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Abstract: Pseudoscalars appear frequently in particle spectra. They can be light if they appear as
pseudo-Goldstone bosons from some spontaneously broken global symmetries with the decay
constant f. Since any global symmetry is broken at least by quantum gravitational effects,
all pseudoscalars are massive. The mass scale of a pseudoscalar is determined by the spontaneous
symmetry breaking scale f of the corresponding global symmetry and the explicit breaking terms
in the effective potential. The explicit breaking terms can arise from anomaly terms with some
non-Abelian gauge groups among which the best-known example is the potential of the QCD axion.
Even if there is no breaking terms from gauge anomalies, there can be explicit breaking terms in the
potential in which case the leading term suppressed by f determines the pseudoscalar mass scale.
If the breaking term is extremely small and the decay constant is trans-Planckian, the corresponding
pseudoscalar can be a candidate for a quintessential axion. In the other extreme that the breaking
scales are large, still the pseudo-Goldstone boson mass scales are in general smaller than the decay
constants. In such a case, still the potential of the pseudo-Goldstone boson at the grand unification
scale is sufficiently flat near the top of the potential that it can be a good candidate for an inflationary
model. We review these ideas in the bosonic collective motion framework.

Keywords: bosonic collective motion; “invisible” axion; string axion; quintessential axion; natural
inflation; Trans-Planckian decay constant; discrete symmetries

1. Introduction

Energy of the Universe is dominated by invisibles: dark energy (DE) composing 68% and dark
matter (DM) composing 27% [1]. Atoms constitute mere 5%. It has been known that bosonic collective
motions (BCMs) can describe both DE and DM [2], which is the main topic in this article.

The astrophysical evidence in favor of the existence of DM has grown over the years [3]. If cold
dark matter (CDM) has provided the dominant mass at the time when CDM fluctuation enters into the
horizon after inflation, the fluctuation scale given by that horizon scale is typically the scale of galaxies.
The time scale corresponding to this is about 3 x 1075 the time z ~ 10, i.e., at z ~ 3000 which is close to
the time when “matter = radiation”. Before the time of “matter = radiation” the density perturbation
has grown only logarithmically. After the time of “matter = radiation” the density perturbation has
grown linearly, which became nonlinear around z = 10. Since the time of z = 10 on, ‘galaxy formation’
has started. Thus, CDM attracted a great deal of attention since 1984 [4].

The first hint for DM inferred by Zwicky in 1933 was derived from the observation of velocity
dispersion of the galaxies in the Coma Cluster [5]. Still, the so-called the rotation curve in the halo
forms the most convincing argument for the existence of DM. If all the galaxy mass is inside the galactic
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bulge, which seems to be a good ansatz for shining stars, the rotation velocity of a star at r far from the
bulge goes like

v(r) o«

NG M
The feature of Equation (1) is also confirmed by the revolution speeds of gas clouds of spiral galaxies [6].

The first example for CDM was introduced in an effort to constrain the mass scale of another
(heavy) lepton doublet which interacts weakly [7,8]. This showed that the multi-GeV weakly interacting
particles could have closed the Universe, and opened the idea of weakly interacting massive particles
(WIMPs). The symmetry for most WIMPs is “parity” or Z, symmetry in which the SM particles carry
parity or Z, even particles and the CDM candidate particle is the lightest one among the parity or
Z; odd particles. This got tremendous interest in supersymmetric (SUSY) models where the R parity
works for the needed symmetry [9]. The second example for CDM was found [10-12] for the “invisible”
axion [13-16], which belongs to the BCM scenario.

For the observed dark energy (DE) [17,18], theoretical interpretation of can be related to the
cosmological constant, originally introduced by Einstein [19]. However, there has been a theoretical
prejudice that the cosmological constant (CC) must be zero, which is considered to be one of the most
important problems in theoretical physics [20]. After the introduction of fundamental scalars in particle
physics, the vacuum energy of scalar fields has been appreciated to contribute to the cosmological
constant [21]. Therefore, the problem related to the cosmological constant must be considered together
with the vacuum energy of scalar fields.

A CC dominated universe is called the LeMaitre universe [22], where the scale factor expands
exponentially. This idea of exponential expansion was used in early 1980s to solve the horizon and
flatness problems and to dilute monopoles, which is now called “inflation” [23]. Inflation predicts that
the total mass-energy density of the Universe is very close to the critical closure density. The Planck
data [1] confirm that the energy density of the Universe is nearly p. (spatially flat) and that the present
DE is about 68% of the critical energy density of the Universe.

Under this circumstance, I present the BCM idea which can be applicable to all the problems
mentioned above, CDM by the “invisible” QCD axion [13-16], DE by a quintessential axion [24,25],
and inflation by “natural” inflation [26,27].

BCM is described by a scalar field. The Brout-Englert-Higgs—Guralnik-Hagen-Kibble boson,
simply called the Higgs boson here, seems to be a fundamental scalar field. So, we can imagine that
the QCD axion and an inflation may be fundamental fields also. Compared to spin-} fermions of the
canonical dimension %, these bosons with the canonical dimension 1 can affect more importantly to
low energy physics. This has led to the Higgs boson acting as a portal to the high energy scale [28-30],
to the axion scale or even to some standard model (SM) singlets in the grand unification (GUT) scale.
Can these singlets explain both DE, CDM, and even inflation in the evolving Universe? In this short
article, we attempt to answer to this question in the affirmative direction.

2. On Global Symmetries

For a BCM, we introduce a corresponding global symmetry. The global symmetry is that in the
Lagrangian. However, global symmetries are known to be broken in general by the quantum gravity
effects, especially via the Planck scale wormholes [31,32]. To resolve this dilemma, we can think of two
possibilities of discrete symmetries below Mp in the top-down approach: (i) The discrete symmetry
arises as a part of a gauge symmetry [33-36], and (ii) The string selection rules directly give the discrete
symmetry [37]. As far as discrete symmetries are concerned, a bottom-up approach can be useful
also [38]. The interesting cases are the discrete gauge symmetries allowed in string compactification.
Even though the Goldstone boson directions, i.e., the longitudinal directions, of spontaneously
broken GAUGE symmetries are flat, the Goldstone boson directions of spontaneously broken GLOBAL
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symmetries are not flat. Namely, global symmetries are always approximate. The question is how
approximate it is.
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Figure 1. Terms respecting discrete and global symmetries.

In Figure 1, we present a cartoon separating effective terms according to string-allowed discrete
symmetries. The terms in the vertical column represent exact symmetries such as the string allowed
discrete symmetries. If we consider a few terms in the lavender part, we can consider a global symmetry.
With the global symmetry, we can consider the global symmetric terms which are in the lavender
and green parts of Figure 1. However, the global symmetry is broken by the terms in the red part in
Figure 1.

2.1. The 't Hooft Mechanism

The 't Hooft mechanism is a very simple and elementary concept, but it seems that it is not
known widely. In the original paper of "t Hooft [39], it was commented on breaking two continuous
symmetries by one Higgs vacuum expectation value (VEV). Two continuous directional parameters
correspond to one gauge transformation parameter and the other global transformation parameter.
If the Higgs VEV breaks the continuous symmetries, it is obvious that the gauge symmetry is broken
because the corresponding gauge boson obtains mass. Namely, only one phase (or pseudoscalar)
direction is absorbed to the gauge boson, and there remains one continuous direction.

For example, let us introduce a field ¢ to study this phenomenon. Charges Qgauge and Qgiobal
acting on ¢ with the gauge transformation parameter a(x) and the global transformation parameter g,
give the following transformation

47 N eia(x) anuge ei.Bleobal 4), (2)
which can be rewritten as

4) — ei(’x(x)Jr.B)anuge ei‘B(leobal_anugE)(P‘ (3)

Redefining the local direction as a’(x) = a(x) 4+ B, we obtain the transformation

47 N eilx,(x)anuge eiﬁ(leobal_anuge) (P (4)

So, the &/ (x) direction becomes the longitudinal mode of heavy gauge boson. Now, the charge
Qglobal — Qgauge is reinterpreted as the new global charge and is not broken by the VEV, (¢), because
out of two continuous directions one should remain unbroken. Basically, the direction p remains as
the unbroken continuous direction. This is the essence of the 't Hooft mechanism: “If both a gauge
symmetry and a global symmetry are broken by one scalar VEV, the gauge symmetry is broken and a
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global symmetry survives”. The resulting global charge is a linear combination of the original gauge
and global charges as shown above. This theorem has a profound effect in obtaining the intermediate
scale of the “invisible” axion from string compactification [40].

2.2. Breaking Scales

The red part potential in Figure 1 breaks the global symmetry represented by the green part.
In some cases, the global symmetry is broken by the anomalies of non-Abelian gauge groups.
The well-known example is the Peccei-Quinn (PQ) global symmetry, broken by the quantum
chromodynamics (QCD) anomaly, the U(1)pg-SU(3).~SU(3). anomaly [41]. The PQ proposal assumes
more in that any term is not present in the red part of Figure 1. Suppose a global symmetry
U(l)r. If U(l)r is spontaneously broken by a VEV, ie., by a SM singlet VEV (¢) = f/V2,
the pseudo-Goldstone boson mass corresponding to the spontaneously broken U(1)r is

(symmetry breaking scale)*
mlzaseudo = f2 ’ ®)

If the non-Abelian anomalies are the sole contribution in breaking the global symmetry,
the Mpseudo ~ A?/ f where A is the scale of the non-Abelian gauge group. Depending on the scale of
A, the pseudo-Goldstone is called

Name A Mpseudo

QCD axion ~ 332MeV 1074 eV ©)
KNP inflaton 10'0-10"7 GeV 101415 GeV

ULA 3 x 1077 GeV 1072 eV

For the QCD axion, the strong coupling parameter A% = (332 £ 17) MeV for three light quarks! is
shown above [42], which is the recent world average used in high energy scattering with the leading
log expansion in powers of A%z/ Q2. Tt is basically the same as the one given for the susceptibility
x4 = \/mafa = 75.5MeV [43,44], which takes into account the strong interaction coupling constant
a3 in addition to A%. For the case of ULA in Equation (6), the SU(2)y can work for the non-Abelian
gauge group with a few orders of magnitude discrepancy allowed.

Even if there is no non-Abelian anomalies, still the global symmetry U(1)r is broken by the terms
in the red part of Figure 1. Then, the mpgeudo ~ €2/ f where &* in V is the leading term in the red part.
Assuming that there is no non-Abelian anomalies, the pseudo-Goldstone boson mass is estimated as

Name € Mpseudo

ALPs Any value any value

N-flaton 10'6 GeV 10'3 GeV )
ULA 3x1077 GeV 102 eV

Quintessential axion 1.7 x 10712 GeV 10733 eV

Familons, etc. unknown unknown

The most interesting BCM is the QCD axion of (6) which will be discussed in detail in the

following section as a solution of the strong CP problem and as a candidate for CDM in the Universe.
A BCM for inflation can arise with non-Abelian anomalies of (6) [27] or without non-Abelian anomalies

1 With two light quarks, A% is larger than A%'
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of (7) [45]. For the ALPs, there have been numerous efforts to constrain the masses and the decay
costants, as summarized in Figure 1 of Ref. [46]. A quintessential axion for the DE scale should not
have the QCD anomaly and the height of the potential must be very small, i.e., with the mass of
order 10~3 eV and a trans-Planckian decay constant [47]. Also, the ultra-light axion (ULA) should
have a very small height of the potential and most probably it is in the form of (7), with its bounds
given in [48-50]. However, the ULA is also included in (6) because SU(2)y anomaly can provide such
a small height within a few orders. Axion-like particles (ALPs) behave like axions in the detection
experiments, i.e., having the pseudoscalar—-photon-photon couplings but their masses and decay
constants are not related as in the QCD axion. Most probably, they arise in the form of (7). In the last
row, other possibilities such as familons, archions, etc., are shown, which arise from breaking some
global symmetries [51-54].

v

—k > Q

Figure 2. The almost flat axion potential.

All pseudoscalar bosons listed in (6) and (7) use the idea of collective/coherent motion of the
classical part of the pseudoscalar field. The classical potential can be visualized as a very shallow
potential V as shown in Figure 2. The classical vacuum shown as the red bullet starts to roll down the
hill “late” in the history of the Universe. The amplitude decreases (as illustrated with the red curve)
due to the Hubble expansion. At present, the amplitude remains with a non-zero value, which is the
basis for attempting to detect QCD axions [2]. The names listed in (6) and (7) are made to represent the
origin or the usefulness of the corresponding pseudoscalar boson.

3. The “Invisible” Axion

The strong CP problem is necessarily intertwined with the observed weak CP violation as noted
inthef = §QCD parameter,

é = 90 + Gweak (8)

where 0 is the coefficient of the QCD anomaly term given above the electroweak scale and 0, is the
contribution generated when one introduces the weak CP violation at the electroweak scale. Since this
0 gives a neutron EDM (nEDM) of order 107169 ¢ cm, the experimental upper bound on nEDM [55]
restricts || < 10710, “Why is 6 so small?" is the strong CP problem.

Therefore, let us start by considering the weak CP violation by the Kobayashi-Maskawa model [56]
and by the Weinberg model [57]. One may introduce the following possibilities for the weak
CP violation,

(1) by light colored scalar,

(2) by right-handed current(s),

(3) by three left-handed families,

(4) by propagators of light color-singlet scalars, and
(5) by an extra U(1) gauge interaction.
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The first three are those of Ref. [56], among which the second was presented in Ref. [58] also.
In 1976 the third quark family was not known in which case the weak CP violation was introduced
in the Higgs potential with multi Higgs doublets [57],

Vv = —3 Zimigfor+ 5 Ly [an@] o] ¢y + biydloefér
+ey@ieries] +He, ©)

where the reflection symmetry ¢; — —¢; is imposed. This is the discrete symmetry we mentioned
by the vertical column in Figure 1. The mass parameters m? are at the electroweak scale such that the
electroweak symmetry is broken at the electroweak scale. With the potential (9), three Higgs doublets
are needed to introduce CP violation [57]. Not to introduce flavor changing neutral currents, Ref. [57]
required that only one Higgs doublet, ¢, couples to Qem = % quarks, and another Higgs doublet, ¢»,
couples to Qem = —% quarks [59]. The reflection symmetries, including non-trivial transformations
of the quark fields, will achieve this goal. For all scalars and pseudoscalars of ¢; to obtain mass,
all parameters in (9) are required to be nonzero.

Peccei and Quinn (PQ) observed that if all cjj in Equation (9) are zero, which is equivalent to
considering only the terms in the lavender part in Figure 1, then the discrete symmetry is promoted to
a global symmetry, according to our general scheme, which we now call the PQ symmetry [41],

o — qL, (10)
ug — e ypg, (11)
dp — e iPdg, (12)
P — €Y, (13)
¢ — Py, (14)

where gq;’s are the left-handed quark doublets, ug’s are the right-handed up-type quark singlets,
and dg’s are the right-handed down-type quark singlets. Quarks obtain masses by

—q_LMR(Pl — qLdR(PZ + H.c. (15)

which also respects the PQ symmetry. This PQ transformation is a chiral transformation, Equations (11)
and (12), creating the QCD anomaly coefficient. Therefore, this simple phase transformation is thought
to be equivalent to the gluon anomaly and in any physical processes, therefore, there will not appear
the phase and there is no strong CP problem, which was the argument used in Ref. [41].

The above PQ symmetry (if exact) must lead to an exactly massless Goldstone boson because
quarks must obtain masses by the VEVs of ¢; and ¢», i.e., the PQ symmetry must be spontaneously
broken. Note that the term (15) is a part in defining the PQ symmetry. However, the PQ symmetry is
explicitly broken at quantum level because the QCD anomaly is present. Thus, the Goldstone boson
becomes a pseudo-Goldstone boson, obtaining mass of order AZQCD /Vew by our general argument of
Figure 1 [60,61]. This pseudo-Goldstone boson was named axion. From Vyy of Equation (9), we can
separate out this axion direction. If ¢1p were present, which signifies the breaking of the PQ symmetry,
there will appear the phase e~/(%1/91-92/22) Thus, the axion direction is

Ay a4
Ou (7]

a o (16)
where (¢1) = (v, + p1)e™/% /\/2 and (¢;) = (vq + p2)e!™/ %4 /+/2. This electroweak scale axion
is called the Peccei-Quinn-Weinberg-Wilczek (PQWW) axion, having mass ~100 keV and lifetime
~1078 second order [62] and cannot be the one considered in the cavity experiments.
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In 1978 this PQWW axion was known not to exist [63], which had led to ideas on models without
the POQWW axion in 1978 [64-68]. Nowadays, these are used in the Nelson-Barr type models [69,70],
which are called “calculable models” [62]. The calculable models start with the CP symmetry in the
Lagrangian such that 6y = 0 in Equation (8). However, one has to introduce the weak CP violation,
i.e., the CP violation is through the spontaneous mechanism [71]. These calculable models seem
not working in two aspects, firstly it is very difficult to build models in which the loop corrections
allow Oyeak below O(1071%) and second the observed weak CP violation is of the Kobayashi-Maskawa
form [72].

However, the PQ-type solution of the strong CP problem was so attractive that the “invisible”
axion with lifetime greater than the age of the Universe was reinvented with an SU(2)yy x U(1)y singlet
scalar field [13]. Currently, this is the most studied global symmetry. For this U(1)pqg, the explicit
breaking term is the QCD anomaly term

icﬂ G (17)

322
where G, (G*') is the gluon field strength (its dual), and 6 = a/f,. The symmetry in (11), for
example, changes § — 0 + « and the anomaly term has the shift symmetry a — a + f,a if the anomaly
term does not contribute to the effective potential. However, the anomaly contributes to the effective
potential and the question is, “What is the value 0 at the minimum of the potential ?” If the potential V
does not break the CP symmetry, it is easy to show that the potential generated by the anomaly term
chooses 6 = 0 as the minimum of the potential [73], which is a good cosmological solution of the strong
CP problem. Even if the weak CP violation is introduced, the shift of the minimum is very tiny [74],
A@ ~ 10716, which does not spoil the nature of the strong CP solution along this line. The axion decay
constant f, is bounded from the energy density of cold axions within a narrow window [75-77],2

10 GeV < f,; < 102 GeV. (18)

At the minimum, the axion mass is usually calculated approximately from the cosine potential. For the
two quark case, however, the axion potential mixed with 0 is given in a closed form in the chiral
perturbation theory as [43]

47 0
V(a, ") = m%f%\/l s sin? <2jca> [1 — cos <7T7T + 47a)] p (19)
1-Z7 a
tan 4711 — m tan (2ﬁ1> 7 (20)
where
ny

From Equation (19), we obtain

(22)

1 11
My ~ 0.570 x 104 eV ( 0 Gev)

fa
which is about 5% below the value obtained by using the cosine potential. So, using the suceptibility

75.5MeV of [43] is almost the same as using A% = (332 £ 17) MeV of Equation (6).

2 If fa is much lower than the above bound at the level of 107 GeV, the axion condensation can convert to thermal axions [78].
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Figure 3. The resonant detection idea of the QCD axion. The E-field follows the axion vacuum oscillation.

In the search of the QCD “invisible” axion, the axion-photon-photon coupling cs,4 is the key
parameter where

Cayy = Cayy — Cchiral (23)

where &, is given above the QCD chiral symmetry breaking scale and —ccprq) is the contribution from
the QCD phase transition, cited as —1.92 [62] and —1.96 [79]. Here, we choose it as —2 for a guidance.
In a sense, the customary numbers presented in most talks are ad hoc, which can be glimpsed from
those exclusion plots where the KSVZ lines are shown only for Qem = 0 [80].

In this solution, there is only one parameter, the value of the “invisible” axion field or 6. The reason
is that the form of the anomaly is completely specified at one loop and no more [81]. One parameter 0
to this interaction is one coupling Gr to the weak interaction. In both cases, details are more involved
however, in the former case the detailed “invisible” axion models and in the latter case the CKM and
PMNS weak gauge boson couplings to three family members. Because of this one coupling nature,
one could have easily proved that = 0 is at the minimum of free energy [73].

The axion detection uses the following coupling [82],

O aF e (24)
where Ff”,m (Femmv) is the electromagnetic field strength (its dual). Equation (24) gives the form E - B
such that E parallel to B contributes to the coupling. The usual design [83] is a cavity detector immersed
in a strong constant magnetic field. Then, E follows the cosmic oscillation of the classical axion field
(a) generating the axions in the cavity, which is given completely in the axio-electrodynamics in [84].
[Note that similar results with the resonance condition were given earlier [85,86].] This idea of using
the oscillating E is pictorially shown in Figure 3.

In the search of the QCD “invisible” axion, the axion-photon-photon coupling ¢4 is the key
parameter. In a sense, the customary numbers presented in most talks are ad hoc, which can
be glimpsed from those exclusion plots where the KSVZ lines are shown only for Qem = 0 [80].
My exclusion plot is presented in Figure 4.

In some GUT models, ¢4 is related to the weak mixing angle sin” fyy. A schematic view on the
gauge couplings, sin® By, and ¢, is presented as cgw in Figure 5. The evolution of sin® fy are shown
in the middle part. ¢;,, is determined by quantum numbers and does not evolve above as shown in
the lower part of the figure. Axions from GUTs usually give ¢,y = %, which is not necessarily satisfied
with unknown Qer, charges above the GUT scale, and there exist models with ¢;,, > %, for example
D in [87].
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For a calculation of ¢4+, one should pay attention that the model must lead to an acceptable SM
phenomenology. In Table 1, we present ¢, in several KSVZ and DFSZ models.

Table 1. The coupling ¢, for cgw = Cayy given in the KSVZ and DFSZ models. For the u and d quark
masses, m, = 0.5my is assumed for simplicity. (m,m) in the last row of KSVZ means m quarks of
Qem = % e and m quarks of Qem = —% e. SUSY in the DFSZ models includes contributions of color
partners of Higgsinos. If we do not include the color partners, i.e., in the MSSM without heavy colored
particles, cpyq >~ 0.

KSVZ: Qem cCayy DFSZ: (g% er) pair Higgs  caqy
0 —2  non-SUSY (de;) Hy +2
+1 -3 non-SUSY (u€, er) H; -3
+3  +3 GUTs +3
+1 4 SUSY +3
(mm)  —3

Table 2. String model prediction of ¢4y . In the last line, sy, = (1-2 sin? Ow)/ sin? Ow with

my = 0.5 my.
String Cayy Comments
Ref. [90] —% Approximate U(1) global symmetry
Ref. [40,89,91] —i—% Anomalous U(1) from string

Calculations of g, from ultra-violet completed models are welcome. So far there exists only one
calculation on ¢4y from string compactification [88,89]. In Table 2, we list two calculations of cg,.
In a Z1,_ orbifold compactification present in Ref. [92], the axion-photon-photon coupling has been
calculated [89],

—5406 — 1162 — 1960 — 784 2
—2=+

Cayy = Cayy — Cchiral =2 3490 = 3/ (25)

which is shown as the green line in the axion coupling vs. axion mass plot of Figure 4.

3.1. Axion Inhomogeneities in Galaxies and Mini-Clusters

If there existed inhomogeneities of axion field in the galaxies, some large scales could have
been formed [93]. In particular, if there existed strong primordial inhomogeneities of cold axions,
their astrophysical effects can be estimated [94], such that axion perturbations on scales corresponding
to causally disconnected regions at T ~ 1 GeV can lead to very dense pseudo-soliton configurations.
It is because these configurations at the § misalignment at T ~ 1GeV evolve to axion mini-clusters
with present density p, > 1078g-cm™3. This high density enables the process 2a — 2a for the
Bose-Einstein relaxation in the gravitationally bound clumps of axions, forming axion mini-clusters.
During inflation, formation of primordial black holes in the mass range (10~? — 10~°) M, could have
been formed from the axion inhomogeneities [95].

3.2. The Domain Wall Problem in “Invisible” Axion Models

It is well-known that if a discrete symmetry is spontaneously broken then there results domain
walls in the course of the Universe evolution [96]. For the “invisible” axion models, it was pointed out
that the domain wall number Npy different from 1 must have led to serious cosmological problems in
the standard Big Bang cosmology [97,98]. In this regard, the standard DFSZ models with Npw = 6
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should not be considered. For the “invisible” axions, we consider only Npy = 1 models. The argument
goes like this. In the evolving Universe, there always exists a (or a few) horizon scale string(s) and a
giant wall attached to it [98] as shown in Figure 6a. There are a huge number of small walls bounded
by an axionic string which punch holes in the giant walls as shown in Figure 6b. The punched holes
expand with the light velocity and eat up the giant string-walls as shown in Figure 6¢. This is the
scenario in the Npw = 1 models [99].

() (b) (c)

Figure 6. A horizon scale string-wall for Npw = 1 with a small membrane bounded by string. (a) A
(or a few) horizon scale string(s) and a giant wall attached to it [98]; (b) A huge number of small walls
bounded by an axionic string which punch holes in the giant walls; (c) The punched holes expand with
the light velocity and eat up the giant string-walls.

(a) (b)

1

/s
(c) (d)

Figure 7. Small DW balls ((a,b), with punches showing the inside blue-vacuum) and the horizon scale
string-wall system (c,d) for Npw = 2: (a) a DW ball with a string loop, (b) a DW ball without a string
loop, (c) collision with a ball of type (a), and (d) collision by a ball of type (b). Yellow walls are § = 0

N\ 7

walls, and yellow-green walls are § = 7t walls. Yellow-green walls of type (b) are also present.

However, “invisible” axion models with Npw > 2 have cosmological problems. For example,
for Npw = 2, a horizon scale string and wall system has the configuration shown in Figure 7.
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Figure 7a,b show small balls, and Figure 7c,d show a horizon scale string-wall system after absorbing
the small balls. Certainly, the horizon scale string-wall system is not erased, which is a cosmological
disaster in the standard Big Bang cosmology.

With inflation, the domain wall problem has to be reconsidered. However, if the GUT scale
vacuum energy were present, it is likely that the domain wall problem becomes severe. So, I want to
stress that the axionic domain problem is better to be resolved without the dilution effect by inflation.
One obvious model is the KSVZ axion with one heavy quark.

Another, a more sophiscated, solution is the Lazarides-Shafi mechanism in which the seemingly
different vacua are identified by gauge transformation. Ref. [100] used the centers of extended-GUT
groups for this purpose. Still another solution is to use Goldstone boson directions of spontaneously
broken global symmetries [101,102]. There can exist a cosmological solution, using a hidden-sector
confining force [103].

However, the most appealing solution is to use the model-independent (MI) axion in string
compactification. It is known that the MI axion has Npw = 1 [104,105]. Also, due to the "t Hooft
mechanism which we discussed in Section 2.1, the “invisible” axion scale can be lowered from the
string scale down to an intermediate scale [89] and can be proved/disproved to exist in Nature.

3.3. Searches of “Invisible” Axions

The ongoing search of “invisible” QCD axions is based on the BCM in the Universe [2]. After the
discovery of the Higgs boson which seems to be a fundamental elementary particle, the possibility of
the QCD axion being fundamental gained some weight. The future axion search experiment can detect
the CDM axion even its contribution to CDM is only 10% [106]. Because the axion decay constant
fa can be in the intermediate scale, the “invisible” axions can live up to now (for m, < 24 eV) and
constitute DM of the Universe. Cosmology of the “invisible” axions has started in 1982-1983 [10-12]
with the micro-eV axions [13-16]. The needed intermediate axion scale, far below the GUT scale,
is understood in models with the anomalous U(1) in string compactification [40].

For the detection of cosmic axions, the axion energy density p, as CDM, which is assumed to be
~0.3 GeV em 3, is the one to be detected. Relating p, with f, depends on the history of the evolving
Universe due to the contribution to p, from the annihilating string-wall system of axions. The recent
numerical calculation for an Npyw = 1 model shows that more than 90% of p, is contributed from the
annihilating string-wall system [75], which however did not include the effects shown in Figure 6.

The 2014 BICEP2 report of “high scale inflation at the GUT scale” around >(10'¢ GeV)*
implied the reheating temperature after inflation >10'2 GeV [107]. Then, studies on the isocurvature
constraint with that BICEP2 data pinned down the axion mass [108]. However, more data, with dust
contamination taken into account, has not lived up with this earlier report [109]. However, it is
likely that the energy density during inflation might be near the GUT scale with a somewhat smaller
tensor/scalar ratio than the value in the early report. In this case also, requiring Npw = 1 is a necessity.

4. A BCM as Dark Energy

As for the QCD axion case, the DE scale can arise via a BCM of Figure 1 [24]. The global symmetry
violating terms belong to the red part in Figure 1. In the Higgs portal scenario, the BCM pseudoscalar
for DE must couple to the color anomaly since it couples to the Higgs doublets and the Higgs doublets
couple to the SM quarks. On the other hand, mass of the BCM pseudoscalar for DE is in the range
10733 ~ 10732 eV [47]. Therefore, the QCD anomaly term of the BCM must be forbidden to account
for the DE scale of 1076 GeV*. There must be a global symmetry free of the QCD-anomaly. It is
shown that such two global U(1) symmetries are achieved in general [25]. Out of the two U(1)’s, let us
pick up the global symmetry U(1)q4e for the DE BCM. The other U(1), carrying the color anomaly,
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is for the “invisible” axion. In contrast to the f; bound for the QCD axion given in Equation (18),
the U(1)4, breaking scale fpg is of order of the Planck scale [47],

fDE ~ Mp. (26)

From string compactification, we argued that the U(1)anom global symmetry via the "t Hooft
mechanism is for the “invisible” QCD axion [40,89] whose decay constant f, corresponds to (18).
The global symmetry U(1)4e cannot have a QCD anomaly [25] and in the compactification of the
heterotic string it must be anomaly free since there is only one U(1)anom from the heterotic string.
Thus, the VEVs fpg and f; breaking U(1)4e and U(1)anom global symmetries, respectively, are clearly
distinguished in the compactification of the heterotic string. However, their hierarchical values given
in Equations (18) and (26) are obtained by a kind of tuning of parameters in the potential V. It is
known that the anti-symmetric tensor field By in string theory leads to string axions having GUT
scale decay constants [110,111]. So, it was argued in the SUSY framework that the “invisible” QCD
axion from string theory is better to arise from matter fields [112].

V(®)

Re (®) |« JoE

Figure 8. The DE potential in the red angle-direction in the valley of radial field of height ~ Mg .

By introducing two global symmetries, we can remove the U(1)4,—SU(3).—SU(3). anomaly where
SU(3), is QCD and the U(1)4, charge is a linear combination of two global symmetry charges. The decay
constant corresponding to U(1)4e is fpg. In Figure 8, we depict the scale and the breaking term AVpg.
Introduction of two global symmetries is inevitable to interpret the DE scale and hence in this scenario
the appearance of U(1)pq is a natural consequence. The height of DE potential is so small, 10740 GeV*,
that the needed discrete symmetry breaking term of Figure 1 must be small, implying the discrete
symmetry is of high order.

For the QCD axion, the height of the potential for the “invisible” axion is %A‘éCD. For the DE
pseudo-Goldstone boson, the height of the potential of the radial field is Mg, according to the
Higgs portal idea, shown at the central top in Figure 8. With the exact U(1)pg and the approximate
U(1)ge at tree level,® one can construct a DE model with the potential in the valley in Figure 8 from
string compactification [25]. Using the SUSY language, the discrete and global symmetries below Mp
are the consequence of the full superpotential W. So, the exact discrete symmetries related to string
compactification are respected by the full W, i.e., the vertical column of Figure 1. The example shown
in [25] has a dimension 6 superpotential for the definition of the global symmetry U(1)4e from the

3 Por the U(1)pq, the symmetry is better to be exact at tree level or almost exact toward the solution of the strong CP problem

with 0] < 10710 as discussed in Section 3.
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lavender part of Figure 8, and the breaking superpotential AWpg at tree level is at a dimension 10 level.
For U(1)g4e, the global symmetry is not exact and the red part at the tree level contributes. This example
shows that the definition of symmetry U(1)4 in the lavender part is at a high dimensional level and
the breaking term in the red part is even more high dimensional [25]. A typical discrete symmetry
Zr is considered in [25], whose level is high enough such that the defining and breaking terms
appear at the high dimensional levels. The Z1yr charges descend from a gauge U(1) charges of the
string compactification [37]. In this scheme with the Higgs portal, we introduced three scales for the
VEVs, TeV scale for H, H;, the GUT scale Mgyt for singlet VEVs, and the intermediate scale for the
“invisible” QCD axion. The other fundamental scale is Mp. The trans-Planckian decay constant fpg
of (26) can be a derived scale, which can be applied also to the inflation [27].

5. Inflation and Gravity Waves in the Beginning

The inflationary idea [22] was so attractive in understanding the horizon, flatness, homegeneity
and isotropy problems [23], numerous inflationary models have been considered since the early
1980s [113-115]. Even there exists a calculable framework [116,117] in inflationary models for the
“quantum” density perturbation [118]. For some time, the chaotic inflation [115] attracted a great deal
of attention because it can lead to a large tensor/scalar ratio, 7, in particular with the earlier report of
the BICEP2 collaboration [107].

The inflationary models need almost flat potentials [119]. The logarithmic form near the origin is
very flat. The u2¢? potential with very small y?/ M3 is very flat even at some trans-Planckian values
of ¢. Sinusoidal forms are almost flat near the top of the potential. The magnitude of AT /T measured
by COBE excluded the logarithmic form among the new inflationary scenarios [120]. It seems that the
¢? inflation, where ¢y is the inflaton, is almost ruled out by the refined r measurements [109].

Thus, the sinusoidal forms are the remaining attractive possibility which belongs to the class of
“natural” inflation [26]. These sinusoidal forms of a; appear in the potential as*

Voal-— %(ei‘seial/f’ +H.c.)=1-cos (2 + (5) . (27)
So, near (a;) = fi(7t+ J), the potential is very flat and the natural inflationary potential works for
inflation. This is one of “hill-top” inflationary models that for a large r the field value (¢) must be larger
than 15 Mp, which is known as the Lyth bound [121]. So, the natural inflation needs the decay constant
at a trans-Planckian scale [27]. Also, a trans-Planckian scale is introduced for a quintessential DE [47].
Introducing a natural inflation with a trans-Planckian decay constant is possible if one considers two
spontaneously broken global symmetries [27], which is called the Kim-Nilles—Peloso (KNP) models.
This is illustrated with an effective potential of two axions. Let us consider two non-Abelian
gauge groups with scales A1 and Ay and two pseudoscalars a; and a, resulting from breaking two
global symmetries. The effective potential of a; and a, below the confining scales is [27]

Vo<A4(1cos{ oy @})+A4<1cos[hal+kaz]> 28
1 pfl qu 2 fl f2 ( )
where p, g, h, and k are parameters given by the model and f; and f, are two decay constants (or VEVs

of scalar fields). Diagonalization of the mass matrix of a; and a, gives the heavy and light pseudoscalar
masses as [122],

1 1
m2; = 5(A+B), m? = 5(A=B), (29)

4 If the symmetry breaking is soly by the non-Abelian anomaly, then we obtain 6 = 0.
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where
24 L I2AG 2% 4 K2AS AIAS
a="F 1"; 2 1 14; 2 B:\/A2—4(pk—qh)2 %22. (30)
f1 fz 1f2

If pk = gh, there results a massless one with m; = 0. For pk = gh + A, there can result
an effectively large decay constant f; as shown in Ref. [27]. For simplicity, we can glimpse this
phenomenon for the parameters Ay = Ay = A, fi = fo = fand p = q = h = k [122], corresponding
tomg,

~ 2l
f L — | Al f : 31)

In this two axion case, the height of the pontential is increased roughly to 2A* and the decay
constant f] is increased by the level of the quantum number discrepancy, |p/A|.

With two confining non-Abelian gauge groups, the global charges can be assigned such that an
enough trans-Planckian decay constant results. However, for inflation, not needing the vacuum angle
to be zero, the explicit breaking terms of two global symmetries need not arise from gauge anomalies
but can arise from AV in the red part of Figure 1. This possibility generalized the KNP mechanism to
N spontaneously broken global symmetries under the name “N-flation” [45] which has been studied
extensively in string theory [123,124]. The N-flation attempted to soften the problem |p/A| > 1 of the
KNP model but the height of the potential increases by a factor N.

Nevertheless, this idea of increasing N has been further pursued in obtaining a kind of
cosmological generation of the weak scale from axion-type potentials, the so-called “relaxion”
idea [125], which however seems not completely satisfactory [126-129].

The hilltop potential of Figure 8 is a Mexican hat potential of U(1)q4e, i.e., obtained from some
discrete symmetry, allowed in string compactification [24]. The discrete symmetry may provide a
small DE scale. The trans-Planckian decay constant, satisfying the Lyth bound, is obtained by a small
quartic coupling A in the hilltop potential V. The requirement for the vacuum energy being much
smaller than M} is achieved by restricting the inflaton path in the radial direction in the hilltop region,
(¢) < fpg, to converge to an appropriate phase direction of Figure 8.

v

R

Mp for

Figure 9. The trans-Planckian decay costant in the hilltop inflation.

We can compare this hilltop inflation with the u?¢? chaotic inflation. The hilltop inflation
is basically a consequence of discrete symmetries [24,25,37], allowed in string compactification.
If some conditions are satisfied between the discrete quantum numbers of the GUT scale fields
and trans-Planckian scale fields, the hilltop potential of Figure 9 can result. On the other hand, the p%¢?
chaotic inflation does not have such a symmetry argument, and lacks a rationale, forbidding higher
order ¢" terms.
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In contrast to the gravity waves generated during inflation, the gravity waves from binary
black hole coalescence observed recently [130,131] occurred late in the cosmic time scale. In a recent
observation of a coalescence, graviton mass is bounded as <0.77 x 1022 eV [132]. Related to our MI
“invisible” axion from superstring, for the MI axion creation to be of any observable effect along the
coalescence, the black hole mass is required to be small, ~2 x 1014 kg [133].

6. Global Symmetries and Non-Abelian Gauge Groups

We have discussed directions in spontaneously broken global symmetries and their manifestations
as pseudo-Goldstone bosons. The pseudo-Goldstone boson mass 171pseudo corresponding to a global
U(1) depends on the explicit breaking scale %, the red part in Figure 1, and the decay constant f: 62/ f.
The explicit symmetry breakings are broadly distinguished to two classes: (i) by small terms in the
Lagrangian and (ii) by non-Abelian gauge interaction. The case (i) can be studied for the Yukawa
couplings Ly and small terms AV in V. If all terms in Ly and V respect the global symmetry, then
loop contributions cannot break the global symmetry. So, the breaking effect must be considered at the
tree level. The case (ii) is known as the instanton effect [134] and the § vacuum discussed in Section 3
is the pseudo-Goldstone boson direction. This breaking arises at the one loop level as the (global
symmetry)—(non-Abelian group)? anomaly.

Here, a few BCMs are commented. For the N-flation and U(1)4e, the breaking terms correspond to
the case (i), obtaining contribution only from V. For the “invisible” QCD axion, it belongs to the case
(ii) and there should be no contribution from V. We discussed the top-down scenario for obtaining
U(1)pq from U(1)anom global symmetry from string compactification. For this to remain as a solution
of the strong CP problem, however, QCD should be the only unbroken non-Abelian gauge group.
The reason is the following.

We have already presented in (28) an effective potential of two axions a; and a, with two
non-Abelian groups below their confining scales. Note that p, g, h, and k are parameters given in
the model and f; and f; are two decay constants (or VEVs of scalar fields). Diagonalization of the
mass matrix of a; and a, gives the heavy and light pseudoscalar masses presented in Equations (29)
and (30) [122]. Here, we take different limits of parameters from the KNP inflation. Suppose that there

4 2
are hierarchies f, > f; and % > ;—22 Then, the heavy and light masses are
1 1

2 2 2
m?; ~ A3 <h2+k2> m} ~ A} <M> (32)

i h Kfy +hfi
From Equation (32), we note that the decay constant of the heavy pseudoscalar is the smaller
decay constant f; and the decay constant of the light pseudoscalar is the larger decay constant f;.
So, if we try to have A1 — Aqcp, then we must choose the larger decay constant which can be a GUT
or string scale. So, we fail in obtaining an intermediate scale f,; from the U(1)anom global symmetry for
the “invisible” axion. For the U(1)anom global symmetry to lead to the “invisible” axion, we should not
have any other non-Abelian gauge group above the TeV scale from string compactification. If another

confining gauge group above the TeV scale is introduced, then a scenario must be introduced such that
it is broken after achieving the objective.

7. Discussion and Conclusions

From theoretical and cosmological perspectives, we reviewed spontaneously broken global
symmetries and the consequent pseudoscalar bosons. The PQ global symmetry was introduced as a
prototype model, which can solve also the strong CP problem.

Theorectically, pseudoscalars can be made light if they appear as pseudo-Goldstone bosons with
the decay constant f. We argued that depending on the scales of f and the explicit breaking terms,
these pseudoscalars could have worked as BCMs in various stages in the evolving Universe as shown
in (6) and (7). We discussed the explicit breaking terms arising from non-Abelian gauge anomalies
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and/or from the classical Lagrangian. These BCMs can be DE, CDM, or even an inflaton. For a possible
experimental confirmation of BCM, the “invisible” QCD axion is the front runner with the decay
constant f, in the axion window (18). We also argued that the “invisible” QCD axion at the axion
window is possible from string compactification.

Since the “invisible” axion determined 6 = 0 as noted in Section 3, one may question a possibility
of determining the weak CP violation phases, the CKM phase dcipn, the PMNS phase dpyns, and also
the CP phases in the Type-1 [135] and Type-II [136] leptogenses. In principle, it can be done but these
attempts cannot be present in simple forms because three quark families, for example, introduce many
parameters, in contrast to the one parameter 6 in QCD [81]. Determining dciy belongs to the problem
of “textures” of quark mass matrix. A hope toward this direction is to parametrize the CKM matrix in
the form of Ref. [137] such that dcxy is the phase in the CKM matrix itself, which may help finding
out the needed texture. There exist a few attempts along this line [136,138,139].
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