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Abstract: Magnetic monopoles have been a subject of interest since Dirac established the relationship
between the existence of monopoles and charge quantization. The Dirac quantization condition
bestows the monopole with a huge magnetic charge. The aim of this study was to determine whether
this huge magnetic charge allows monopoles to be detected by the scattering of charged ions and
protons on matter where they might be bound. We also analyze if this charge favors monopolium
(monopole–antimonopole) annihilation into many photons over two photon decays.

1. Introduction

The theoretical justification for the existence of classical magnetic poles, hereafter called monopoles,
is that they add symmetry to Maxwell’s equations and explain charge quantization. Dirac showed that
the mere existence of a monopole in the universe could offer an explanation of the discrete nature of the
electric charge. His analysis leads to the Dirac Quantization Condition (DQC) [1,2]

eg = N/2, N = 1, 2, ..., (1)

where e is the electron charge, g the monopole magnetic charge, and we use natural units
h̄ = c = 1 = 4πε0. Monopoles have been a subject of experimental interest since Dirac first proposed
them in 1931.

In Dirac’s formulation, monopoles are assumed to exist as point-like particles and quantum
mechanical consistency conditions lead to establish the value of their magnetic charge. Because of of
the large magnetic charge as a consequence of Equation (1), monopoles can bind in matter [3]. In the
case of the Dirac monopole theory, the other monopole parameter is its mass. Searches for direct
monopole production have been performed in most accelerators. The lack of monopole detection has
been transformed into monopole mass lower bounds [4–7]. Experiments at the Large Hadron Collider
(LHC) have probed higher masses [8–13]. Hereafter, we shall assume that the monopole mass is larger
than 400 GeV.

This study contains three contributions. The first deals with the detection of monopoles in
matter. For that purpose, we study the scattering of charged particles by monopoles bound in matter
and eliminate the matter background using Rutherford backscattering techniques. The presentation
is based on Reference [14]. The second contribution deals with direct scattering of beam particles
with monopoles. This contribution is indicated for high-energy collider experiments given the large
expected mass of the monopole. We assume that a pair monopole–antimonopole (or a highly-excited
monopolium state) is produced and these two particles due to their huge magnetic charge create a
very strong magnetic moment which acts on the beam particles producing a characteristic scattering
scenario. The third contribution deals with the disintegration of the monopole–antimonopole pairs
(monopolium) into photons. In the past, most studies have been associated with the disintegration
into two photons in analogy with positronium. However, lately, several authors have realized that the
huge magnetic charge might favor disintegration into many photons. We present this discussion in
Section 4 based on the work of Reference [15]. We end this paper with some conclusions.
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2. Ion Scattering off Bound Monopoles

Since monopoles are stable after formation, they may bind into conventional materials like
beam pipes, other detector elements, the beam dump or magnetic monopole trapping volumes
as in the MoEDAL experiment [10–13]. The aim here was to study the collision of charged ions
with bound monopoles to obtain signatures for monopole detection. However, since the monopole
will be surrounded in practice by a huge (Avogadro’s number) of conventional nuclei, to isolate
the monopole signal from conventional ion-nucleus Rutherford scattering, we propose the use of
backscattering techniques.

2.1. Scattering of a Charged Spin 1/2 Particle Using a Spinless Magnetic Monopole

Let us assume the following scenario, a beam of charged particles is scattered on a monopole
bound in matter. For the time being, we omit the scattering of the particles on the background and
study the problem of the scattering of a relativistic particle by the central potential of a monopole field.
In a beautiful paper, Kazama, Yang, and Goldhaber described the scattering of a relativistic spin 1/2
particle with charge Ze by a fixed spinless magnetic monopole [16]. The formulation developed in
terms of fiber bundles, which is lacking the string singularity, obtains the result by the use of monopole
harmonics [17]. The result for the differential cross section for an unpolarized beam is given by

dσ

dΩ
=

1
2k2

(
|T|q||2 + 2q2(sin (θ/2))4|q|−2

)
, (2)

where q = Zeg = Z/2, θ is the scattering angle and the function T|q| is a complex expression defined
by Equation (80) of Reference [16]. Its behavior is similar for low q to the conventional Rutherford
formula as can be seen in Figure 1 where we plot

Ratio(q, θ) =

(
Z′e
gv

)2 ( dσ

dΩ

/ dσ

dΩ R

)
(3)

for a beam of particles of velocity v, charge Ze scattered by a target particle of charge Z′e for f
q = 0.5, 2, 4, 6. This ratio is independent of beam momentum. The ratio varies dramatically with Z,
especially in the backward direction where the cross section is smallest.
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Figure 1. Plot of the functions R(q, θ) defined in Equation (3) for q = 1/2 (solid), q = 2 (dashed), q = 4
(dotdashed), and q = 6 (dotted).

In Figure 2, we plot the differential cross section for a beam of 1 GeV/nucleon ions of 41
20Ca.

We note that the presence of a monopole close to the beam makes the probability of scattered ions
coming out transverse and backward to the beam measurable.
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Figure 2. Elastic scattering ion monopole cross section (µ b) a for a beam energy of 1 GeV/nucleon
spin 1/2 ions (41

20Ca) by a fixed spinless magnetic monopole. The inset shows in dashed the details of
the backward region of experimental interest.

Moving from this approximation of infinitely massive monopoles to monopoles with a finite mass
does not change the result much [14] because the expected masses of the monopole are supposed to be
greater than 400 GeV [4–7,12].

We might conclude this discussion by stating that a monopole sends beam particles of known
momentum (elastic scattering) into the transverse and backward directions which are easy to detect.
We also notice that the structure in the backward direction as shown in Figure 1 can be very different
from the traditional Rutherford scattering. Those two features are clear signals of the existence of
bound monopoles.

2.2. Backscattering Spectrography

The ion-monopole cross section is large, however, since the probes are macroscopic, the monopoles
will be surrounded by a huge number, ∼1024, of conventional scatterers and therefore the background
might hide the monopole signal.

To avoid this problem we recall the Rutherford backscattering technique of condensed matter
physics [18]. We consider the elastic scattering of a particle in the beam with mass mb and a stationary
particle of mass mt located in the sample. Let us consider the kinematics of a non-relativistic collision
with mb >> k we recall that the energy of the scattered projectile E f is reduced from the initial energy
Ei by the so called kinematical factor E f = κEi, where

κ =
mb cos θL ±

√
m2

t −m2
b(sin θL)2

mb + mt
, (4)

where θL is the scattering angle of the projectile in the laboratory frame. The plus sign is taken when
the mass of the projectile is less than that of the target, otherwise the minus sign is taken. Equation (4)
is a consequence of energy momentum conservation. This equation shows that if mb > mt for certain
angles, the square root admits no real solution and therefore there is an angular sector were scattering
is strictly forbidden by energy momentum conservation. We plot the κ factor in Figure 3.
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Figure 3. Kinematical factor for 41
20Ca on 9

4Be at beam energy of 1 GeV/nucleon(solid), and for 41
20Ca on

a monopole whose mass is taken to be 10m41.

The generalization to relativistic kinematics of Equation (4) is straightforward but less transparent
for visualizing the kinematical restriction [19]. Thus, scanning the probe with a beam of particles
whose atomic number is greater than any atomic number in the probe there will be no background in a
large angular region and therefore we will obtain a clean signal if monopoles are bound in the probe.

Given the lack of a fundamental theory with well known parameters for monopole production, it is
very unlikely that our technique might substitute the much cheaper use of magnetometers. However,
one can use monopole detection via ion scattering as a parasitic experiment with little additional
equipment. For example, a monopole bound to the beam pipe of an accelerator, can be detected by the
set up used for Central Exclusive Production (CEP) [19,20] by carrying out a van der Meer sweeping
with the ion beam, or if bound in the material of the beam dump, it can be detected by locating a few
detectors for beam particles backward of the beam impact region.

3. Ion and Proton Scattering on Monopole–Antimonopole Pairs

The Large Hadron Collider is reaching energies never achieved before allowing the search
for exotic particles in the TeV mass range. In a continuing effort to find monopoles, we discuss
new signatures to detect them. Hereafter, we study the effect of the magnetic dipole field created
by a monopole–antimonopole pair on the successive bunches of charged particles. The scenario,
a monopole–antimonopole pair produced close to threshold generates a strong magnetic dipole whose
field influences the particles of the beam leading to a well-known scattering pattern. The appearance of
these patterns not only provided us with discovery, but given the proposed mechanism, with a narrow
mass range which allowed confirmation by other means.

Scattering of Charged Particles by a Magnetic Dipole

Suppose that at the LHC a monopole–antimonopole pair is produced by any of the studied
mechanisms [3,21] close to threshold so that it moves very slowly away from the interaction region.
The pair produces a magnetic dipole field in the beam line which affects the successive non-interacting
particles in the bunches. We reduce this scenario at this point to the theoretical problem of the scattering
of a beam of charged particles by a fixed magnetic dipole potential.
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The scattering cross section of charged particles by a dipole potential in the Born approximation
can be easily calculated in the non-relativistic case [22],

dσ

dω
(θ)|nr =

4m2
bq2

k4

(
sin (kdsinθ)

1− cos θ

)2

(5)

where q = Zeg, k is the beam momentum, mb the mass of the particles in the beam with charge Ze, and
the magnetic charges are located at z = +d and z = −d. By assuming that the scattered wave is much
smaller than the incoming wave, we estimate the validity of the Born approximation which is given by∣∣∣mbqπ

k

∣∣∣ << 1. (6)

Since for LHC k >> mbq this condition is satisfied. For example, for a Pb ion beam at 2.760 TeV
per nucleon the factor is 0.0466 and for a proton beam at 7 TeV is 0.0002.

This non-relativistic treatment can be generalized to a relativistic treatment with some restrictions
which do not apply here leading to [23]

dσ

dω
(θ) =

E2 − k2 sin (θ/2)
m2

b

dσ

dω
(θ)|nr. (7)

We plot the results of some calculations in Figure 4 to analyze the behavior of the cross section.
We display the cross section for protons at 7 TeV LHC energies and a separation between the poles
of 0.01 fm to show the oscillating structure of the cross section. The magnitude of the distance has
been simply chosen for graphic reasons. We expect the actual distance to be much larger and not
stable but slowly increasing. We also draw as a dotted line the envelop of maxima of the cross section.
The right plot in Figure 4 shows how the oscillations frequency changes as we double the distance
between the poles. The bigger the distance the higher the oscillation frequency. However, and this is
very important for experimental arguments, the envelope of the maxima does not change since it is
determined by the charges and the kinematics and not by the distance between the poles. In the real
process, the poles will slowly be separating and therefore the oscillating frequency will be increasing
and thus the actual experimental cross section will very much resemble the dotted representation of
the envelope of maxima.The total cross section stabilizes as can be seen in Figure 5. These results show
that a signature of monopole–antimonopole creation is the emission of highly energetic charged beam
particles in the transverse direction with a specific distribution. It is important to note that in this case,
the full beam scatters on the dipole potential and therefore the full luminosity of the LHC beam will
contribute to the scattering. However, we do not expect the dipole to be active for very long since
monopole and anti-monopole will fly apart or disintegrate into photons.
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Figure 4. The figure on the left shows the elastic scattering of proton beam of 7 TeV (solid) by a dipole,
with a distance between the poles of 0.01 fm. The dotted line represents the envelope of the maxima.
The figure on the left shows the effect as we double the pole distance: the shape and position of the
oscillations change but the maximum magnitude remains the same.
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The experiment can also be carried out with ion beams. Two factors make up the difference:
a momentum-mass effect which leads to a factor Z2

A2 , Z being the number of protons and A the atomic
number which reduces the cross section; the beam momentum, which for ions is much lower than
2.76 TeV, and leads to a larger cross section (see Equation (5)). Both effects tend to compensate for the
LHC running conditions and thus the cross section for both proton and ion experiments would be
very similar.
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Figure 5. We show the magnitude of the total scattering cross section for a proton at 7 TeV in picobarn
as a function of interpole distance parameter d in fm.

The signature of the presence of monopoles in the interaction region is a Rutherford type cross
section with many highly energetic beam particles coming out in the transverse direction. The signature
of these particles could be used as a trigger for monopole detection.

Inspired by an old idea originating from Dirac and Zeldovich [1,2,24], we proposed that monopolium,
a bound state of monopole anti-monopole [24,25] could be easier to detect experimentally than free
monopoles [26,27]. Monopolium could be formed in high-energy collisions at the LHC [26,27].
If monopolium is produced in a highly excited state it will possess an electric dipole moment and our
calculation also produces a similar signature for monopolium. The suitability of the experiments just
described depends on the magnitude of the background produced by the elastic scattering of beam
particles and the length of the lifetime of the monopole–antimonopole states.

4. Monopole–Antimonopole Disintegration into Many Photons

The annihilation of monopolium into two photons has been a matter of intense study [21,28].
It has been recently shown that monopolium might annihilate most preferably into many
low-energy photons [15,28,29]. This result motivates experimental investigation of monopolium
and monopole–antimonopole by looking into multi-photon decay [15].

The two and four photon decay channels of the ground state parapositronium have been studied
in QED. In particular, the two photon channel is known up to O(α3 log2 α) [30–33] and the four photon
decay has been studied up to order O(α) [34], where α is the fine structure constant. We show for the
ratio of these channels the result to Leading Order [35,36],

Γ4

Γ2
= 0.277

( α

π

)2
. (8)

The factor in front of the coupling constant, 0.277, contains the contribution of the 4! diagrams of
the four photon amplitude and the 2! diagrams of the two photon one, to the lowest order. The binding
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energy is very small, a few eV, and has been neglected in the calculation, therefore the energy factors
cancel in the ratio.

Let us assume that the monopole-photon coupling is analogous to the electron-photon coupling
except for an effective vertex characterized by the dressed monopole magnetic charge g [37].
Thus, we extend the positronium calculation to monopolium just by changing e → g. Recalling
the parapositronium calculation in terms of the coupling we get,

Γ4

Γ2
∼ F42

(αg

π

)2
· · · Γ2n

Γ2
∼ F2n2

(αg

π

)2n−2
, (9)

where αg = 1
4α ∼

137
4 ∼ 34.25 obtained from Dirac’s Quantization Condition (DQC) [1,2]. The F’s

represent the contribution of all the Feynman amplitudes to the process shown as subindex after
extracting the contribution of the magnetic charge, which is explicitly shown. For example, to the
leading order, F42 ≈ 0.277 as seen in Equation (8). We perform the calculations, as is customarily done
in monopole physics, to the leading order. As a result of the large magnetic coupling, the calculations
can give a qualitative indication of magnitudes at most, which is what we can pursue at present. At the
end of our analysis we comment on how non-perturbative effects might affect our calculation.

In Figure 6, we show one of the 2n! contributions to the amplitude for a 2n photon decay to
leading order, and we note that these types of contributions in the above ratios are determined only
by vertices and propagators. The calculation for high n with 2n! diagrams is out of the scope of any
study. Let us first discuss an educated estimation for large n. In the rest frame of the bound system, the
annihilation into many photons leads to an average momentum for each photon much smaller than
the mass of monopolium and therefore much smaller than the mass of the monopole. In order to make
an estimation of the above ratios, we consider that in the propagators, the monopole mass dominates
over the momentum and therefore the calculation of the width, in units of monopole mass, depends
exclusively on three factors: the number of diagrams (2n)!, the photons’ symmetry factor 1/(2n)!, and
the phase space of the outgoing massless particles, namely

(phsp)2n =
1
2

1
(4π)4n−3

M4n−4

Γ(2n)Γ(2n− 1)
, (10)

where M is the monopolium mass and n = 1, 2, 3, . . . being 2n the number of photons emitted.

.

.

.

.

m

__
m

2n

Figure 6. One of the 2n! multi-photon emission diagrams.

With all these approximations we obtain the expression

Γ2n

Γ2
=
(αg

π

)2n−2
(

M
2m

)4n−4 2n!
2!(2n− 1)!(2n− 2)!

. (11)
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Note that this equation leads to Γ2/Γ2 = 1 and for n = 2 and M = 2m, one recovers the

parapositronium case, Γ4/Γ2 =
(

αg
π

)2
, with the interference factor missing (recall Equation (8)).

In order to incorporate this effect, we make a second estimate. In the first estimate, we have assumed
p2 to be very small compared with m2 in the propagator an approximation valid for large n. Let us
assume for the second estimate that on the contrary p2 ∼ m2, an approximation which might be
adequate for small n. This approximation introduces into Equation (11) a factor ( 1

2 )
2n−2 leading to

Γ2n

Γ2
=

(
1
2

)2n−2 (αg

π

)2n−2
(

M
2m

)4n−4 2n!
2!(2n− 1)!(2n− 2)!

. (12)

For n = 2, this factor is 0.25, which is very close to true calculation to leading the order 0.277.
This factor is extremely suppressing for large n, where the approximations discussed initially might be
better. We show results with and without this factor to determine a region of confidence. If the leading
order calculation were all there was, the true result would be between these two limiting expressions.
We discuss possible non-perturbative effects at the end of the analysis. In our expressions, we consider
the effect of the binding energy not taken into account in the conventional positronium analysis.

In Figure 7, we plot Equations (11) and (12) for two different binding energies and we get
bell-shape distributions. For small binding energies (M ≈ 2m), the value of n on the average is n ∼ 7
with a deviation of ∆n ∼ ±2. For large binding energies (M ∼ m), the average value of n is n ∼ 3 with
a deviation of ∆n ∼ ±1. If the interference factor is included, the multiplicity (2n) is reduced to n ∼ 4
with ∆n ∼ ±1 for small binding and n ∼ 2 with ∆n ∼ ±1 for large binding. Thus, the multiplicity
decreases as the binding energy increases. However, even with the strongly suppressing interference
factor included, four photon emission is favored.
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Figure 7. The Γ2n/Γ2 ratio as a function of n calculated according to Equations (11) and (12). The left
figure is for zero binding energy and the right figure for Eb ∼ m. The solid curves represent the
calculation with the interference factor and the dashed curves the one without the factor. In order to
have the two curves at the same scale, the no interference ratios had to be divided by 250 left and
by 4 right.

We next study the dependence of multiplicity with the binding energy. To do so, we find the
maximum of the ratio in Equations (11) and (12) as a function of binding energy. The result is plotted
in Figure 8, where we show the binding energy in units of monopole mass as a function of the average
photon multiplicity in the annihilation. The outcome is clear, large average multiplicities, 8–12 photons,
arise if the binding energy is small, M ∼ 2m, while smaller average multiplicities, 4–6 photons, occur
for large bindings, M ∼ m. In the latter case, considerable rates extend up to multiplicities of 8 photons
as is shown in Figure 7, right.
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Figure 8. Binding energy in units of monopole mass as a function of average photon multiplicity in the
annihilation. The solid curve represents the calculation with interference factor while the dashed curve
is that without that factor.

We can get an analytic formula for the most probable photon decay channel by calculating the
maximum of the logarithm of Equations (11) and (12) using Sterling’s formula (k! ∼ kke−k

√
2πk).

Sterling’s formula is quite good even for low k, i.e., for k = 2 it gives 1.919, for k = 3 it gives 5.836, and
k = 4 it gives 23.506. Thus, we can consider the equations we are going to derive good approximations
for any n. Let us write a generic interference factor (δ)n−1 in front of Equation (11) which for δ = 1
gives Equation (11) itself and for δ = 0.25 Equation (12). The values of n for the maximum decay rates
are given by the solutions of the equation

n =
αg
√

δ

2π

(
1− Eb

2m

)2
exp(

1
4n

) + 1, (13)

for specific values of δ and the binding energy Eb. For large n, which occurs for small binding energy,
we get the approximate solution

n ≈
αg
√

δ

2π
+ 1, (14)

which is very illuminating because it shows explicitly the effect of the coupling constant in increasing
the photon multiplicities as seen numerically in Figure 7.

All the approximations used thus far are valid for Dirac’s original formulation. The so called
β-coupling scheme leads to small effective couplings close to threshold [3,21,28]. We have analyzed its
consequences in Reference [15], which we can summarize by saying that close to threshold the two
photon decay is the dominant process, but given that β rises rapidly [21,28], the present analysis holds
slightly away from threshold.

Finally, we would like to make some comments about non-perturbative effects. Given the large
value of the coupling constant, it is evident that our calculation is merely qualitative and aimed at
proposing new signals to discover monopoles at lower photon energies. Let us assume for the following
discussion the worst possible scenario, namely that non-perturbative effects make the multi-photon
channels weaker. We parametrize the non-perturbative effects by an effective δ. How small can δ get
to make four and six photon decay ratios irrelevant? We use Equation (13) for n = 2, 3 and plot δ as a
function of binding energy in Figure 9.
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Figure 9. The interference factor δ as a function of binding energy for four and six photon decays
according to Equation (13).

From the figure it is apparent that a small bound monopolium produces preferably multi-photon
decays up to very small interference factors. As the binding energy increases, the possibility of
multi-photon decays decreases. Note, however, that the four photon decay is greater or comparable to
two photon decays up to interference factors many times smaller than the one used in this calculation
and note that monopole–antimonopole annihilation behaves much like zero binding monopolium.

5. Conclusions

The discovery of monopoles would be a major breakthrough in our understanding of charge
quantization and would imply revisiting Quantum Electrodynamics in a strong coupling regime.
Monopoles are stable particles and they bind to conventional matter, specifically to the nuclei of
atomic systems [3]. Several techniques have been used to detect monopoles [38], in particular,
the most common is to measure the magnetic charge of matter probes with magnetometers [11–13].
The large coupling constant and mass of the monopoles single out this particle with respect to the
abundant conventional particles that might surround them. An intelligent use of ion beams in parasitic
experiments might lead to the detection of monopoles by eliminating the conventional background by
borrowing a technique that condensed matter physicists use to detect impurities [18]. Beam particles,
protons or ions, can scatter from monopole–antimonopole pairs or monopolium produced in colliders
leading to a well defined scattering pattern which can be detected by small implementations in ongoing
experiments. Finally, we have shown that a large multiplicity of photon events might also be a signal
for the discovery of monopoles.
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