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Abstract: The latest global analysis of neutrino oscillation data indicates that the normal neutrino
mass ordering is favored over the inverted one at the 3σ level. The best-fit values of the largest
neutrino mixing angle θ23 and the Dirac CP-violating phase δ are located in the higher octant and the
third quadrant, respectively. We show that these experimental trends can be naturally explained by
the µ-τ reflection symmetry breaking, triggered by the one-loop renormalization-group equations
(RGEs) running from a superhigh energy scale down to the electroweak scale in the framework of
the minimal supersymmetric standard model (MSSM). The complete parameter space is numerically
explored for both the Majorana and Dirac cases, by allowing the smallest neutrino mass m1 and the
MSSM parameter tan β to vary within their reasonable ranges.
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1. Introduction

In the last twenty years, we have witnessed compelling evidence of the neutrino oscillation
phenomena [1], as recognized by both the 2015 Nobel Prize in Physics and the 2016 Breakthrough Prize
in Fundamental Physics. The standard model (SM) of particle physics must be extended to explain
the neutrino masses and the large lepton flavor mixing effects. One can describe the mixings between
the three known neutrinos (νe, νµ, ντ) and their mass eigenstates (ν1, ν2, ν3) in terms of a 3× 3 unitary
matrix, the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix [2,3]:

U = Pl

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s13s23eiδ c12c23 − s12s13s23eiδ c13s23
s12s23 − c12s13c23eiδ −c12s23 − s12s13c23eiδ c13c23

 Pν , (1)

where cij ≡ cos θij and sij ≡ sin θij (for ij = 12, 13, 23) with θij being the neutrino mixing angles,

Pl = Diag{eiφe , eiφµ , eiφτ}, and Pν = Diag{eiρ, eiσ, 1}with (φe, φµ, φτ) and (ρ, σ) being three unphysical
phases and two Majorana phases, respectively. Different from the quark sector, there are big mixing
angles and a potentially large Dirac CP-violating phase in the lepton sector. On the other hand,
the masses of the three known neutrinos are found to be finite, but tiny. It is popular to introduce
some heavy degrees of freedom (i.e., the seesaw mechanism [4–8]) and certain flavor symmetries at
a superhigh energy scale to explain the smallness of neutrino masses and the lepton flavor mixing
patterns observed at low energies. In this case, we need to run the renormalization-group equations
(RGEs) to bridge the gap between these two scales.

A credible global analysis of experimental data often points to the truth of particle physics [9,10].
The latest global analysis of available neutrino oscillation data indicates that the normal neutrino
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mass ordering (m1 < m2 < m3) is favored over the inverted one (m3 < m1 < m2) at the 3σ

level [11], where mi (for i = 1, 2, 3) stand for the neutrino masses. Moreover, the best-fit value
of the atmospheric neutrino mixing angle θ23 is slightly larger than 45◦ (i.e., located in the upper
octant), and the best-fit value of the Dirac phase δ is somewhat smaller than 270◦ (i.e., located in
the third quadrant). The µ-τ reflection symmetry [12–14], the minimal discrete flavor symmetry
responsible for the nearly maximal atmospheric neutrino mixing and potentially maximal CP violation
in neutrino oscillations, can naturally lead to θ23 = 45◦ and δ = 270◦. Assuming this symmetry is
realized at a superhigh energy scale, such as the seesaw scale Λµτ , it can be spontaneously broken at
the electroweak scale ΛEW ∼102 GeV because of the RGE running effect, leading to the deviations
of (θ23, δ) from (45◦, 270◦). Whether such quantum corrections agree with the experimental results
of θ23 and δ at low energies depends on the neutrino mass ordering and the theoretical framework
accommodating the RGEs [15–22]. We show that the normal neutrino mass ordering, the upper-octant
of θ23, and the third-quadrant of δ can be naturally correlated via the RGE-induced µ-τ reflection
symmetry-breaking effect in the minimal supersymmetric standard model (MSSM) framework. Based
on more reliable experimental data, we numerically explore the almost complete parameter space
in both the Dirac and Majorana cases by allowing the smallest neutrino mass m1 and the MSSM
parameter tan β to vary in their reasonable regions. From the final numerical results, one can tell which
part of the parameter space is favored by current neutrino oscillation data and which part is ruled
out. We also conclude that the best-fit values of θ23 and δ [11] may be explained by the spontaneous
µ-τ reflection symmetry breaking. The scenario under consideration will be tested in future neutrino
oscillation experiments and help to constrain the values of the smallest neutrino mass m1, the MSSM
parameter tan β, and even the Majorana phases. Therefore, our in-depth analysis is timely, general,
and suggestive.

2. Spontaneous µ-τ Reflection Symmetry Breaking

2.1. The Majorana Case

If neutrinos are Majorana particles, the µ-τ reflection symmetry requires the Majorana neutrino
mass matrix Mν to be invariant under charge-conjugation transformations νeL ↔ νc

eR, νµL ↔ νc
τR, and

ντL ↔ νc
µR. In other words, the corresponding Majorana mass matrix elements 〈m〉αβ ≡ ∑i miUαiUβi

(for α, β = e, µ, τ and i running over 1, 2, 3) must be constrained by 〈m〉ee = 〈m〉∗ee, 〈m〉eµ = 〈m〉∗eτ ,
〈m〉µµ = 〈m〉∗ττ and 〈m〉µτ = 〈m〉∗µτ [14]. Taking the parametrization form of U as in Equation (1),
one immediately obtains the constraints on U as follows: θ23 = 45◦, δ = 90◦ or 270◦, ρ = 0◦ or 90◦,
and σ = 0◦ or 90◦, for the four physical parameters, as well as φe = 90◦ and φµ + φτ = 0◦ for the
three unphysical phases. In the framework of the MSSM, the evolution of Mν from Λµτ down to ΛEW
through the one-loop RGE can be expressed as: [23,24]

Mν(ΛEW) = I2
0

[
Tl ·Mν(Λµτ) · Tl

]
(2)

with Tl = Diag{Ie, Iµ, Iτ}, in which:

I0 = exp

[
+

1
16π2

∫ ln(Λµτ/ΛEW)

0

(
3
5

g2
1(χ) + 3g2

2(χ)− 3y2
t (χ)

)
dχ

]
,

Iα = exp

[
− 1

16π2

∫ ln(Λµτ/ΛEW)

0
y2

α(χ) dχ

]
. (3)

Here, χ = ln
(

µ/Λµτ

)
, with µ being an arbitrary renormalization scale between ΛEW and Λµτ , g1

and g2 denoting the gauge couplings, and yt and yα (for α = e, µ, τ) standing for the Yukawa coupling
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eigenvalues of the top quark and charged leptons, respectively. Because of the smallness of ye and yµ,
one can safely take the approximation Tl'Diag{1, 1, (1− ∆τ)} with:

∆τ ≡ 1− Iτ '
1

16π2

∫ ln(Λµτ/ΛEW)

0
y2

τ(χ) dχ . (4)

In Figure 1, we show the two-dimensional maps of ∆τ (left panel) and Io (right panel) with respect
to Λµτ and tan β. One can see that the value of I0 does not change too much with different settings of
Λµτ and tan β. In contrast, ∆τ can change from 0.001–0.05. Shifting the energy scale Λµτ is equivalent
to altering tan β to obtain the same value of ∆τ . In the numerical calculations, we have fixed the µ-τ
symmetry scale Λµτ as 1014 GeV, with tan β varying in a decent range, i.e, tan β ∈ [10, 50]. We use
∆θ23 ≡ θ23(ΛEW)− θ23(Λµτ) and ∆δ ≡ δ(ΛEW)− δ(Λµτ) to measure the strengths of the RGE-induced
µ-τ reflection symmetry-breaking effect that are relevant for oscillation experiments. They can be
approximated as:

∆θ23 '
∆τ

2

(
s2

12ζ
−ηρ

31 + c2
12ζ
−ησ
32

)
,

∆δ ' ∆τ

2

[
c12s12

s13

(
ζ
−ησ
32 − ζ

−ηρ

31

)
−

s13
c12s12

(
c4

12ζ
−ησ

32 − s4
12ζ
−ηρ

31 + ζ
ηρησ

21

)]
, (5)

in which θ12 and θ13 take their values at ΛEW, ηρ ≡ cos 2ρ = ±1 and ησ ≡ cos 2σ = ±1 denote the
possible options of ρ and σ in their µ-τ symmetry limit at Λµτ , and the ratios ζij ≡ (mi−mj)/(mi +mj)

are defined with mi and mj at ΛEW (for i, j = 1, 2, 3). In obtaining Equation (5), the µ-τ reflection
symmetry conditions θ23(Λµτ) = 45◦ and δ(Λµτ) = 270◦ have been applied. The corresponding
RGE-induced corrections to the other six flavor parameters (m1, m2, m3, θ12, θ13, ρ, and σ) have
been listed in [22]. Unless otherwise specified, the parameters appearing in the subsequent text and
equations are all the quantities at ΛEW.

Figure 1. Possible values of ∆τ (left) and I0 (right) with respect to Λµτ and tan β.

2.2. The Dirac Case

It is also theoretically interesting to combine a pure Dirac mass term Mν with the µ-τ reflection
symmetry for three known neutrinos [20]. In this case, Mν is invariant under the charge-conjugation
transformations νeL ↔ (νeL)

c, νµL ↔ (ντL)
c, and ντL ↔ (νµL)

c for the left-handed neutrino fields and
NeR ↔ (NeR)

c, NµR ↔ (NτR)
c, and NτR ↔ (NµR)

c for the right-handed neutrino fields. Similar to
the Majorana case, this leads to constraints on the mass matrix elements 〈m〉αβ (for α, β = e, µ, τ), i.e.,
〈m〉ee = 〈m〉∗ee, 〈m〉eµ = 〈m〉∗eτ , 〈m〉µe = 〈m〉∗τe, 〈m〉µτ = 〈m〉∗τµ, and 〈m〉µµ = 〈m〉∗ττ . Diagonalizing
this special mass matrix leads us to the following predictions: θ23 = 45◦, δ = 90◦ or 270◦, and
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2φe − φµ − φτ = 180◦ at Λµτ . Under the MSSM framework, the one-loop RGE evolution of Mν from
Λµτ to ΛEW can be described as [20]:

Mν(ΛEW) = I0

[
Tl ·Mν(Λµτ)

]
, (6)

where the definitions of I0 and Tl are the same as those in Equations (2) and (3). Using the same
conventions as in the Majorana case, the deviations of θ23 and δ between ΛEW and Λµτ can be
expressed as:

∆θ23 '
∆τ

4

[
c2

12

(
ζ32 + ζ−1

32

)
+ s2

12

(
ζ31 + ζ−1

31

)]
,

∆δ ' ∆τ

4

[
c12
(
s2

12 − c2
12s2

13
)

s12s13

(
ζ32 + ζ−1

32

)
−

s12
(
c2

12 − s2
12s2

13
)

c12s13

(
ζ31 + ζ−1

31

)
−

s13
c12s12

(
ζ21 + ζ−1

21

)]
. (7)

The expressions for deviations of m1, m2, m3, θ12, θ13, ρ, and σ can be found in [22]. The analytical
approximations made in Equations (5) and (7) are instructive and helpful for understanding the
RGE-induced µ-τ reflection symmetry-breaking effect. However, the accuracy will be quite poor if the
neutrino masses are strongly degenerate. Therefore, we have to use the numerical approach to evaluate
the spontaneous µ-τ reflection symmetry-breaking effect and to explore the allowed parameter space
by fitting the current experimental data.

3. Numerical Exploration

In the framework of MSSM, we input the constraints of the µ-τ reflection symmetry as initial
conditions at Λµτ∼1014 GeV and numerically run the RGEs from Λµτ down to ΛEW. To be more
concrete, the initial conditions include θ23 = 45◦ and δ = 270◦, as well as four different cases of
ρ and σ for Majorana neutrinos: Case A: ρ = σ = 0◦; Case B: ρ = σ = 90◦; Case C: ρ = 0◦ and
σ = 90◦; Case D: ρ = 90◦ and σ = 0◦. For any given values of the MSSM parameter tan β and
the smallest neutrino mass m1 at ΛEW, we scan the other relevant neutrino oscillation parameters
like {sin2 θ12, sin2 θ13, ∆m2

sol, ∆m2
atm} at Λµτ over properly wide ranges by utilizing the MultiNest

program [25–27]. The conventions ∆m2
sol ≡ m2

2 − m2
1 and ∆m2

atm ≡ m2
3 − (m2

1 + m2
2)/2 have been

adopted to keep consistent with the definitions in [11]. For each scan, the neutrino mixing parameters
at ΛEW are yielded and then compared with their global-fit values by minimizing:

χ2 ≡∑
i

(
ξi − ξ i

)2

σ2
i

. (8)

Here, ξi ∈ {sin2 θ12, sin2 θ13, ∆m2
sol, ∆m2

atm} stand for the parameters at ΛEW, which are produced
by the RGE running from Λµτ ; ξ i’s represent the best-fit values of ξi in the global analysis; and σi’s
are the corresponding symmetrized 1σ errors. We take the best-fit values and the 1σ errors of the
six neutrino oscillation parameters in [11]: sin2 θ12 = 3.04+0.14

−0.13 × 10−1, sin2 θ13 = 2.14+0.09
−0.07 × 10−2,

sin2 θ23 = 5.51+0.19
−0.70 × 10−1, δ = 1.32+0.23

−0.18 × π, ∆m2
sol = 7.34+0.17

−0.14 × 10−5 eV2, ∆m2
atm = 2.455+0.035

−0.032 ×
10−3 eV2. The smallest neutrino mass m1 is allowed to take values over the range [0, 0.1] eV, and the
MSSM parameter tan β may vary from 10–50. With this setup, we examine how significantly θ23 and δ

at ΛEW can deviate from their initial values at Λµτ by incorporating the recent global-fit results [11].

3.1. The Majorana Case

In Figures 2 and 3, we plot the allowed values of θ23 and δ at ΛEW by taking different values
of m1 and tan β with χ2 = 0. Four different cases of the initial Majorana phases (ρ, σ) at Λµτ have
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been considered. For each point in the m1-tan β plane, θ23 and δ are determined simultaneously.
The boundary conditions for the RGEs include both the initial values of {θ23, δ, ρ, σ} at Λµτ and the
experimental constraints on {sin2 θ12, sin2 θ13, ∆m2

sol, ∆m2
atm} at ΛEW. In this case, the RGEs may not

have a realistic solution for some combinations of m1 and tan β; the gray-gap regions in Figures 2 and
3 (Cases C and D) are excluded. There is no such gap in Cases A and B with different initial values of ρ

and σ. The RGE running effect always pushes θ23 to the higher octant and, in most cases, leads δ to the
third quadrant, just the right direction as indicated by the best-fit values of these two quantities [11].
In Case A and Case D, θ23 may be significantly corrected for m1'0.1 eV and tan β'50. Of course, such
an evolution will be strongly disfavored by the experimental information of θ23, which has not been
included for this analysis. Our main purpose is to show the general magnitudes of RGE corrections to
θ23 and δ, without directly involving the experimental limits on them. In Case B, θ23 is not sensitive to
the RGE running. The RGE-induced corrections to δ in Cases A and B are very weak. We highlight
Case D, in which the best-fit point (θ23, δ)'(48◦, 238◦) is reachable for the same settings of m1 and
tan β.

Figure 2. The values of θ23 at ΛEW due to the spontaneous µ-τ reflection symmetry-breaking effect,
where the dashed curves are the contours with some typical values of θ23 and the blue ones agree with
the best-fit result of θ23 in [11].
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Figure 3. The values of δ at ΛEW due to the spontaneous µ-τ reflection symmetry-breaking effect,
where the dashed curves are the contours with some typical values of δ and the blue ones agree with
the best-fit result of δ in [11].

The RGE corrections to θ23 and δ in Figures 2 and 3 can be understood with the help of the
analytical expressions in Equation (5), if the neutrino masses are not so degenerate. The factor ∆τ

is essentially proportional to tan2 β as a result of y2
τ ∝ (1 + tan2 β)'tan2 β for tan β & 10, and the

magnitudes of ∆θ23 and ∆δ always increase with tan2 β. Because the factors ∆τ and ζ31'ζ32 are all
positive for the normal mass ordering, the sign of ∆θ23 is always positive. The dependence of ∆θ23 and
∆δ on the neutrino mass m1 is different for the four options of ρ and σ at Λµτ . In the region of small m1
and tan β, the radiative correction to θ23 is proportional to m1 for Cases A, C, and D, but it is inversely
proportional to m1 in Case B with ηρ = ησ = −1. As for ∆δ, its value depends on two terms: one is
enhanced by 1/ sin θ13; and the other is suppressed by sin θ13. However, the latter one can become
dominant in some cases. For example, in Case A, the first term ∝ 1/ sin θ13 is positive and dominant
when the neutrino mass m1 is relatively small, while the second term ∝ sin θ13 is negative and will
gradually dominate when the value of m1 increases.

To see the correlation between θ23 and δ at ΛEW, we marginalize m1 and tan β over the reasonable
ranges m1 ∈ [0, 0.1] eV and tan β ∈ [10, 50] and show the results in Figure 4.
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Figure 4. The correlation between θ23 and δ at ΛEW compared with the global-fit results (represented
with “CLMP”) [11], where m1 and tan β are marginalized over [0, 0.1] eV and [10, 50], respectively.
The red circled cross ⊗ signifies the point (θ23, δ) = (45◦, 270◦). The pink regions are allowed for θ23
and δ when {sin2 θ12, sin2 θ13, ∆m2

sol, ∆m2
atm} at ΛEW all take their best-fit values. The green region is

allowed when these four observables are relaxed from their best-fit values to their 3σ ranges.

The recent global-fit results [11] are given as the black contours for the 1σ (dashed), 2σ (solid),
and 3σ (dotted) confidence levels. The best-fit point of the global analysis is marked as the black
star. We notice that the µ-τ reflection symmetry point (θ23, δ) = (45◦, 270◦) at ΛEW, which is marked
as the red circled cross in the plot, is on the dashed contour. This means that θ23(ΛEW) = 45◦ and
δ(ΛEW) = 270◦ are statistically disfavored at the 1σ level [11]. For the pink regions, the best-fit values
of {sin2 θ12, sin2 θ13, ∆m2

sol, ∆m2
atm} can be simultaneously reached (i.e., χ2

min = 0). If the value of
χ2

min is relaxed to 11.83 (i.e., the 3σ confidence level for two degrees of freedom), the wider green
regions of θ23 and δ will be allowed. In the two upper panels of Figure 4, which correspond to Cases A
(left one) and B (right one), the allowed range of δ is very narrow; this feature is compatible with the
two upper panels of Figure 3 where δ varies less than 1◦. In these two cases, the green region almost
overlaps with the pink region. In the two lower panels of Figure 4, corresponding to Cases C (left one)
and D (right one), the RGE-induced corrections of θ23 and δ are both significant. The separate shaded
region around θ23 ' 50◦ in Figure 4C is associated with the small upper-right corner of the parameter
space in Figure 2C or Figure 3C. There is a similar separate shaded region in Case D, but it is outside
the chosen ranges of θ23 and δ in plotting Figure 4D, and its confidence level is much weaker, outside
the 3σ region in the global analysis.
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3.2. The Dirac Case

The corresponding numerical analysis for the Dirac neutrinos is much easier due to the absence
of two Majorana phases. Similar to the Majorana case, the allowed regions of θ23 and δ at ΛEW and
their intimate correlation are illustrated in Figures 5 and 6. The analytical approximations of ∆θ23 and
∆δ in Equation (7) can be further simplified to:

∆θ23 '
∆τ

2
m2

2 + m2
3

∆m2
atm

,

∆δ ' −∆τ

2
s13

c12s12

m2
1 + m2

2
∆m2

sol
. (9)

It is easy to see that bigger values of m1 and tan β lead to larger deviations of (θ23, δ) from
(45◦, 270◦). In particular, θ23 and δ are always located in the upper octant and the third quadrant,
respectively. In Figure 5, we have the gray regions for the same reason as that in the Majorana case.
Similar to Case D in the Majorana case, the spontaneous µ-τ reflection symmetry breaking can take
(θ23, δ) very close to their best-fit point in the global analysis.

Figure 5. For the Dirac case, the allowed values of θ23 (left) panel and δ (right) panel at ΛEW are owed
to the spontaneous µ-τ reflection symmetry-breaking effect. The dashed curves are the contours with
some typical values of θ23 and δ, and the blue ones stand for the best-fit result of θ23 or δ in [11].

Figure 6. The correlation of (θ23, δ) at ΛEW for the Dirac case. The conventions are the same as Figure 4.
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4. Conclusions

The µ-τ reflection symmetry is inclusive to explain the nearly maximal atmospheric neutrino
mixing and the potentially maximal CP violation in neutrino oscillations. However, the latest global
analysis suggests this symmetry should be broken at the low energy experimental scale. The RGE
running effect can be responsible for the symmetry breaking. The normal neutrino mass ordering, the
upper-octant of θ23, and the third-quadrant of δ can be naturally correlated with the RGEs running
effect in the MSSM framework. Some of our main observations are subject to the chosen theoretical
framework, i.e., the MSSM. The reasons why we do not consider the standard model is: (a) in the SM,
the RGE running effect is always very small; (b) in the SM, the running direction of θ23 from Λµτ down
to ΛEW is opposite its current best-fit result in the normal mass ordering case; and (c) there may be
the vacuum-stability problem as the energy scale is above 1010 GeV [28,29] in the SM. On the other
hand, the best-fit values of θ23 and δ will unavoidably fluctuate in the future when more experimental
data are accumulated and included in the global analysis. Since we have generally explored the
complete parameter space, our results still keep working. If the future precision measurements favor
the inverted neutrino mass ordering, the lower octant of θ23, and (or) another quadrant of δ, one can
perform the numerical analysis in the same way, either within or beyond the MSSM. In the same spirit,
one may study other interesting flavor symmetries and their RGE-induced breaking effect, in order to
link model building at high-energy scales effectively with the observed neutrino oscillation data at
low energies.
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