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Abstract: Light waves carry along their own gravitational field; for simple plain electromagnetic
waves, the gravitational field takes the form of a pp-wave. I present the corresponding exact solution
of the Einstein–Maxwell equations and discuss the dynamics of classical particles and quantum fields
in this gravitational and electromagnetic background.
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1. Setting the Stage

The gravitational properties of light waves have been studied extensively in the literature [1–12].
In this lecture, I first describe the exact solutions of Einstein–Maxwell equations presented e.g., in [3,6]
and then proceed to discuss some applications building on [7].

The topic of this exposition concerns plain electromagnetic waves propagating in a fixed direction
chosen to be the z-axis of the co-ordinate system. As they propagate at the universal speed c, taken to
be unity: c = 1 in natural units, it is useful to introduce light-cone co-ordinates u = t− z, v = t + z.
Then, the electromagnetic waves to be discussed are described by a transverse vector potential

Ai(u) =
∫ dk

2π
(ai(k) sin ku + bi(k) cos ku) , i = (x, y). (1)

This expression explicitly makes use of the superposition principle for electromagnetic fields,
guaranteed in Minkowski space by the linearity of Maxwell’s equations and well-established
experimentally. The corresponding Minkowskian energy-momentum tensor is

Tµν = FµλF λ
ν −

1
4

ηµνFκλFκλ, (2)

the only non-vanishing component of which in light-cone co-ordinates is

Tuu =
1
2

(
E2 + B2

)
. (3)

Here, the components of the transverse electric and magnetic fields are expressed in terms of the
vector potential (1) by

Ei(u) = −εijBj(u) = ∂u Ai(u). (4)

The same expression for light-waves also holds in general relativity, the corresponding solution
of the Einstein equations being described by the special Brinkmann metric [13,14]

ds2 = −dudv−Φ(u, x, y)du2 + dx2 + dy2. (5)

For this class of metrics, the only non-vanishing components of the connection are

Γ v
uu = ∂uΦ, Γ v

iu = 2Γ i
uu = ∂iΦ, (6)
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and the complete Riemann tensor is given by the components

Ruiuj = −
1
2

∂i∂jΦ. (7)

As a result, the Ricci tensor is fully specified by

Ruu = −1
2

(
∂2

x + ∂2
y

)
Φ, (8)

which matches the form of the energy-momentum tensor (3) and thus allows solutions of the Einstein
equations specified by

Φ = 2πG(x2 + y2)
(

E2 + B2
)
(u) + Φ0(u, xi), (9)

with Φ0 representing a free gravitational wave of plane-fronted or pp-type.

2. Geodesics

The motion of electrically neutral test particles in a light-wave (1) is described by the geodesics
Xµ(τ) of the pp-wave space-time (5). They are found by solving the geodesic equation

Ẍµ + Γ µ
λν ẊλẊν = 0, (10)

the overdot denoting a derivative w.r.t. proper time τ. In a different context, using different co-ordinates
this equation was considered in [15]; here, we follow the discussion of [6,7]. The equation for
the geodesic light-cone co-ordinate U(τ) is especially simple, as its momentum (representing a
Killing vector) is conserved:

U̇ = γ = constant. (11)

Another conservation law is found from the Hamiltonian constraint obtained by substitution of
the proper time in the line element:

− 1 = −U̇V̇ −Φ(U, Xi)U̇2 + Ẋi 2 ⇔ 1
γ2 =

1− v2

(1− vz)2 + Φ, (12)

where v = dX/dT is the velocity in the observer frame. Finally, using equation (11) to substitute U
for τ, the equations for the transverse co-ordinates become

d2Xi

dU2 +
1
2

∂Φ
∂Xi = 0. (13)

For quadratic pp-waves Φ(U, Xi) = κij(U)XiXj, this takes the form of a parametric oscillator equation

d2Xi

dU2 + κij(U)X j = 0. (14)

For light-like geodesics, the equations are essentially the same, except that the Hamiltonian
constraint is replaced by

1− v2

(1− vz)2 + Φ = 0. (15)

Note that, in Minkowski space, where Φ = 0, this reduces to v2 = c2 = 1. These equations take an
especially simple form for circularly polarized light waves sharply peaked around a central frequency

Ax(u) =
∫ dk

2π
a(k) cos ku, Ay(u) =

∫ dk
2π

a(k) sin ku, (16)
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where the domain of a(k) is centered around the value k0 with width ∆k and central amplitude
a0 = a(k0). Then,

2πG
(

E2 + B2
)
= µ2 ∼ G ∆k k2

0 a2
0, (17)

is a constant; as a result,
Φ = µ2

(
x2 + y2

)
(18)

with a constant coefficient µ2. Then, Equation (14) reduces to a simple harmonic oscillator equation
with angular frequency µ in the U-domain.

3. Field Theory

In the previous section, we studied the equation of motion of test particles, supposed to have
negligible back reaction on the gravitational field described by the metric (5). Similarly, one can study
the dynamics of fields in this background space-time in the limit in which the fields are weak enough
that their gravitational back reaction can be neglected. First, we consider a scalar field Ψ(x) described
by the Klein–Gordon equation(

−�pp + m2
)

Ψ = 0, �pp = −4∂u∂v + 4Φ(u, xi)∂2
v + ∂2

x + ∂2
y. (19)

It is convenient to consider the Fourier expansion w.r.t. the light-cone variables (u, v):

Ψ(u, v, xi) =
1

2π

∫
dsdq ψ(s, q, xi)e−i(su+qv). (20)

Note that
su + qv = Et− pz, E = s + q, p = s− q. (21)

Then, the amplitudes ψ satisfy the equation[
∂2

x + ∂2
y + 4sq− 4q2Φ(−i∂s, xi)−m2

]
ψ = 0. (22)

This equation can be solved explicity for the circularly polarized wave packets which lead to the
simple quadratic amplitude (18). Then,(

4sq−m2
)

ψ =
(
−∂2

x − ∂2
y + 4µ2q2(x2 + y2)

)
ψ. (23)

The right-hand side describes a couple of quantum oscillators with frequency ω = 2µ|q|
possessing an eigenvalue spectrum

2µ|q|
(
nx + ny + 1

)
≡ 4σ|q|, ni = 0, 1, 2, ... (24)

Thus, Equation (23) reduces to

4sq− 4σ|q| = m2 or

{
(E− σ)2 = (p− σ)2 + m2, q > 0,
(E + σ)2 = (p + σ)2 + m2, q < 0.

(25)
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The final result for the scalar field then becomes

Ψ(u, v, xi) =
1

2π

∫ ∞

0

dq
√

q

∞

∑
ni=0

(
ani (q)e

−iqv−i
(

m2
4q +σ

)
u
+ a∗ni

(q)eiqv+i
(

m2
4q +σ

)
u
)

×
√

2µ

π ∏
j=x,y

 Hnj(ξ j)√
2nj nj!

e−ξ2
j

 , ξ j =
√

2µq xj.

(26)

Obviously, in a second-quantized context for this theory, the amplitudes (an, a∗n) are to be
interpreted as annihilation- and creation-operators [7].

4. Electromagnetic Fluctuations in a Light-Wave Background

On top of an electromagnetic wave described by Equation (1), there can be fluctuations of the
electromagnetic field. The general form of the Maxwell field then is of the form

Aµ(u, v, xi) = δi
µ Awave

i (u) + aµ(u, v, xi). (27)

Because of the linearity of Maxwell’s equations, the field equations for the wave background and
the fluctuations separate. The fluctuating field equations in the gravitational pp-wave background are
derived from the action

S =
∫

dudvdxdy
[
(∂uav − ∂vau)

2 + (∂uai − ∂iau) (∂vai − ∂iav)−Φ (∂vai − ∂iav)
2

− 1
8
(
∂iaj − ∂jai

)2
]

,

(28)

and read

δS
δau

= 4∂v∂uav − ∆⊥av − 2∂v

(
∂vau + ∂uav −

1
2

∂iai

)
= 0,

δS
δav

= 4∂v∂uau − ∆⊥au − 2∂u

(
∂vau + ∂uav −

1
2

∂iai

)
+ 2∂i [Φ (∂iav − ∂vai)] = 0,

δS
δai

= −2∂v∂uai +
1
2

∆⊥ai + ∂i

(
∂vau + ∂uav −

1
2

∂jaj

)
− 2∂v [Φ (∂iav − ∂vai)] = 0,

(29)

where ∆⊥ = ∂2
x + ∂2

y. As the fluctuating field equations possess their own gauge invariance they can
be restricted without loss of generality by the constraint

∂vau + ∂uav −
1
2

∂iai = 0. (30)

However, this does not yet exhaust the freedom to make gauge transformations, as the
condition (30) is repected by special gauge transformations

a′µ = aµ + ∂µα, with (4∂u∂v − ∆⊥) α = 0. (31)

As can be seen from the first Equation (29), these transformations can be used to eliminate the
component av by taking

∂vα = −av ⇒ a′v = 0. (32)
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We are then left with a fluctuating field component au restricted by (30):

∂vau =
1
2

∂iai, (33)

implying au to satisfy the Gauss law constraint

∂i [∂iau − 2 (∂u −Φ∂v) ai] = 0. (34)

The only remaining dynamical degrees of freedom are now the transverse components ai which
are solutions of the Klein–Gordon type of equations(

−2∂u∂v + 2Φ∂2
v +

1
2

∆⊥

)
ai = 0. (35)

For pp-backgrounds of the special form (18), these solutions take the form (26) with m2 = 0.
In the full theory, the gravitational field must also fluctuate in a corresponding fashion. In the

limit where the fluctuations are due to irreducible quantum noise, a corresponding quantum effect
must be present in the space-time curvature. In view of the result (9) for the photon fluctuations in the
light-beam itself, these are expected to take the form of associated spin-0 graviton excitations.
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12. Lynden-Bell, D.; Bičak, J. Komar fluxes of circularly polarized light beams and cylindrical metrics.

Phys. Rev. D 2017, 96, 104053.
13. Brinkmann, H.W. On Riemann Spaces Conformal to Euclidean Space. Proc. Nat. Acad. Sci. USA 1923, 9, 1–3.
14. Baldwin, O.; Jeffery, G. The relativity theory of plane waves. Proc. R. Soc. Lond. A 1926, 111, 95–104.
15. Rindler, W. Essential Relativity; Springer: Berlin/Heidelberg, Germany, 1977.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Setting the Stage
	Geodesics
	Field Theory
	Electromagnetic Fluctuations in a Light-Wave Background
	References

