hagedorn theory that the limiting value of temperature found in pT distribution
analyses was equal to the parameter To. Thus, the predictions from Hagedorn’s theory were fully
supported by data.

This success prompted many works in the following years: Frautshi [3], with his bootstrap model
where hadrons are supposed to be made of hadrons—as is the case for fireballs—obtained the same
mass spectrum formula firstly obtained by Hagedorn. This result shows the strict connection between
structure and thermodynamics in the case of hadrons. Hadron resonance gas (HRG) models were
formulated [4], and the theoretical basis for the adoption of an ideal gas model to describe a fireball
was put forward, based on Feynman–Dyson expansion [5].

The theoretical framework for the thermodynamics of fireballs was completely established, and
the Hagedorn temperature, To, became a matter of fact. Based on the MIT bag model for hadrons,
Cabibbo and Parisi [6] interpreted To as a critical temperature for the phase transition between the
known confined regime of quarks and gluons to a hypothesized deconfined regime, linking Hagedorn’s
theory to the recently developed quark structure of hadrons. This work triggered the search for the
quark–gluon plasma—a new state of matter whose existence was proved experimentally only after
three decades of intense efforts.

Despite the astonishing success in predicting so many characteristics of the hot and dense
hadronic matter, as the beam energy increased and a larger range of pT distribution became available,
Hagedorn’s theory was found to fail in completely describing the outcome of HECs. In fact, Hagedorn
himself proposed an alternative empirical model [7] in substitution to his thermodynamical theory.
A natural question that arises is: what went wrong? To answer this question, a special kind of fractal
structure is discussed in the next section. In what follows, only the hadronic matter is considered,
so a phase transition to the quark–gluon plasma cannot be analysed.

2. The Fractal Structure of Hadrons

The essential aspect of both Hagedorn’s definition for fireballs and Frautshi’s definition for
hadrons is the self-similarity present in their definitions. Self-similar structures were more deeply
investigated only two decades after Hagedorn proposed his thermodynamics, when Mandelbrot [8]
introduced the concept of fractals (i.e., systems with fractional dimensions). Experimental evidence
of a fractal structure in multiparticle production in HEC were first noticed through the study of
intermittence in high-energy distributions [9,10]. The fractal dimension obtained in such analyses was
found to be in the range D = 0.45 to 0.65 for pp collisions and e+e− collisions [11–19]. The origin of
this fractal dimension was attributed to the dynamical process of multiparticle production [20–22].
The fractal dimension obtained in intermittence analysis from pp collisions is in the range 0.43 to
0.65 [23–27]. Such analyses are rather complex and delicate, with many factors that can disturb the
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results [28,29]. The limitations of this approach were already recognized by the beginning of the
new millenium.

Further evidence for self-similarity is the z-scaling [30,31]. High-energy distributions were shown
to scale with the variable z = zoΩ−1, where

Ω = (1− x1)
δ1(1− x2)

δ2(1− y1)
ε1(1− y2)

ε2 , (11)

with x1 and x2 being the fraction of momentum carried by the initial colliding partons and ε1 and ε2

being the faction of momentum carried by the outgoing partons. The exponents in the expression
above represent the fractal dimensions of the phase-space.

Expressed in therms of such z variable, all data fall along one single function ψ(z) given by

ψ(z) =
π

(dN/dy)σin
J−1 d3σ

d3 p
(12)

where J is the Jacobian of the transformation (pT , y) → (z, η), and dN/dy is the central differential
multiplicity with respect to the rapidity y. The fractal dimension that results from the z-scaling is
D = 0.5, in nice agreement with the results from intermittence analysis.

Self-symmetry in high-energy collisions was recently proved in a very direct way. Wilk and
Wlodarcyk [32] have shown that jets produced in those collisions present the same pT distribution
followed by single hadrons, which is strong evidence that a jet is a fireball as much as hadrons are.
Moreover, when the distribution of the transversal momentum of the jet particles with respect to the
direction of the jet is calculated, its distribution is also similar to the distribution of hadrons and jets
with respect to the beam direction. This means that not only are jets fireballs, but the particles inside
the jets are also fireballs.

Only recently has a connection between the experimental evidence of self-similarity in HEC and
the Hagedorn and Frautschi models for fireball and hadrons been attempted [33,34] by introducing the
concept of thermofractals; that is, systems with fractal structure in their thermodynamical quantities.
It turns out that with such structure, Hagedorn’s self-consistence principle can be rescued from its
apparent failure, as discussed below.

2.1. Thermofractals

Thermofractals are defined as systems in thermodynamical equilibrium presenting the following
three properties [33,34]:

1. The total energy is given by
U = F + E , (13)

where F corresponds to the kinetic energy of N′ constituent subsystems and E corresponds to the
internal energy of those subsystems, which behaves as particles with an internal structure.

2. The constituent particles are thermofractals. The ratio 〈E〉/〈F〉 is constant for all the subsystems.
However, the ratio E/F can vary according to a distribution which is self-similar, P̃(E); that is,
at different levels of the subsystem hierarchy the distribution of the internal energy is equal to
that in the other levels.

3. At some level n in the hierarchy of subsystems, the phase space is so narrow that one can consider

P̃(En) dEn = ρ dEn , (14)

with ρ being independent of the energy En.

The energy distribution of a thermodynamical system is given according to Boltzmann statistics by

P(U)dU = A exp(−U/kT)dΓ , (15)
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where dΓ is an infinitesimal volume in the phase space. In the case of thermofractals, the phase space
must include momentum degrees of freedom of free particles as well as the internal degrees of freedom;
therefore, one can write

dΓ = Vd3N′ p dE (16)

where p is a momentum component for one of the particles composing the gas, while dE depends
on their internal degrees of freedom and V is the volume of the gas. Since kinetic and internal
degrees of freedom are independent, one can integrate in the momentum coordinates, obtaining the
well-known result

∫ ∞

−∞
exp

(
−

3N′

∑
i=1

p2
i

2mkT

)
d3 p ∝

∫ ∞

0
F3N′/2 exp

(
F

kT

)
dF , (17)

where F is the kinetic energy of the N′ compound thermofractals.
For the internal degrees of freedom, according to property 2 of self-similar thermofractals [33],

the part related to internal degrees of freedom is given by

dE =
F

kT
[
P̃(ε)

]ν dε (18)

with ν an exponent that will be determined below, and

ε

kT
=

E
F

. (19)

Defining

α(ε) = 1 +
ε

kT
(20)

Equation (15) is now given by

P(U)dU = AF
3N
2 −1 exp

(
− αF

kT

)
dFP̃(ε)dε , (21)

where N = N′ + 2/3 is an effective number of particles that accounts for the relevant internal degrees
of freedom and A is a normalization constant.

The thermodynamical potential is given by

Ω =
∫ ∞

0
AF

3N
2 −1 exp

(
− αF

kT

)
dF
[
P̃(ε)

]ν dε . (22)

which after integration on F results in

Ω =
∫ ∞

0
A
[

1 +
ε

kT

]3N/2 [
P̃(ε)

]ν dε . (23)

It is possible to impose the identity

P(U) = P̃(ε) (24)

corresponding to a self-similar solution for the thermofractal probability distributions. The simultaneous
solution for Equations (23) and (24) is obtained with

P(ε) = A
[

1 +
ε

kT

]− 3N
2

1
1−ν

. (25)
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Defining the quantities q and τ by

q− 1 =
2

3N
(1− ν) (26)

and

τ =
2(1− ν)

3
T (27)

it results from Equation (25)
P(ε) = Aeq(−ε/τ) , (28)

where

eq(x) =
[

1 + (1− q)x
] 1

1−q
(29)

is the q-exponential function. Equation (28) is exactly the Tsallis q-exponential factor characteristic of the
nonextensive statistics [35].

The fact that the probability distribution for thermofractals is the Tsallis q-exponential has
several consequences. It establishes a new connection between Boltzmann statistics and Tsallis
statistics, aside from the ones already known based on Fokker–Planck equation [36], on fluctuation
temperature [37–39], and on finite size of the system [40]. However, this time it is not based in
thermodynamical properties, but on the the system structure, allowing a direct connection with
energy fluctuation. As usual, the limit q → 1 reduces to the Boltzmann statistics, and from
Equations (26) and (27) it is possible to see that this limit corresponds to τ << T; therefore, the
internal energy, E, is much smaller than the kinetic energy, F, which corresponds to an ideal gas
in the Boltzmann statistics. Furthermore, Equation (28) shows that the use of the q-exponential
factor—instead of the exponential one that appears in Boltzmann statistics—allows a direct application
of Thermodynamics rules to calculate all necessary quantities without worrying about the complexities
of the thermofractal structure.

With the results obtained above it is now possible to understand what went wrong with Hagedorn’s
theory for fireballs, which was the question posed in the Introduction. His own definition for the
system was already indicating that it presents a fractal structure, and a system with fractal structure
is described by Tsallis statistics, not by Boltzmann statistics, in the sense discussed above. In this
regard, it is interesting to mention that Fowler and Weiner [41] had already noticed that a fireball
as proposed by Hagendorn could not present a phase transition if the exponential distribution was
the relevant characteristic of its thermodynamical description, but rather a power-law distribution
would be necessary. The result obtained here is therefore in agreement with that prediction. The
problem now is to find out if the self-consistence principle has a solution when formulated in terms of
Tsallis statistics. In Ref. [42] it was shown that Hagedorn’s principle can indeed be generalized to a
non-extensive version, as discussed below.

2.2. Non-Extensive Self-Consistent Thermodynamics

In order to extend Hagedorn’s theory with non-extensive statistics, it is necessary to know the
partition function of an ideal gas in that statistics. Such a function was determined in Ref. [43] and
presents a form that is very similar to the classical partition function for an ideal gas in Boltzmann
statistics, resulting that the only difference in the partition function is the use of the q-exponential factor
instead of the exponential one. The generalized version of the partition functions (see Equations (1)
and (4)) results in

log[1 + Zq(Vo, T)] =
Vo

2π2

∞

∑
n=1

1
n

∫ ∞

0
dm

∫ ∞

0
dp p2ρ(n; m)[1 + (q− 1)β

√
p2 + m2]

− nq
(q−1) , (30)
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and
Zq(Vo, T) =

∫ ∞

0
σ(E)[1 + (q− 1)βE]−

q
(q−1) dE (31)

It was shown [42] that the self-consistency can be asymptotically achieved by choosing

ρ(m) =
γ

m5/2

[
1 + (qo − 1)βom

] 1
qo−1 (32)

and
σ(E) = bEa[1 + (qo − 1)E

] 1
qo−1 , (33)

where γ is a constant. Here, a, b and γ are arbitrary constants. Note that for q→ 1 the two expressions
above approach the corresponding expressions in Hagedorn’s theory.

The partition function results in

Zq(Vo, T)→ bΓ(a + 1)
(

1
β− βo

)a+1

. (34)

with
a + 1 =

γVo

2π2β3/2 . (35)

Thus, when Hagedorn’s principle is extended by using the non-extensive statistics, a
non-extensive self-consistent thermodynamics (NESCT) is obtained It is found that the limiting (or
critical) temperature is still obtained, while a new constant—the entropic index q—characterizes all
hadrons. In addition, new formulas for the mass spectrum and for the density of states of hadrons are
obtained. The new density of states leads to a transverse momentum distribution given by

d2N
dpTdy

(y = 0) =
gV

(2π)2 pTmT

[
1 + (q− 1)

mT − µ

T

]−q/(q−1)
, (36)

which has been used in many studies to describe the experimental data. All the results approach
Hagedorn’s results as q→ 1. The resulting values for q and T support the above findings of a constant
temperature and entropic index, regardless of the collision energy (as long as it is above approximately
1 TeV) or the particle species [44–57].

The new mass spectrum formula was used to describe the known hadronic states up to mass
m = 2 GeV [53,54], resulting in values for T and q that are in good agreement with the results from
pT distribution analyses, thus showing that the predictions from the NESCT are fully supported by
experiments. In fact, the new mass spectrum formula can describe the observed hadronic states even
better than Hagedorn’s formula, showing good agreement with data even for masses as small as that
for pions.

From the values for T and q obtained from mass spectrum analysis or from pT distribution
analysis, it is possible to obtain all thermodynamics functions, and in Ref. [58] it was shown that
the results obtained are in good agreement with lattice QCD data. All these results shows that the
assumption of a fractal structure of hadrons is consistent with the experimental information available.
Indeed, the fractal dimension can be calculated using the values for T and q, and results in D = 0.45,
which is in good agreement with the results from intermittence analysis and from z-scaling.

3. Discussion and Conclusions

There are many works applying the extended Hagedorn distribution to fit experimental data (see
Refs. [50,59–64] for recent works on the subject); nevertheless, the debate around the thermodynamical
properties of the fireball formed at high energies continues. The theory exposed here shows that
different concepts such as fireballs, intermittence, hadron structure, self-similarity, thermofractal
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structure, and self consistence principle are braided into one single theoretical framework with only
two parameters.

In the theoretical approach proposed here, the fractal dimension observed in high-energy data is
explained through the thermofractal parameter, q, that is also the entropic index in Tsallis statistics.
It is shown that the best statistics to describe fireball thermodynamics is Tsallis statistics—Boltzmann
statistics being possible to be used only if all the complex structure of thermofractals are taken
into account. The non-extensive self-consistent thermodynamics that results from the extension of
Hagedorn’s theory with Tsallis statistics is shown to give a very good description of HEC data in the
whole range of pT distribution available from experiments. Additionally, the modified mass spectrum
formula describes the observed hadron states very well, even for states with masses as low as pion
mass. Additionally, the thermofractal structure allows for a new interpretation of the generalization to
Boltzmann statistics provided by Tsallis entropic form.

This theory also allows for further developments. Clearly, the thermofractal structure proposed
here for hadrons should present itself in parton distribution functions (PDFs), and it is worth noticing
that a PDF inspired in fractal structure was already proposed several years ago [65], showing good
agreement with data. To this end, one further step must be accomplished by considering that the
energy distribution considered here is related to quantum fluctuations of the hadron energy. In this
case, one can conjecture that the parameter q and the related fractal dimension may be connected to
the running constant that regulates QCD interaction.

The subject presented here is still under debate. Some analyses of experimental data suggest that
the parameters q and T are not constant (as demanded by theory), but depend on collision energy or
particle species and also on multiplicity [66,67], even at energies as high as 13 TeV. Although some
dependence on all these parameters is possible at low energies, a variation for high energies was not
expected. However, it should be emphasized that the pT analysis is complex, and the fact that the
parameters q and T are correlated (as described above) contributes to variations in the results if such
correlations are not carefully taken into account. In addition, high statistics is necessary in a large
pT range in order to extract precise information from data. Applications of such theory have already
been made in astrophysics, where the stability of neutron stars has been studied under the light of
the non-extensive thermodynamics [68], showing effects that help to understand recent observation
of more massive objects of this kind. Recently, the MIT Bag Model has been extended to include the
thermofractal structure described here by introducing the non-extensive distributions [69].
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