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Abstract: We propose a cross-correlation method for the searches of ultra-light fields, in particular,
with a space network of atomic sensors. The main motivation of the approach is cancellation of
uncorrelated noises in the observation data and unique pattern the fields leave on the cross-spectrum,
depending on their nature (i.e., scalar, vector or tensor). In particular, we analytically derive
a dependence of the cross-spectrum on the angle between two pairs of detectors. We then confirm
obtained angular curves with a numerical simulation. We apply the method to the detection of dark
matter and gravitational waves.
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1. Introduction

Search for new fields has been the central part of modern high-energy physics. While most of
the effort is concentrated in the mass range of GeVs and above [1], where the new physics can be
tested with particle accelerators and cosmic rays, relatively little is done in the sub-eV region. In that
region, most active are the axion studies [2], usually spanning the interval of µeV-meV. Fields with
even lower masses have gained more attention only very recently, mostly, as possible candidates for
the dark matter (DM) (see Refs. [3,4] for an overview). Large Compton wavelengths for such fields
(λ > 1 m for m < 1 µeV) require a methodology beyond the traditional particle physics but can be
tested with atomic physics experiments and/or large scale experiments in space. One example is
a comparison of frequencies of two atomic clocks being affected by slowly oscillating scalar field
background. Another would be a test of the weak equivalence principle with two isotopes in free
fall, as an additional acceleration might be induced by a new ultra-light vector field. An example
of a large-scale experiment would be a fifth-force type of searches, searching for anomalies in the
trajectories of celestial bodies and spacecrafts [5] or searches for timing anomalies in the GPS data [6].
For an overview of possible spatial configurations of ultra-light fields, see Ref. [4] and references
therein. We recall that the current literature provides the following most common configurations of
the fields: waves with the frequency at the field mass [7–9], clumps (e.g., topological defects [10–12]),
caustics [13] and simple static distributions [14].

In this paper, we consider a new case: a stochastic background of waves of light fields,
which we propose to measure by means of a network of precise atomic sensors. Some of the
past methods assumed that the entire energy density of DM is carried by a monochromatic
(or quasi-monochromatic [15–18]) wave with a frequency fixed at mφ/2π. However, if the total
energy density is distributed over a range of frequencies, then the limits summarized in Ref. [4] will
be significantly reduced. Therefore, it makes sense to put limits not only on the DM couplings, but
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also on the spectrum of DM excitations. Stochastic background of waves may appear in the context of
Bose–Einstein Condensate (BEC) and superfluid dark matter models [19–21]. Technically, it may also
be easier to search for a stochastic background of waves rather that single waves because one does
not have to form a bank of templates and the signal-to-noise ratio can be substantially improved by
increasing the observation time (we discuss it later in the paper). We first analyze the cases of scalar
and vector fields in the context of DM, and then also show how similar methodology can be used for
tensor fields in the context of gravitational waves.

2. Stochastic Scalar Fields

In this section, we consider a new hypothetical scalar field, which we, for convenience, associate
with DM to be able to refer to the existing literature. The scalar field φ with mass mφ will be coupled
linearly to the Standard Model (SM) operators (see, e.g., dilaton dark matter studies [8,9,22]),

Lint = φ

[
1

4e2Λγ
FµνFµν − β3

2g3Λg
GµνGµν − ∑

f=e,u,d

(
1

Λ f
+

γm f

Λg

)
m f ψ̄ f ψ f

]
, (1)

where Fµν and Gµν standard electromagnetic and gluon field strength tensors, β3 is the beta-function
of the gauge coupling g3, γm f is the anomalous dimension of the fermion (electron, u-, d-quark) mass
operator and we use natural units, h̄ = c = 1. Parameters Λa have dimension of mass and play a role of
(unknown) inverse coupling constants. For other possible couplings (see Refs. [3,4,23,24]). The chosen
interaction Lagrangian, Equation (1), introduces local changes in values of fundamental constants,
such as [22]

δα

α
=

φ

Λγ
,

δm f

m f
=

φ

Λ f
,

δΛQCD

ΛQCD
=

φ

Λg
, (2)

where α is the fine-structure constant and ΛQCD is the QCD (Quantum Chromodynamics) scale. These
variations can be studied by the changes in the atomic clock frequency[25]

ν ∝ αKα

(
mq

ΛQCD

)Kq ( me

ΛQCD

)Ke

, (3)

where mq = (mu + md)/2 and exponents Ka are tabulated for the most common types of atomic clocks
(see Refs. [8,25,26] and references therein). As an example, for 133Cs, Kα = 2.83, Kq = 0.07, Ke = 1.
For optical clocks, only Kα is nonzero, i.e., the clocks are only sensitive to the changes in the fine
structure constant. Using Label (2), we obtain

δν

ν
= φ

[
Kα

Λγ
+

Kq

Λq
−

Kq + Ke

Λg

]
, where Λq ≡

ΛuΛd(mu + md)

muΛd + mdΛu
. (4)

For our study, it will be crucial that the fractional frequency variation depends linearly on the
scalar field strength φ, allowing us to express the Fourier transform of the frequency variation through
the Fourier transform of φ. This, together with the general requirements, such as the gauge- and
Lorentz-invariance, is the main motivation behind the chosen form of the Lagrangian (1). There exist
strict experimental limits on the parameters Λa based on this (and similar) methods (see Refs. [4,7,9]).
However, these limits are based on the assumption of DM wave being monochromatic and can be
relaxed in the case of a more general spectrum of DM waves. We refer the reader to the Appendix A for
a relevant example. It is important to emphasize that the limits on Λa should be always considered in
the context of chosen DM configurations (e.g., waves, lumps, constant field, etc.). Since stochastic DM
backgrounds were not considered before, we do not contrast possible Λa sensitivities of our method to
the projected sensitivities or ruled out regions of parameter space attributed to other methods.
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We consider a triangle-shaped configuration of atomic clocks with frequencies νi, i = 01, 02, 1, 2,
placed at positions ~xi (see Figure 1a). Each clock responds to the scalar field by a shift in the frequency,
δνi such as δνi/νi = κiφ, cf. Equation (4). We will measure the difference in the relative frequency
shifts, X1(t) = δν01/ν01 − δν1/ν1 and X2(t) = δν02/ν02 − δν2/ν2. In a real experiment, one compares
absolute clock frequencies in pairs, so we will assume that the clocks are identical in each pair, and Xi(t)
represents the relative frequency difference between clocks in a pair with the gravitational redshift
difference taken into account. We have chosen two pairs of atomic clocks instead of three identical
clocks because the common reference clock would introduce a possible unwanted correlated noise that
can be mistaken for the signal. We will be interested in the cross-spectrum between X1(t) and X2(t)
and derive a universal dependency of this cross-spectrum on the angle between the pairs of atomic
clocks. The approach for the derivation is similar to the calculation of the Hellings–Downs curve [27]
for pulsar-timing arrays used in the gravitational wave searches. The scalar field in consideration
does not have to be DM and can be any neutral light scalar field obeying the energy density limit
on the hidden matter content in the solar system (or, more generally, in the confining volume of the
performed experiment) (see, e.g., Ref [28]).

(a) (b)

Figure 1. (a) Triangle-shaped configuration of two pairs of identical clocks. Frequencies and sensitivities
to DM are denoted by νi and κi, respectively; (b) Triangle-shaped configuration of two pairs of identical
atom interferometers pointing in radial direction (each direction is denoted by êi). The length of the
first and the second arm is denoted by D1 and D2, respectively.

In what follows, we assume that the data collection time T is finite but large, giving the frequency
resolution of the signal ∆ f ∼ 1/T. The finite-time Fourier transform for all time-dependent quantities
in this article is given by

X̃( f ) = T−1/2
∫ T/2

−T/2
X(t)e−2πi f tdt. (5)

We will be replacing the integration limits by infinity, whenever it does not lead to a confusion.
The power spectral density SX( f ) of X for one of the clock pairs is defined via SX( f ) = |X̃( f )|2 and
has the property (Parseval’s theorem)

〈X2(t)〉 ≡ lim
T→∞

1
T

∫ T/2

−T/2
X2(t)dt =

∫ ∞

−∞
SX( f )d f . (6)
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We have chosen a two-sided version of the power spectral density to make it easier to change the
order of integration, when needed. Notice that the given form of Fourier transform (together with the
property of stationarity) leads to

〈X̃( f )X̃∗( f ′)〉 = 1
T

δT( f − f ′)SX( f ) , (7)

where we defined the finite-time delta function as

δT( f ) ≡
T/2∫
−T/2

e−2πi f tdt = Tsinc(π f t) . (8)

If the two frequencies coincide, then δ(0) = T cancels the factor T in the denominator and we
recover the definition of the power spectrum. Let us consider a stationary isotropic background of
scalar field waves. We represent the scalar field as

φ(t,~x) =
∫

d3~k φ̃(~k)ei(~k·~x−2π f t) , (9)

where the dispersion relation, in natural units, is 2π f = (m2
φ + k2)1/2 for massive matter waves or

f = const · k for gapless modes (such as phonons). Next, we introduce the cross-spectrum for two
pairs of clocks,

Sc( f , ζ) =
∫ +∞

−∞
dτ e−i2π f τ〈X1(t)X2(t + τ)〉 = 〈X̃1( f )X̃∗2 ( f )〉 . (10)

We will be using two identities (the second one comes from the isotropic property of the background),

∞∫
−∞

d f Sc( f , ζ) = 〈X1(t)X2(t)〉,
∞∫
−∞

d f Sφ( f ) = 4π

∞∫
0

dk k2〈φ̃(k)φ̃∗(k)〉 , (11)

to calculate the cross-spectrum from the power spectrum of the scalar field,

∞∫
−∞

d f Sc( f , ζ) = κ1κ2

∫
d3~k〈φ̃(~k)φ̃∗(~k)〉

(
1− ei~k·(~x1−~x0)

)
·
(

1− e−i~k·(~x2−~x0)
)
=

∞∫
−∞

d f Sφ( f )Rc( f , ζ) , (12)

where the response function Rc( f , ζ) is given by

Rc( f , ζ) =
κ1κ2

4π

∫
S2

d2Ωk̂

(
1− ei~k·(~x1−~x0) − e−i~k·(~x2−~x0) + ei~k·(~x1−~x2)

)
. (13)

By chosing the appropriate coordinate system (see, e.g., Ref. [29]), one can integrate each term in
the sum and obtain

Rc( f , ζ) = κ1κ2 [1− sinc(kD1)− sinc(kD2) + sinc(kD12)] , (14)

where Di ≡ |~xi −~x0|, D12 ≡ |~x1 −~x2|, and k = |~k|. The response function Rc( f , ζ) relates the power
spectrum of the scalar field fluctuations to the cross-spectrum of the measured signals,

Sc( f , ζ) = Rc( f , ζ)Sφ( f ) . (15)
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If the scalar field φ is identified with DM, then its power spectrum density, Sφ( f ), has the following
integral characteristic,

ρDM ≈ m2
φ〈φ2〉 = m2

φ

∞∫
−∞

Sφ( f ) d f , (16)

where ρDM is the average DM energy density in the vicinity of the experiment. A common model
for the DM distribution in the Milky Way is a non-rotating isothermal spherical halo with velocities
of the DM objects following Maxwell distribution. For a solar system experiment, it is believed
that ρDM ≈ 0.4 GeV/cm3 [1] and that the DM objects are moving with (virial) velocities of
vb ≈ 270 km/s and the velocity dispersion is δvb ≈ vb [30]. The upper bound on ρDM is currently set
to ρDM < 105 GeV/cm3, based on positional observations of planets and spacecraft [28]. Since the
exact shape of Sφ( f ) is not known a priori, from the practical point of view, it makes sense to eliminate
it by normalizing the cross-spectrum with the power-spectrum of the signal from one pair of atomic
clocks, SXi = Ri( f )Sφ( f ), where i = 1, 2, and Ri( f ) = 2κ2 [1− sinc(kDi)] (see Figure 2). It is clear from
the plot that the sensitivity for a pair of identical atomic clocks reaches its maximum for the separation
Di being larger than the scalar field wavelength. After the normalization of the cross-spectrum, the final
result becomes

F( f , ζ) ≡ Sc( f , ζ)

SXi ( f )
=

κ1κ2

κ2
i
· 1− sinc(kD1)− sinc(kD2) + sinc(kD12)

2(1− sinc(kDi))
. (17)

There are several natural limiting cases that can greatly simplify this expression due to the
properties of the sinc function,

F( f , ζ) =



κ1κ2

2κ2
i

, Di � 1/k, D12 � 1/k,

κ1κ2

κ2
i

, Di � 1/k� D12,

κ1κ2

κ2
i

D1D2

D2
i

cos ζ, Di � 1/k,

(18)

where ζ is the angle between (~x1 −~x0) and (~x2 −~x0). The second limit is geometrically restricted to
a situation when D1 ≈ D2 and ζ ≈ D12/Di � 1 or, in other words, when 2πD12 is much smaller than
the wavelength of the scalar field excitation. It is important to notice that expressions in Equation (18)
do not depend on the DM wave-vectors, frequencies and masses explicitly. Here, we used the property
sinc(a) ≈ 0 when a� 1 and sinc(a) ≈ 1− a2/6, when a� 1. Another nontrivial observation is that
the first two limits give us nonzero constants [29], while an uncorrelated noise would have given
a vanishing cross-correlator.

Equation (18) is the main result of this section. One can use it to identify the presence of a scalar
signal in the cross-correlation data, either directly or by constructing an optimal filter to extract the
signal from noise. In the described procedure, the frequency of the signal is bounded from below by
several factors. First, the frequency should be larger than mφ/(2π), due to the dispersion relation for
the scalar field. Second, it should be larger than the inverse data collection time, f � 1/T, due to the
property of the Fourier transform. Finally, it is limited by the time Tζ ∼ ∆ζ/ζ̇ by which the angular
distance between sensors changes by the value equal to the uncertainty in the angle ζ, so f � ζ̇/∆ζ.
The value of ∆ζ should be chosen such that there is enough recorded data for the extraction of the
power spectrum density at the given frequency.

The maximal frequency is limited by the Nyquist–Shannon–Kotelnikov theorem, fmax = 1/(2∆t),
where ∆t is the time interval between consecutive measurements. The value of ∆t depends on
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the averaging interval giving desirable performance of the atomic sensors (typically, ∆t ≥ 1 s for
high-performance atomic clocks). Frequencies larger than fmax can be studied with the help of the
temporal aliasing effect [4]; however, such analysis goes beyond the scope of this paper.

The method described here is general in nature and can be also applied beyond the use of atomic
sensors. For instance, one could search for the long-wavelength curve, Equation (18), using instruments
for the gravitational wave studies. First, one could analyze pulsar timing array data. When passing
through a pulsar, the DM field can alter the neutron mass, size of the pulsar and hence its moment of
inertia [11]. This will lead to the variation of the pulsar rotation period. For the sensitivity estimates in
the case of a single monochromatic DM wave, see Ref. [3]. Another method of DM detection with pulsar
timing is presented in Ref. [31]. Second, the DM wave could lead to the periodic displacement of test
masses in LIGO (Laser Interferometer Gravitational-Wave Observatory) and LISA (Laser Interferometer
Space Antenna) experiments (for instance, LIGO mirrors) (see the sensitivity estimates for Λg and
a single monochromatic scalar wave in Ref. [8]). Third, one could use binary pulsars for studies of
stochastic backgrounds (see, e.g., Refs. [32,33]).

Figure 2. Response function, Ri( f )/κ2
i = 2 [1− sinc(kDi)] for a pair of identical atomic clocks.

2.1. Dark Matter “Wind”

DM direct detection experiments should take into account the possibility of DM moving with
a constant velocity ~vb with respect to the observer (DM “wind”) (see Ref. [30] and references therein).
Since the solar system moves through the galactic halo of the DM, such velocity may be given by the
velocity of the Sun with respect to the galactic rest frame. If the solar system has its own DM halo,
then the velocity of DM with respect to the near-Earth experiment would be given by the Earth orbital
speed. In this section, we consider the effect of the constant motion of the configuration of detectors
through the DM rest frame without making assumptions on the particular direction and absolute value
of such constant velocity. Our goal is to see if there is a change in the angular part of cross-spectra
when the velocities of DM waves are shifted by a constant vector ~vb. Another approach to the DM
“wind” detection with atomic clocks is proposed in Ref. [15].

For scalar excitations, due to the properties of the Fourier transform and Equation (6),

〈φ̃(~k−~kb)φ̃
∗(~k−~kb)〉 = Sφ( f ′) , (19)

where ~kb ≡ mφ~vb, Sφ is the isotropic power spectrum and f ′ = (m2
φ + (~k −~kb)

2)1/2/(2π) is the
Doppler-shifted frequency of the stochastic excitations. The cross-spectrum will be given then by
Sc( f , ζ) = (d f ′/d f )Sφ( f ′)Rc( f ′, ζ), where the response functions R = R( f ′, ζ) can be calculated in
terms of the shifted wave-vectors,~k =~kb +~k′,

Rc( f ′, ζ) =
κ1κ2

4π

∫
S2

d2Ωk̂′

(
1− ei~k′ ·~x1 − e−i~k′ ·~x2 + ei~k′ ·(~x1−~x2)

)
, (20)
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where we consider the configuration given by Figure 1a, and~x0 = 0, for the sake of simplicity. After the
integration, the expression becomes

Rc( f ′, ζ) = κ1κ2
[
1− sinc(k′D1)− sinc(k′D2) + sinc(k′D12)

]
, (21)

giving us familiar results (with the only difference of k being replaced by k′),

F( f , ζ) =



κ1κ2

2κ2
i

, Di, D12 � 1/k′,

κ1κ2

κ2
i

, Di � 1/k′ � D12,

κ1κ2

2κ2
i

D1D2

D2
i

cos ζ, Di � 1/k′.

(22)

To reiterate the strategy, if the normalized cross-spectra give a constant (e.g., 1 or 1/2, for identical
clocks) or cosine dependence on the angle between two pairs of atomic clocks, then the measured
signal may be dominated by the presence of a new scalar field. In our derivation, we ignored the
contribution of noise, assuming it to be weak. If the noise is strong, however, then one has to apply
a different methodology, where the obtained analytic results, Equation (18) or Equation (22), are used
in the combination with a statistical analysis for the extraction of a weak signal from noise. We describe
this approach in the next section.

2.2. Signal-to-Noise Ratio and Statistical Inference

In this section, we provide the signal-to-noise ratio (SNR) for stochastic background
measurements, an optimal filter, as well as the probability of the presence of the signal in the noise.
This will allow us to estimate measurement parameters (such as the measurement duration) to
achieve a given measurement sensitivity. Our derivations follow the gravitational wave detection
methods [34–36]; for the basics of the signal extraction from noise, see, e.g., Ref. [37]. We focus on the
case of scalar fields, the generalization on other cases is straightforward. We consider the measured
observable as a sum of a (weak) signal φ(t) and a noise n(t), both having zero expectation values.
For each pair of atomic clocks, the noise is characterized by the (one-sided) power spectrum Sni ,
and the noises are assumed to be uncorrelated and stationary. In order to solve the problem of optimal
filtering, we consider the signal to be

S ≡ 1
T

T/2∫
−T/2

dt
T/2∫
−T/2

dt′ s1(t)s2(t′)Q(t− t′) . (23)

If the filter Q(t− t′) = δ(t− t′), then the signal is simply S = 〈φ1(t)φ2(t)〉. This signal can be,
however, buried under noise and we need to construct a filter Q(t) that will maximize SNR, eventually
making it large enough at the expense of long observation time T. It will be shown that SNR ∼

√
T for

our measurement. The Fourier space representation of the signal is

S =

∞∫
−∞

d f
∞∫
−∞

d f ′ δT( f − f ′)s̃∗1( f )s̃2( f ′)Q̃( f ′) , (24)
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where we assumed that Q(τ) decays quickly with τ → ±∞. Next, statistical properties of the field
amplitudes and the noise can be expressed as

〈φ̃∗1 ( f )φ̃2( f ′)〉 = 1
T

δT( f − f ′)F( f , ζ)Sφ( f ) , (25)

〈ñ∗i ( f )ñj( f ′)〉 = 1
2T

δT( f − f ′)δijSni (| f |) , (26)

and, in addition to the property δT(0) = T, lead to

〈S〉 =
∞∫
−∞

d f F( f , ζ)Sφ( f )Q̃( f ) . (27)

The noise is defined in the standard way, N ≡ S − 〈S〉. Assuming the noise contributions
dominate the signal, we can write

N '
∞∫
−∞

d f
∞∫
−∞

d f ′ δT( f − f ′)ñ∗1( f )ñ2( f ′)Q̃( f ′) , (28)

and further obtain

〈N2〉 = 〈S2〉 − 〈S〉2 ' 1
4T

∞∫
−∞

d f Sn1(| f |)Sn2(| f |)|Q̃( f )|2 , (29)

where we used a standard way of expressing the 4th moment through the covariances and took into

account that
∞∫
−∞

δ2
T( f − f ′)d f ′ = T at large T. Comparing this expression to Equation (27), one can see

that SNR2 = 〈S〉2/〈N2〉 is maximized at

Q̃( f ) =
F( f , ζ)Sφ( f )

Sn1(| f |)Sn2(| f |)
(30)

and gives

SNR2 ' 8 T
∞∫

0

F2( f , ζ)S2
φ( f )

Sn1( f )Sn2( f )
d f . (31)

Notice that SNR ∝
√

T and the noise decreases with more data points collected, so, in ideal
conditions, an arbitrarily small signal can be extracted from noise for long enough duration of the
observation, which is, indeed, the power of the cross-correlation method.

In order to claim detection of a weak signal, one has to assume a certain shape of the spectrum
Sφ( f ), false alarm rate α and false dismissal rate β. Consider a set of n statistically independent
measurements {Si}, each of duration T. In order to test the null hypothesis (no signal of scalar waves
in the data), one can form a random variable

X̂ =
√

n ˆSNR =
〈S〉√

〈(S− 〈S〉)2〉/
√

n
, (32)

which is normally distributed with unit variance, in assumption of a large enough n. The Neyman–Pearson
decision criterion (maximizing probability of the detection with fixed alarm rate α) allows us to use it as
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a test statistic and choose the null hypothesis if X̂ < X∗, where X∗ is fixed by the choice of the false
alarm rate,

X∗ =
√

2 erfc−1(2α), erfc(x) ≡ 2√
π

∞∫
x

dξ e−ξ2
, (33)

and reject the null hypothesis otherwise. Here, erfc−1(x) is the inverse of the complementary error
function. In other words, one can claim the presence of the DM signal of unknown amplitude if√

n ˆSNR ≤
√

2 erfc−1(2α). At the next step, after the null hypothesis is rejected, i.e., assuming the
signal is present in the data, the theoretical SNR required for the detection of the DM background in at
least (1− β)× 100% of measurements is given by [34]

√
nSNR ≥

√
2
[
erfc−1(2α)− erfc−1(2− 2β)

]
. (34)

If the spectrum is flat, Sφ( f ) = S̄φ = const, in order to detect the signal, one would require the
following minimal value of S̄φ,

S̄φ ≥
1

2
√

nT

 ∞∫
0

d f
F2( f , ζ)

Sn1( f )Sn2( f )

−1/2

×
[
erfc−1(2α)− erfc−1(2− 2β)

]
. (35)

The same technique can be applied to a network of more that two pairs of clocks, see Ref. [34]
discussing it in the context of gravitational wave detectors. For the anisotropic backgrounds and real
data complications, see, e.g., Ref. [36]. For illustration purposes, let us consider a system of identical
clocks in the short-wavelength regime (F(ζ) = 1/2), with the scalar field background being localized
around frequency f0 in a narrow band ∆ f and, for the particular statistics α = β = 0.05. Then, the
mentioned above expressions are simplified to

SNR =
S̄φ

√
2T∆ f

Sn( f0)
, S̄5%,5%

φ ≥ 2.33 Sn( f0)√
nT∆ f

, (36)

where the power spectrum density is for the 5% false alarm and false dismissal rates. Again, one sees
the advantage of the large number of measurement sessions and their long duration, with fixed levels
of noise.

2.3. Numerical Simulations

In this section, we check validity of some of our results numerically. The necessity of the numerical
test is due to the finite number of sources of DM waves, finite measurement time and number of
measurement sessions (i.e., statistics). The numerical analysis provides some guidance with respect to
the choice of measurement parameters and the impact of imperfections in the stochastic background.
We choose N = 1000 sources of DM waves randomly positioned in the sky (Figure 3) with random
amplitudes, phases and random frequencies normally distributed around a given mean value. For the
angular positions, P(ϕ) = (2π)−1 and P(cos(θ)) = 1/2. Random amplitudes and phases mimic
random distances to sources. We record the time-dependent signal with two pairs of detectors,
assuming, at this stage, that there is no instrumental or any other kind of technical noise. The sampling
time is chosen to be ∆t = 1 s and the session length T = 1000 s. The signal recorded by one of the
detectors is shown in Figure 4a and its spectrum is presented in Figure 4b. The cross-correlator for the
two sets of data and the cross-spectrum are shown in Figure 4c,d, respectively. The angular curves are
obtained within the frequency band given by the spread of the spectrum of the sources and shown in
Figure 5a,b. The long-wavelength limit gives the identical result to the analytic formula, Equation (18),
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here D2 = 0.1 D1 by choice. The short wavelength limit agrees with Equation (18) within at least one
standard deviation.

Figure 3. Angular positions of the sources.

(a) (b)

(c) (d)

Figure 4. (a) Signal at the reference detector (clock); (b) Its spectrum; (c) Cross-correlator for two signals
(two pairs of atomic clocks); (d) Cross-spectrum.
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(a) (b)

Figure 5. Angular curves for the (a) Long-wavelength background; (b) Short-wavelength background.
The band shows 1σ confidence interval for the constant value of F(ζ).

We also made preliminary measurements of the SNR with the optimal filter derived in the
previous section. In the presence of a weak and strong white Gaussian noise, these measurements are
consistent with the SNR ∝

√
T dependence. More precise quantitative statement requires additional

computing power and will be made elsewhere. The effect of noise suppression with an increase of
observation time is demonstrated in Figure 6.

(a) (b)

(c) (d)

Figure 6. Angular curves for long-wavelength regime and weak noise. (a) T = 100 s; (b) T = 200 s;
(c) T = 1000 s; (d) T = 10,000 s. The solid line corresponds to the analytic result without detector noise.
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3. Stochastic Vector Fields

Another popular DM candidate is the massive B− L vector field that exerts an additional force
on neutral atomic species with different number of neutrons (e.g., different isotopes). This addtional
force can be probed with atom interferometer (AI) measurements in acccelerometer configurations.
Such B− L field detection has been mostly discussed in the context of experimental tests of the weak
equivalence principle (WEP) and manifests itself in an additional relative acceleration between two
particle species a and b [3,38],

∆~aB−L(t,~x) =
gB−L
mN

(
Za

Aa
− Zb

Ab

)
~W(t,~x) ≡ κ~W(t,~x) , (37)

where gB−L is the coupling constant to the B− L field ~W, Za,b and Aa,b are the atomic numbers and
weights, respectively, mN is the neutron mass, and we also introduced the constant κ for the sake
of compactness. It has been proposed to measure such acceleration difference with the dual-species
atom interferometers (AI) [3,38]. For the review on principles of atom interferometry and use of AI as
accelerometers, see, e.g, Ref. [39]. Let us consider four AI in a triangle-shaped configuration, such that
two of them are at the position ~x0 = 0 and the other two are at the positions ~x1 and ~x2, respectively
(see Figure 1b). All AI are oriented in the radial direction with respect to the center at ~x0. The quantities
we are interested in are defined by the radial accelerations (along the lines connecting AIs in a pair),

Xi(t) = ∆ar
B−L(t,~x0)− ∆ar

B−L(t,~xi) = κi êi · (~W(t,~x0)− ~W(t,~xi)) , (38)

where êi are unit vectors directed along the AIs. We represent the vector field W as

~W(t,~x) =
∫

d3~k ∑
i=1,2,3

W̃i(~k)ε̂i(k̂) ei(~k·~x−2π f t) , (39)

where ε̂i(k̂) are polarization vectors, such as ε̂i(k̂) · ε̂j(k̂) = δij and the dispersion relation is
2π f = (m2

W + k2)1/2 with mW being the mass of the B− L field1. We further consider a stochastic,
isotropic and unpolarized background of vector waves characterized by the power spectrum
density SW( f ),

〈W̃i(~k)W̃∗j (~k)〉 =
1
3

SW( f )δij, 〈~W2(t,~x)〉 =
∞∫
−∞

SW( f ) d f . (40)

Notice the factor 3 in the denominator, which shows the number of physical polarizations.
In analogy with the previous section, we calculate the cross-spectrum, Sc( f , ζ) = Rc( f , ζ)SW( f ), where

Rc( f , ζ) =
κ1κ2

4π

∫
S2

d2Ωk̂
1
3 ∑

i=1,2,3

[
ê1 · ε̂i(k̂)

] [
ê2 · ε̂i(k̂)

] (
1− ei~k·~x1

)
·
(

1− e−i~k·~x2
)

. (41)

To compute this integral, we first fix the orientations of AI in the Cartesian (x, y, z)-coordinates,

ê1 = ẑ, ê2 = sin ζ x̂ + cos ζ ẑ , (42)

1 Generalization to the massless case can be easily obtained by considering only two (transverse) polarizations. The final
result for the angular curves will differ only by a numerical factor.



Universe 2018, 4, 99 13 of 19

and then fix the orthonormal basis of polarization vectors in polar coordinates (k, θ, ϕ),

ε̂1(k̂) = cos θ cos ϕ x̂ + cos θ sin ϕ ŷ− sin θ ẑ = θ̂, (43)

ε̂2(k̂) =− sin ϕ x̂ + cos ϕ ŷ = ϕ̂, (44)

ε̂3(k̂) = sin θ cos ϕ x̂ + sin θ sin ϕ ŷ + cos θ ẑ = k̂. (45)

In the short-wavelength approximation, Di, D12 � 1/k, we can neglect the exponents on
the right-hand side of Label (41) and obtain Rc( f , ζ) = κ1κ2

3 cos ζ. If Di � 1/k, D12 � 1/k,
then Rc( f , ζ) = 2κ1κ2

3 cos ζ, similar to the previous section. Finally, in the long-wavelength
limit, Di � 1/k, taking into account that x̂i = êi and expanding the exponent in series, we get
Rc( f , ζ) = κ1κ2

9 k2D1D2 cos2 ζ. Considering the power spectrum for each individual pair of AI,

SXi ( f ) = Ri( f )SW( f ), we obtain Ri( f ) = 2
3 κ2

i if Di � 1/k and Ri( f ) = κ2
i

15 (kDi)
2 if Di � 1/k. Finally,

introducing the angular curve F( f , ζ) ≡ Sc( f , ζ)/SXi ( f ), we summarize the results of this section:

F( f , ζ) =



κ1κ2

2κ2
i

cos ζ, Di � 1/k, D12 � 1/k,

κ1κ2

κ2
i

cos ζ, Di � 1/k� D12,

5
3

D1D2

D2
i

κ1κ2

κ2
i

cos2 ζ, Di � 1/k,

(46)

so the strategy of detecting the DM footprint in the data is to search for a cosine or cosine squared
modulation of the normalized cross-spectra.

There are several remarks in order. First, if one expects a contribution of the DM “wind”, then the
result repeats Equation (46) with k being replaced by k′ in the limits. Second, if the vector field
excitation is gapless, then the number of physical polarizations is reduced to two and the problem
resembles the case of electromagnetic stochastic background [29]. Third, if all conventional sources
of acceleration were known (if, e.g., the setup was in deep space), can be controlled or are spectrally
uncorrelated, then one could consider, for simplicity, four spatially separated single-species AI in
configuration of long-baseline gradiometer [40]. In this case, the provided derivation of the angular
curve can be repeated after subtraction of the all conventional accelerations. Finally, the triangular
measurement configuration for B− L vector field discussed above resembles a two-arm gravitational
wave detector such as LIGO and LISA. We speculate that either of them can be used for the B− L
vector DM detection because of the differential acceleration between test masses and highly correlated
laser noises in each arm.

4. Stochastic Tensor Fields

In this section, we discuss an application of the method to the searches of isotropic unpolarized
stationary gravitational wave (GW) background. Even though the method of cross-correlation of data
from several detectors is widely used in the pulsar astronomy community (see, e.g., Refs. [34–36]),
we are not aware of the use of the method in direct detection experiments with atomic sensors.
An example of the configuration is depicted in Figure 1b, where the atomic clocks are placed in
spacecrafts or attached to celestial bodies in free fall. Frequency of an electromagnetic signal (e.g., laser)
is locked to the frequency of one of the clocks in the pair and being compared with the frequency of
the other clock (see, e.g., proposals in Refs. [41–43]). The presence of GW will introduce a relative
Doppler shift between the two frequencies. One can also use atom interferometers as gravitational
wave detectors [44–47], with test masses being atoms in excited and ground states. Even though in
AI experiments the acceleration is measured rather than velocity, fundamentally, the observables are
equivalent to the ones of the atomic clock detectors [48]. We focus, for simplicity, on the case of clock
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comparison. The frequency difference due to the presence of the GW is denoted Xa = δνa/νa. Our goal,
as before, is to extract the angular part of the cross-spectrum, Rc( f , ζ). The small perturbation of
the metric around the Minkowski metric ηµν is given by gµν = ηµν + hµν. The metric perturbation
hµν in a spatial transverse traceless gauge has h0µ = 0 and can be represented by the plane wave
expansion [34]

hij(t,~x) =
∫ ∞

−∞
d f
∫

S2
dΩ̂ ei2π f (t−Ω̂·~x) ∑

P=+,×
hP( f , Ω̂)eP

ij(Ω̂) , (47)

where f is the frequency of the wave, unit vector Ω̂ points in the direction of the propagation of
the plane-wave component. Dispersion relation for the gravitational waves is simply 2π f = k.
The polarization tensors can be defined through unit vectors n̂ and m̂ orthogonal to Ω̂,

e+ij (Ω̂) = m̂im̂j − n̂in̂j, e×ij (Ω̂) = m̂in̂j + n̂im̂j , (48)

where in the standard spherical coordinates

Ω̂ = (sin θ cos φ, sin θ sin φ, cos θ), (49)

m̂ = (sin φ,− cos φ, 0), (50)

n̂ = (cos θ cos φ, cos θ sin φ,− sin θ). (51)

We begin from considering an effect of a single plane wave propagating in direction Ω̂ on a signal
sent between atomic clocks separated by distance Da. The unit vector p̂(a) is pointing from the
observation point to the singnal source. In order to find the Doppler shift Xa, one can consider the null
vector [49]

σ
µ

(a) = sµ

(a) −
1
2

ηµαhαβsβ

(a) , (52)

at the moments when the signal is emmited and received, with the unperturbed value given by
sµ

(a) = ν(1,− p̂(a)). The null geodesics can be found by solving the null condition σµ(a)σ
µ

(a) = 0 together

with the standard condition σµVµ

(a) = const(a), where Vµ

(a) are the Killing vectors for the perturbed
geometry. The final result is given by

Xa(t) =
1
2 ∑

P,i,j

p̂i
(a) p̂j

(a)e
P
ij

1 + Ω̂ · p̂(a)

(
hP

[
t−
(

1 + Ω̂ · p̂(a)

)
Da

]
− hP[t]

)
, (53)

where we take into account the isotropic nature of the radiation and consider the perturbation
amplitudes as functions of light-cone coordinates. The power spectrum density for the induced
Doppler shifts, SXa( f ) = 〈X̃a( f )X̃∗a ( f )〉 is given by averaging over time, directions Ω̂ and polarizations
of the incoming radiation. It can be shown that SXa( f ) = Ra( f )Sh( f ), where the GW power spectral
density is defined by 〈h̃P( f )h̃∗P′( f )〉 = 1

2 Sh( f )δPP′ and the response function is given by

Ra( f ) =
1
3
− 1

8(πDa f )2 +
sin(4πDa f )
32(πDa f )3 . (54)

See Figure 7a. In a long wavelength limit, 2π f Da � 1, the response function reduces to
Ra( f ) = 4π2

15 (Da f )2, while, in the short wavelength limit, it is simply Ra( f ) = 1/3. By considering
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Equation (53) in the Fourier space, one can derive the cross-spectrum, Sc( f , ζ) = 〈X̃1( f )X̃∗2 ( f )〉 =
Rc( f , ζ)Sh( f ), where

Rc( f , ζ) =
1

4π

∫
S2

dΩ̂
(

e2πi f D1(1+Ω̂· p̂(1)) − 1
) (

e−2πi f D2(1+Ω̂· p̂(2)) − 1
)

× 1
8 ∑

i,j,l,m,P

p̂i
(1) p̂j

(1)e
P
ij

1 + Ω̂ · p̂(1)
·

p̂l
(2) p̂m

(2)e
P
lm

1 + Ω̂ · p̂(2)
.

(55)

In order to perform the direction averaging for the radiation background, we chose the z-axis to
be along p̂(1) and p̂(2) to have an angle ζ with respect to p̂(1), similar to the previous section,

p̂(1) = (0, 0, 1), p̂(2) = (sin ζ, 0, cos ζ). (56)

(a) (b)

Figure 7. (a) The response function, Equation (54); (b) Normalized angular part of the cross-spectrum
in the short-wavelength (dashed line) and long-wavelength (solid line) limits, Equation (59).

The angular dependency on ζ in the power spectrum density Sc( f , ζ) can be factorized in the
short-wavelength limit, Da, D12 � 1/k and corresponds to the Hellings–Downs curve [27,50] used in
the pulsar timing studies,

Rc( f , ζ) =
1
3
+

1
2
(1− cos ζ)

[
ln
(

1− cos ζ

2

)
− 1

6

]
, Da, D12 � 1/k . (57)

To calculate this expression, one can neglect exponents in Equation (55), since their arguments
are quickly oscillating functions of spherical angles. When Da � 1/k, but D12 � 1/k, one will get
the same result multiplied by factor 2, as in the previous sections. In the opposite limit, Da � 1/k,
one can expand the exponents in series and obtain

Rc( f , ζ) =
π

8

∫
S2

dΩ̂ f 2D1D2 ∑
i,j,l,m,P

p̂i
(1) p̂j

(1) p̂l
(2) p̂m

(2)e
P
ije

P
lm =

π2 f 2

15
D1D2(1 + 3 cos 2ζ) , (58)

which reproduces the response function of one pair of atomic clocks in this limit, when ζ = 0.
One can notice that the angular function above is proportional to the second Legendre polynomial,
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P2(cos ζ), which one can expect from the expansion of the background by spherical harmonics [51,52].
Finally, introducing, again, the angular curve F( f , ζ) ≡ Sc( f , ζ)/SXai( f ), we conclude this section,

F( f , ζ) =



1 +
3
2
(1− cos ζ)

[
ln
(

1− cos ζ

2

)
− 1

6

]
, Da � 1/k, D12 � 1/k,

2 + (1− cos ζ)

[
3 ln

(
1− cos ζ

2

)
− 1

2

]
, Da � 1/k� D12,

D1D2

4D2
a
(1 + 3 cos 2ζ), Da � 1/k,

(59)

We plot the first expression and the third expression (with D1 = D2) from that equation in
Figure 7b. Sensitivity of a subsystem of a pair of atomic sensors is discussed in, e.g., Ref. [42].

5. Conclusions

In this article, we proposed a general method of experimental measurements of ultra-light (or even
massless) fields with atomic sensors. Such fields include various dark matter candidates (e.g., a dilaton
or B-L field) and the gravitational field. We assumed that the fields form an isotropic stationary
background and are being measured by two pairs of detectors in a triangular-shaped configuration
(with or without variable angle). Depending on the nature of the fields (scalar, vector or tensor),
they will leave a characteristic angular dependence on the cross-correlation of the data obtained from
each pair. If the instrumental noise is weak, then the angular dependence of the cross-spectrum
can be measured directly. If the noise is stronger than the expected signal, then the analysis should
be done in a different way, which involves a statistical analysis with optimal filtering (we used the
frequentist approach in our paper). Such analysis allows for recovering the signal from a strong
noise by performing long time observations. If the signal is not seen but is expected to be present,
then one could put limits on the parameters of the model (such as DM couplings or characteristics of
Sφ). This, however, would require further assumptions on the shape of power spectrum density of the
stochastic background (see, e.g., Equation (36) and Appendix A), which has to be motivated by the
underlying theory of DM or GW generation. Comprehensive review of such theories is beyond the
scope of this paper.
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Appendix A

The advantage of the cross-spectrum analysis presented in this article is the suppression of
uncorrelated noises from individual clocks through averaging and increase in sensitivity by moving
the clocks apart. Certain limits, however, can be put by performing a much more simplified experiment.
One could compare a single clock with another frequency standard (including another atomic clock),
where the reference frequency standard has a much weaker or no dependence on the DM background.
The clock instability in the time domain can be obtained from the power spectrum of the fractional
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variation of the clock frequency [53]. Assuming the DM is the dominating source of clock instability,
the Allan variance for a clock with response coefficient κ will be given by

σ2
y (τ) = 2κ2

∞∫
0

Sφ( f )
sin4(πτ f )
(πτ f )2 d f . (A1)

The kernel in Equation (A1) is vanishing in the limit of very small and large f , so we can replace
the integration limits by zero and infinity. Extracting limits on the DM coupling directly from the clock
instability data does not seem possible, due to the lack of knowledge on the DM power spectrum
density and κ. If, however, the DM spectrum corresponds to a white noise, Sφ( f ) = S̄φ = const,
and σy(τ) ∝ τ−1/2, then, for signal-to-noise ratio SNR=1, we have κ2S̄φ = 2τσ2

y (τ) – a limit on the
unknown combination of S̄φ and coupling κ. As an example, for a 199Hg+ clock [54], this would mean
a bound κ2S̄φ ≤ 3× 10−29 Hz−1 and, hence, S̄φ/Λ2

γ ≤ 3× 10−30 Hz−1. From this expression, it is
evident that the limit on Λγ can be lowered significantly (comparing to a monochromatic DM wave),
if the power is smeared over a wide enough spectral band. Similar examples can be presented for other
scales Λa by comparing, e.g., microwave clocks. Assuming that the clock instability is dominated by
the DM effects leads to very conservative limits, which can be further improved by taking into account
well-understood clock noise contributions.
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