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Abstract: Conventional descriptions of higher-spin fermionic gauge fields appear in two varieties:
the Aragone–Deser–Vasiliev frame-like formulation and the Fang–Fronsdal metric-like formulation.
We review, clarify and elaborate on some essential features of these two. For frame-like free fermions
in Anti-de Sitter space, one can present a gauge-invariant Lagrangian description such that the
constraints on the field and the gauge parameters mimic their flat-space counterparts. This simplifies
the explicit demonstration of the equivalence of the two formulations at the free level. We comment
on the subtleties that may arise in an interacting theory.
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1. Introduction

Arbitrary-spin massless particles are expected to play a crucial role in the understanding of
quantum gravity. Lower-spin theories may be realized as low-energy limits of spontaneously-broken
higher-spin gauge theories since lower-spin symmetries are subgroups of higher-spin ones. It is
believed that the tensionless limit of string theory is a theory of higher-spin gauge fields. The study of
fermionic fields is interesting in this regard because they are required by supersymmetry.

Higher-spin gauge fields can be described in the framework of two different formulations:
frame-like and metric-like. The frame-like formulation generalizes the Cartan formulation of gravity
where the gauge fields are described in terms of differential forms carrying irreducible representations
of the fiber Lorentz group. This is available in Minkowski [1–3] as well as in Anti-de Sitter (AdS) [4–7]
spaces. The metric-like formulation, on the other hand, is a generalization of the metric formulation of
linearized gravity [8]. Originally developed by Fronsdal [9,10] and Fang–Fronsdal [11,12], it encodes
the degrees of freedom of higher-spin particles in symmetric tensors and tensor-spinors. In this
approach, the construction of a gauge-invariant action for a higher-spin field requires that the field and
the gauge parameter obey some off-shell algebraic constraints (see [13,14] for a recent review). Note
that the latter requirement can be avoided by recourse to other formulations [15–24] (see Appendix A).

Both of these approaches are geometric, albeit in different manners, in that the frame-like
formulation extends Cartan geometry, whereas the metric-like formulation extends Riemannian
geometry. The latter is however a particular gauge of the former just like in the case of gravity.
The construction of interacting theories for higher-spin fields, fermions in particular, appears to be
in dire need of the frame-like formulation. The metric-like formulation, in contrast, seems rather
clumsy in managing the non-linearities required by gauge-theoretic consistency. Yet, it has the
advantage of having a simplified field content that may make some features of the interactions more
transparent. Understanding the connections between the two formulations may therefore provide
valuable information [25–28].

In this article, we will focus exclusively on higher-spin gauge fermions. These fields appear
naturally in the supersymmetric versions of Vasiliev theory [29–35] (see [36] for a recent review)
and also in the tensionless limit of superstring theory compactified on AdS5 × S5. The frame-like
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formulation of gauge fermions [1–3,6] has been discussed more recently by various authors [37–42].
The Fang–Fronsdal metric-like approach for higher-spin fermions, on the other hand, has been studied
in arbitrary dimensions in [43–45]. We will consider the free theory of a spin s = n + 1

2 massless
fermionic field in flat and AdS spaces. Although we consider Majorana fermions for simplicity,
our main results are valid almost verbatim for Dirac fermions in arbitrary spacetime dimensions.
A crucial property of frame-like fermions in flat space is their shift symmetry w.r.t. a gauge parameter,
which is an irreducible tensor-spinor in the fiber space with the symmetry property of the Young
diagram Y(n− 1, 1). This symmetry makes it almost manifest that the free Lagrangian is equivalent to
that of the metric-like formulation [1]. In AdS space, however, the constraints on this parameter may
receive nontrivial corrections, which vanish in the flat limit [39,40]. This is tantamount to having no
such corrections provided that some appropriate mass-like terms appear in the gauge transformation.
In other words, one can have a gauge-invariant Lagrangian description for frame-like fermions in AdS
space that does not deform the flat-space constraints on the field and the gauge parameters.

The organization of this article is as follows. In the remainder of this section, we spell out our
notations and conventions. A review of frame-like higher-spin massless fermions in flat space appears
in Section 2, where we write down the free Lagrangian [40,42] and discuss its gauge symmetries
along with the constraints on the field and the gauge parameters. We also show how this theory
simplifies in D = 3, 4. Section 3 formulates the free theory in AdS space with a trivial, but convenient
modification of the well-known mass-like term [39,40]. By virtue of judiciously-chosen terms in the
gauge transformation, we ensure that the constraints on the field and the gauge parameters mimic their
flat-space counterparts. The value of the mass parameter, determined uniquely by gauge invariance,
is in complete agreement with the known results [45,46]. In Section 4, we demonstrate explicitly
the equivalence of the frame-like Lagrangian to the metric-like one at the free level. We conclude
in Section 5 with some remarks, especially on the subtleties that may arise in an interacting theory.
An appendix summarizes the essentials of the metric-like formulation of higher-spin gauge fermions.

Conventions and Notations

We adopt the conventions of [47], with mostly positive metric signature (− + · · ·+).
The expression (i1 · · · in) denotes a totally symmetric one in all the indices i1, · · · , in with no
normalization factor, e.g., (i1i2) = i1i2 + i2i1, etc. The totally antisymmetric expression [i1 · · · in] has the
same normalization. The number of terms appearing in the (anti-)symmetrization is assumed to be the
possible minimum. A prime will denote a trace w.r.t. the background metric, e.g., A′ = ḡµν Aµν = Aµ

µ.
The Levi–Civita symbol is normalized as ε01...D−1 = +1, where D is the spacetime dimension.

Fiber indices and world indices will respectively be denoted with lower case Roman letters
and Greek letters. Repeated indices with the same name (appearing all as either covariant or
contravariant ones) are (anti-)symmetrized with the minimum number of terms. This results in
the following rules: a(k)a = aa(k) = (k + 1)a(k + 1), a(k)a(2) = a(2)a(k) = (k+2

2 ) a(k + 2),
a(k)a(k′) = a(k′)a(k) = (k+k′

k ) a(k + k′), etc., where a(k) has a unit weight by convention, and so,
the proportionality coefficient gives the weight of the right-hand side.

The γ-matrices satisfy the Clifford algebra: {γa, γb} = +2ηab and γa † = ηaaγa. Totally
antisymmetric products of γ-matrices, γa1 ...ar = 1

r! γ
[a1 γa2 · · · γar ], have unit weight. A “slash” will

denote a contraction with the γ-matrix, e.g., 6A = γa Aa.
A Majorana spinor χ obeys the reality condition: χC = χ. Two Majorana spinors χ1, 2 follow

the bilinear identity: χ̄1γa1 ...ar χ2 = tr χ̄2γa1 ...ar χ1, where a “bar” denotes Majorana conjugation,
and tr = ±1, depending on the value of r and spacetime dimensionality [47].
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2. Frame-Like Fermions in Flat Space

In the frame-like formulation, a fermion of spin s = n + 1
2 is described by a vielbein-like one-form

Ψa(n−1), which is a symmetric rank-(n− 1) irreducible tensor-spinor in the fiber space:

Ψa(n−1) = Ψµ
a(n−1)dxµ, γaΨab(n−2) = 0. (1)

The Minkowski background is described by the vielbein ē a = ē a
µdxµ that satisfies ηab ē a

µ ē b
ν = ηµν,

and the spin-connection ω̄ab = ω̄µ
abdxµ = −ω̄µ

badxµ, which fulfill the following equations:

Ta ≡ dē a + ω̄a
b ē b = 0, ρab ≡ dω̄ab + ω̄a

cω̄cb = 0. (2)

In the Cartesian coordinates, in particular, the solution of Equation (2) is given by ē a
µ = δa

µ and
ω̄µ

ab = 0. We will however work with a generic coordinate system in order to facilitate the transition
to AdS space. The following quantities will be useful in the subsequent discussion:

∗ ēa1 . . . ēap ≡ 1
(D−p)! εa1 ...apap+1 ...aD ē ap+1 . . . ē aD , (3)

ηa1a2|b1b2 ≡ 1
2

(
ηa1b1 ηa2b2 − ηa1b2 ηa2b1

)
. (4)

The frame-like free action for a Majorana gauge fermion, in arbitrary dimensions (Majorana
fermions exist in D = 3, 4, 8, 9, 10 and 11. In dealing with such objects, it is important to assume the
anti-commuting nature of fermions already at the classical level (before quantization)), reads [40,42]:

S = − 1
2

∫ [
Ψ̄b1c(n−2)Aa1a2a3, b1b2 D̂Ψb2

c(n−2)
]
∗ ēa1 ēa2 ēa3 , (5)

where D̂ denotes the Lorentz covariant derivative, and:

Aa1a2a3, b1b2 ≡ 1
6n

(
γa1a2a3 ηb1b2 + 2(n− 1)ηb1b2|[a1a2 γa3]

)
. (6)

The action (5) enjoys the following gauge invariance:

δΨa(n−1) = D̂ζa(n−1) + ēbλb, a(n−1), (7)

where the zero-form gauge parameters ζa(n−1) and λb, a(n−1) are irreducible tensor-spinors of rank
(n− 1) and rank n respectively with the symmetry of the Young diagrams Y(n− 1) and Y(n− 1, 1), i.e.,

ζa(n−1) ∼
· · ·︸ ︷︷ ︸
n−1

, λb, a(n−1) ∼

n−1︷ ︸︸ ︷
· · · . (8)

These irreducible tensor-spinors are subject to the following constraints:

γbζba(n−2) = 0, γbλb, a(n−1) = 0, γcλb, ca(n−2) = 0, λa, a(n−1) = 0. (9)

It is obvious that the action (5) is invariant, up to a total derivative term, under the gauge
transformation of the parameter ζa(n−1), since D̂2 = 0 in flat space. To prove the shift symmetry w.r.t.
the parameter λb, a(n−1), let us make use of the identity: ēc∗ ēa1 ēa2 ēa3 = ∗ ē[a1

ēa2 δc
a3]

, so that the variation
of the action can be written as:

δλS = −3
∫ [

Ψ̄b1
c(n−2)Aa1a2a3, b1b2 D̂λa3, b2c(n−2)

]
∗ ēa1 ēa2 . (10)
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Now, let us take a careful look at the identity:

6nAa1a2a3, b1b2 =
(

γa1a2 ηb1b2 + 2(n− 1)ηa1a2|b1b2
)

γa3 + (n− 1)γ[a1 ηa2]b1 ηa3b2

− γ[a1 ηa2]a3 ηb1b2 − (n− 1)γ[a1 ηa2]b2 ηa3b1 . (11)

When plugged into the gauge variation (10), the first line on the right-hand side of this identity
gives a vanishing contribution on account of the γ-trace constraints (9) on the gauge parameter
λb, a(n−1). The two terms in the second line, on the other hand, cancel each other, thanks to the property
λa, a(n−1) = 0. This proves the shift symmetry since δλS = 0.

Let us count the number of independent components of the parameters ζa(n−1) and λb, a(n−1).
Because the frame indices are γ-traceless, the number of possible values each index can take is
essentially (D− 1). Then, it is easy to compute the number of components of the corresponding Young
diagrams (8); they respectively turn out to be (D+n−3

n−1 ) fD and (n− 1)(D+n−3
n ) fD, where:

fD ≡ 2D/2+((−)D−5)/4, (12)

for a Majorana fermion in D dimensions. On the other hand, one needs to take into account the
vanishing of the trace when one contracts two indices from different rows of λb, a(n−1), which removes
(D+n−4

n−2 ) fD components. Therefore, the total numbers are given by:

∆ζ =

(
D + n− 3

n− 1

)
fD, ∆λ = (n− 1)

(
D + n− 3

n

)
fD −

(
D + n− 4

n− 2

)
fD. (13)

This counting will be useful later on.

Special Case: D = 3

The case of D = 3 is important in the context of hypergravity theories [3] (see also [48] for a recent
discussion). In this case, note that the quantity ∗ ēa1 ēa2 ēa3 reduces to the Levi–Civita tensor εa1a2a3 .
Furthermore, one has at one’s disposal the useful D-dimensional identity:

Aa1a2a3, b1b2 = 1
6 γa1a2a3 ηb1b2 +

(
n−1
6n

)
γa1a2a3b1b2 −

(
n−1
12n

) (
γb1 γb2 γa1a2a3 + γa1a2a3 γb1 γb2

)
. (14)

The second term on the right-hand side in the above identity is zero in D = 3, whereas the last
term gives a vanishing contribution because of the γ-trace condition on the field. On account of the
relation: γa1a2a3 εa1a2a3 = (3!)I, therefore, the action (5) reduces to the well-known Aragone–Deser
form [3]:

SD=3 = − 1
2

∫
Ψ̄a(n−1)D̂Ψa(n−1). (15)

On the other hand, the gauge symmetry (7)–(9) reduces to:

δΨa(n−1) = D̂ζa(n−1), γbζba(n−2) = 0. (16)

This is because in D = 3, the shift parameter λb, a(n−1) is trivial, but ζa(n−1) is not,

∆λ = 0, ∆ζ = n, (17)

as one can easily see from Equation (13).
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Special Case: D = 4

In this case, the quantity ∗ ēa1 ēa2 ēa3 reduces to the one-form εa1a2a3b ē b, while only the first piece
on the right-hand side of the identity (14) contributes. Then, the dimension-dependent identity:
γa1a2a3 = −iεa1a2a3bγ5γb, reduces the action (5) to:

SD=4 = − i
2

∫
Ψ̄a(n−1)γ5γb ē bD̂Ψa(n−1). (18)

Because ∆ζ = n(n + 1) 6= 0, ∆λ = (n− 1)(n + 2) 6= 0, both the parameters ζa(n−1) and λb, a(n−1)

are nontrivial, and so, the gauge symmetry has the full general form of (7). The Lagrangian (18)
appeared in both [1,2], but only the former reference could correctly identify the gauge symmetries.

3. Frame-Like Fermions in AdS Space

The AdS background is described by the vielbein ē a = ē a
µdxµ that satisfies ηab ēa

µ ēb
ν = ḡµν, and the

spin-connection ω̄ab = ω̄µ
abdxµ = −ω̄µ

badxµ, which fulfill the following equations:

Ta ≡ dē a + ω̄a
b ē b = 0, ρab ≡ dω̄ab + ω̄a

cω̄cb = − 1
l2 ē a ē b, (19)

where l is the AdS radius. Let us write the free action for a Majorana gauge fermion in AdS space by
augmenting the kinetic term, already studied in the context of flat space, by a mass term:

S = − 1
2

∫ [
Ψ̄b1c(n−2)Aa1a2a3, b1b2 D̂Ψb2

c(n−2)
]
∗ ēa1 ēa2 ēa3 − 1

2 µ
∫ [

Ψ̄b1c(n−2)Ba1a2, b1b2 Ψb2
c(n−2)

]
∗ ēa1 ēa2 , (20)

where µ is some parameter with the dimensions of mass, to be specified later, and:

Ba1a2, b1b2 ≡ 1
2n

[
γa1a2 ηb1b2 + 2(n− 1)ηa1a2|b1b2 − 1

2

(
n−1

D+2n−4

) (
γb1 γb2 γa1a2 + γa1a2 γb1 γb2

)]
. (21)

Note that our choice of Ba1a2, b1b2 differs from that of [39,40] by a trivial term, which vanishes
upon implementing the constraint on the field. Yet, this term will be useful for our purpose.

It suffices to consider, invoking another mass parameter µ̃, the gauge transformation:

δΨa(n−1) = D̂ζa(n−1) + µ̃ēb

[
γbζa(n−1) −

( 2
D+2n−4

)
γaζa(n−2)b

]
+ ēbλb, a(n−1), (22)

which is compatible with the γ-trace constraint, γaΨab(n−2) = 0, on the field without requiring any
modification of the properties (8) and (9) of the gauge parameters. In other words, the choice of
this gauge transformation (22) is such that the field and the gauge parameters mimic their flat-space
properties. This point is implicit in the choice made in [39,40].

To see that the shift transformation w.r.t. the parameter λb, a(n−1) is a symmetry of the
Lagrangian (20), let us first note that the invariance of the kinetic term follows exactly the flat-space
logic. Then, from the variation of the mass term, we have:

δλS = −2µ
∫ [

Ψ̄b1c(n−2)Ba1a2, b1b2 λa2, b2
c(n−2)

]
∗ ēa1 . (23)

On account of the identity:

2nBa1a2, b1b2 = ηb1b2 γa1 γa2 + (n− 1)ηa1b1 ηa2b2 − 1
2

(
n−1

D+2n−4

) (
γa1a2b1 γb2 + ηb2[a1 γa2]

)
− ηa1a2 ηb1b2 − (n− 1)ηa1b2 ηa2b1 , (24)

we then see that δλS = 0. The cancellations happen in much the same way as the identity (11)
eliminates contributions from the kinetic term.
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The symmetry requirement of the Lagrangian (20) w.r.t. the ζ-transformation in (22) would relate
the mass parameters µ and µ̃ to each other and with the inverse AdS radius. There are a priori three
kinds of contributions resulting from the ζ-transformation: 2-derivative, 1-derivative and 0-derivative
ones. Not surprisingly, by virtue of the commutator formula:

D̂2ζa(n−1) = −
1
l2 ē b ē c

[
ηabζca(n−2) +

1
4 γbcζa(n−1)

]
, (25)

the two-derivative piece actually reduces to a zero-derivative piece. The explicit computation makes
use of the identities: ē b ē c∗ ēa1 ēa2 ēa3 =

∗ ē[a1
δb

a2
δc

a3]
and ē b∗ ēa1 ēa2 =

∗ ē[a1
δb

a2]
, and leads straightforwardly to:

− (D+2n−3)(D+2n−4)
4 n

1
l2 −

(D−2)(D+2n−3)
n(D+2n−4) µµ̃ = 0, (26)

in order that the even-derivative terms cancel each other. Cancellation of the one-derivative terms,
on the other hand, requires that the following condition be met:

− (D− 2)µ̃− µ = 0. (27)

Conditions (26) and (27) can be combined into the relation:

µ2l2 =
(

n + D−4
2

)2
> 0, (28)

which gives, up to a sign, the real mass parameter µ in terms of the inverse AdS radius. The parameter µ̃

is then also determined from Equation (27). This uniquely fixes the Lagrangian (20), as well as the gauge
transformation (22), while the field and gauge parameters mimic their respective flat-space properties.

The physical significance of the mass parameter µ will be made clear in the next section as we
work out the gauge fixed equations of motion. To proceed, let us forgo the language of differential
forms and rewrite the action (20) as:

S = − 1
2

∫
dDx ē Ψ̄µ, ac(n−2)

(
6Aµρν, abD̂ρ + 2µBµν, ab

)
Ψν, b

c(n−2), (29)

where ē ≡ det ē a
µ is the determinant of the background AdS vielbein. The resulting Lagrangian

equations of motion for the frame-like fermion field Ψµ, a(n−1) take the form:

Rµ, a(n−1) ≡
( 6

n−1
) (
Aµρν, abD̂ρ +

1
3 µBµν, ab

)
Ψν, b

a(n−2) = 0. (30)

Here, the normalization factor keeps the equations of motion well defined also for n = 1, as we
will see. We emphasize that the equations of motion (30) are γ-traceless in the fiber indices, i.e.,

γbRµ, ba(n−2) = 0, (31)

as they should be. Actually, the very choices of Aµρν, ab and Bµν, ab made respectively in Equations (6)
and (21) were such that the action (29) manifestly has the following form:

S = − 1
2

∫
dDx ē Ψ̄µ, a(n−1)Rµ, a(n−1). (32)

Clearly, the equations of motion (30) share the gauge symmetries (22) of the action:

δΨµ, a(n−1) = D̂µζa(n−1) + µ̃ē b
µ

[
γbζa(n−1) −

( 2
D+2n−4

)
γaζa(n−2)b

]
+ ē b

µ λb, a(n−1) . (33)

In the next section, we will fix these gauge symmetries to find, among other things, the number of
physical degrees of freedom, which should match with that of a Majorana fermion of spin s = n + 1

2 .
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4. Equivalence of Frame- and Metric-Like Formulations

The first step to establish the equivalence of the frame- and metric-like descriptions of a gauge
fermion is to find a match in the respective number of local degrees of freedom. To count this for
a frame-like fermion [6], we rewrite the equations of motion (30) exclusively in terms of world indices:

Rµ, α(n−1) ≡
(
γµρν∇ρ + µγµν

)
Ψν,

α(n−1) + 1
2nC

µνβ, αΨν, β
α(n−2) = 0, (34)

where Cµνβ, α is an operator antisymmetric in the µ, ν, β indices, given by:

Cµνβ, α ≡
[
γα, γµρνβ

]
∇ρ − µ

{
γα, γµνβ

}
−
( 2

D+2n−4
)

µγαγµνβ. (35)

Some of the dynamical modes however are not physical because of gauge invariance. In order to
exclude the correct number of pure gauge modes, let us rewrite the gauge transformations (33) as:

δΨµ, α(n−1) = ∇µζα(n−1) + µ̃
[
γµζα(n−1) −

( 2
D+2n−4

)
γαζα(n−2)µ

]
+ λµ, α(n−1) . (36)

Now, one can use this freedom to choose the following covariant gauge:

6Ψα(n−1) ≡ γµΨµ, α(n−1) = 0, =⇒ Ψ′α(n−2) ≡ ḡµνΨµ, να(n−2) = 0. (37)

As a consequence, the equations of motion (34) reduce to the following form:

( 6 ∇ − µ)Ψµ,
α(n−1) − γµ∇νΨν, α(n−1) +

1
2nC

µνρ,
α χν, ρα(n−2) = 0, (38)

where χµ, α(n−1) is the irreducible part of the field Ψµ, α(n−1) with the symmetry of the Young diagram
Y(n− 1, 1), i.e., it has exactly the same properties as the gauge parameter λµ, α(n−1). Its appearance in
the last term of Equation (38) is easy to understand. The antisymmetry property of Cµνρ, α removes the
completely symmetric part of Ψµ, α(n−1), while the γ-trace parts are trivial by the gauge choice (37).

The condition (37) is however not a complete gauge fixing. This can be seen by taking its gauge
variation, which results in the Dirac equation for ζα(n−1):

δ 6Ψα(n−1) ≡
[
6 ∇ −

(
D+2n−2
D+2n−4

)
µ
]

ζα(n−1) = 0. (39)

Not only does this allow for nontrivial solutions for ζα(n−1), but it also leaves λµ, α(n−1) completely
unaffected. Therefore, one can use to freedom of the shift parameter λµ, α(n−1) to further gauge fix:

χµ, α(n−1) = 0. (40)

This finally reduces the equations of motion (38) to the Dirac form plus the divergence constraint:

( 6 ∇ − µ)Ψµ, α(n−1) = 0, ∇µΨµ, α(n−1) = 0. (41)

To exhaust the residual freedom of ζα(n−1), let us choose the gauge:

Ψ0, α(n−1) = 0. (42)

Its is easy to see that no residual freedom of ζα(n−1) is left. A would-be residual parameter must
obey some screened Poisson equation with no source term, which has no nontrivial solutions.

The count of local physical degrees of freedom is now immediate. The system (41) describes
(D − 1)∆ζ many dynamical variables, where ∆ζ is given in Equation (13). However, the gauge
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choices (37), (40) and (42) respectively remove ∆ζ , ∆λ and ∆ζ degrees of freedom. Therefore, the total
number of physical degrees of freedom is (D− 3)∆ζ − ∆λ, which is the same as:

∆Frame =

(
D + n− 4

n

)
fD . (43)

This confirms, in view of Equation (A13), that the count matches in the two formulations:
∆Frame = ∆Metric.

The physical significance of the mass parameter µ is now clear from the Dirac equation in (41).
While Equation (28) says that µ must be real, one may choose µ > 0 without any loss of generality. Then,

µ =
1
l

(
n + D−4

2

)
> 0. (44)

Our µ corresponds to the lowest value of the mass parameter m for a fermion carrying a unitary
irreducible representation of the AdS isometry algebra:

( 6 ∇ −m)Ψµ, α(n−1) = 0, m ≥ µ > 0. (45)

The bound saturates for the massless representation [44–46], as we see.
Next, we will show that the two formulations are equivalent at the level of the free Lagrangian.

With this end in view, let us decompose the fermion field Ψµ, α(n−1) into totally symmetric, γ-traceless
mixed-symmetric and γ-trace parts:

Ψµ, α(n−1) = ψµα(n−1) + χµ, α(n−1) + γ[µθα]α(n−2), (46)

where the fields appearing on the right-hand side have the symmetry of the following Young diagrams:

ψα(n) ∼
· · ·︸ ︷︷ ︸
n

,
χµ, α(n−1) ∼

n−1︷ ︸︸ ︷
· · · , θα(n−1) ∼

· · ·︸ ︷︷ ︸
n−1

.
(47)

We have imposed irreducibility conditions on χµ, α(n−1), so that it is subject to the following
constraints:

γµχµ, α(n−1) = 0, γβχµ, α(n−2)β = 0, χα, α(n−1) = 0. (48)

Of course, there will be additional constraints on the fields ψα(n) and θα(n−1) coming from the
γ-trace condition on the parent field Ψµ, α(n−1) in the α-indices. To find them, let us first take a γ-trace
of Equation (46) in an α-index. This results in:

6ψµα(n−2) − (D− 2)θµα(n−2) − (n− 1)γµ 6 θα(n−2) + γα 6 θµα(n−3) = 0. (49)

Another γ-trace w.r.t. the µ-index gives:

ψ′α(n−2) − (Dn− 2n + 2) 6 θα(n−2) − γαθ′α(n−3) = 0. (50)

Now, a third γ-trace in an α-index yields:

6ψ ′α(n−3) − (Dn + D− 4)θ′α(n−3) + γα 6 θ ′α(n−4) = 0. (51)

On the other hand, one could also have obtained a triple γ-trace by first contracting the µ index
with an α index in Equation (46) and then taking a γ trace. This however produces a different result:

6ψ ′α(n−3) − (D + n− 4)θ′α(n−3) + γα 6 θ ′α(n−4) = 0. (52)
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Equations (51) and (52) impose the following constraints:

6ψ ′α(n−3) = 0, θ′α(n−3) = 0, (53)

i.e., the symmetric rank-n field ψα(n) must be triply γ-traceless, whereas the symmetric rank-(n− 1)
field θα(n−1) must be traceless. This in turn results, from Equations (49) and (50), in the
following relation:

θα(n−1) =
(

1
D−2

) [
6ψα(n−1) −

(
1

nD−2n+2

)
γαψ′α(n−2)

]
. (54)

Finally, plugging the above expression into the decomposition (46), we obtain:

Ψµ, α(n−1) = ψµα(n−1) + χµ, α(n−1) +
(

1
D−2

) [
γ[µ 6ψα]α(n−2) −

( 2
Dn−2n+2

)
γµαψ′α(n−2)

]
+ 1

(D−2)(Dn−2n+2)

[
(n− 2)γαγµψ′α(n−2) − 2ḡα(2)ψ

′
µα(n−3)

]
. (55)

This decomposition generalizes that of [1] to arbitrary dimensions.
It will be convenient to write the covariant equations of motion (34) in the following form:

Rµ, α(n−1) ≡ Oµν, α(n−1)β(n−1)Ψν, β(n−1) = 0, (56)

where we have defined the operator O as:

Oµν, α(n−1)β(n−1) ≡
(
γµρν∇ρ + µγµν

)
ḡ α(n−1), β(n−1) + 1

2n(n−1)C
µνβ, α ḡ α(n−2), β(n−2), (57)

with ḡ α(k), β(k) ≡ 1
k2 ḡ αβ ḡ αβ . . . ḡ αβ (multiplicity k) denoting the unit-strength symmetric tensor product

of k background metric tensors. This enables us to present the corresponding Lagrangian as:

1√−ḡ L = − 1
2 Ψ̄µ, α(n−1)Oµν, α(n−1)β(n−1)Ψν, β(n−1) . (58)

When the decomposition (55) is plugged into the above Lagrangian, the irreducible
mixed-symmetric part χµ, α(n−1) completely drops out, thanks to the shift symmetry. The fact that
the parameter λµ, α(n−1) enjoys exactly the same properties as χµ, α(n−1) plays a crucial role in this
regard. The resulting Lagrangian contains only the completely symmetric part ψα(n) and can be
viewed as a gauge-fixed version of the original Lagrangian (58) with the gauge fixing: χµ, α(n−1) = 0.
The explicit derivation of this Lagrangian is tedious, but straightforward. The calculations can however
be simplified by noting that, on account of the γ-tracelessness of the equations of motion (56) in the
α-indices, the Lagrangian splits into the sum of two pieces:

1√−ḡ L = − 1
2 Ξ̄µ, α(n−1)Oµν, α(n−1)β(n−1)Ξν, β(n−1) +

1
2 ξ̄µ, α(n−2)γαOµν, α(n−1)β(n−1)γβξν, β(n−2) , (59)

where the tensor-spinors Ξµ, α(n−1) and ξµ, α(n−2) are given by:

Ξµ, α(n−1) = ψµα(n−1) +
(

1
D−2

) [
(n− 1)γµ 6ψα(n−1) −

( 2
Dn−2n+2

)
ḡµαψ′α(n−2)

]
,

ξµ, α(n−2) =
(

1
D−2

) [
−6ψµα(n−2) +

(
1

Dn−2n+2

) (
nγµψ′α(n−2) − γαψ′µα(n−3)

)]
. (60)

One can explicitly carry out the calculations to get to the following result:

− 2√−ḡ L = ψ̄α(n) ( 6 ∇− µ)ψ α(n) + n ¯6ψα(n−1) ( 6 ∇+ µ) 6ψ α(n−1) − 1
4 n(n− 1)ψ̄′α(n−2) ( 6 ∇− µ)ψ′ α(n−2)

−2n ¯6ψα(n−1)∇µψ µα(n−1) − n(n− 1)ψ̄′α(n−2)∇µ 6ψ µα(n−2). (61)

This indeed coincides with the Lagrangian (A7) for a metric-like gauge fermion in AdS
space. Because only the symmetric part of the parent field Ψµ, α(n−1) appears in this Lagrangian,
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the corresponding gauge symmetry is obtained simply by a total symmetrization of the indices in
Equation (36). The result is:

δψα(n) =
1
n

(
∇αζα(n−1) − 1

2l γαζα(n−1)

)
, (62)

which also matches perfectly with the metric-like gauge symmetry (A11).
This hardly comes as a surprise. The symmetric part of Ψµ, α(n−1) has all the characteristics of

a metric-like gauge fermion; in particular, it is triple γ-traceless, as we have shown in Equation (53).
Moreover, it transforms w.r.t. a symmetric γ-traceless gauge parameter ζα(n− 1). The gauge-invariant
Lagrangian description for such a system is unique [43–45]. Therefore, ψα(n) is a metric-like gauge
fermion in every sense.

5. Remarks

In this article, we have elaborated on some key features of higher-spin gauge fermions and the
connections between their frame- and metric-like formulations at the free level. A gauge-invariant
frame-like Lagrangian description in AdS space, with the constraints on the fields and the gauge
parameters resembling their flat-space cousins, facilitates the explicit derivation of the corresponding
metric-like Lagrangian as a gauge fixing. This derivation generalizes that of [1] to AdS space and
arbitrary dimensions. Although the equivalence of the frame- and metric-like formulations at the free
level may not come as a surprise, our work fills a gap in the literature.

As is well known, the frame-like formulation packages the non-linearities in an interacting
theory in a very efficient way. For higher-spin fermions, this can be seen in a very simple setup:
the Aragone–Deser hypergravity [3]−a consistent gauge theory of a spin s = n + 1

2 massless Majorana
fermion coupled to Einstein gravity in 3D flat space. While only fermion bilinears appear in the
frame-like formulation [3], the metric-like formulation will also include four-fermion couplings
that originate from integrating out the spin-connection, just like in supergravity [47]. Moreover,
the fermion-bilinear terms will look more complicated in the metric-like variables. To see this, note that
with frame-like fermions, the cubic cross-coupling in the covariant language has the simple form [49]:

L3 ∼ Ψ̄µ, α(n−1)γ
µνργσλΨν,

α(n−1)∂σhρλ, (63)

where hµν is the metric perturbation. Because the irreducible hook part χµ, α(n−1) of the frame-like
fermion is trivial in D = 3, the decomposition (55) amounts to a complicated field redefinition:

Ψµ, α(n−1) = ψµα(n−1) + γ[µ 6ψα]α(n−2) +
(

1
n+2

) [
nγαγµψ′α(n−2) − 2ηµαψ′α(n−2) + 2ηα(2)ψ

′
µα(n−3)

]
, (64)

where ψα(n) is the metric-like fermion. After this redefinition is performed, the cubic coupling (63) will
look cumbersome in terms of the metric-like fermion. Within the metric-like formulation, it would be
more difficult to construct or to prove the consistency of this cubic coupling, say using the techniques
of [50,51]. The fermion-bilinear cross-couplings do not stop at any finite order in the graviton
fluctuations, and the situation gets only worse at higher orders, while the frame-like formulation
captures all the non-linearities in a very neat way [3].

In higher dimensions, the difference between the two formulations becomes more drastic.
The hook part of the frame-like fermion never shows up in the interacting Lagrangian because
of the deformed shift symmetry. However, there appear the so-called “extra” fields: a set of additional
fields that arises when one tries to construct a complete set of gauge-invariant objects (curvatures) [52]
(The extra fields are generalizations of the spin-connection. The number of extra fields depends on the
spin; the higher the spin, the more are the extra fields needed for constructing curvatures. The extra
fields however do not enter the free action, and so, they are not expressed in terms of physical fields via
equations of motion) . To understand the role of these extra fields that are absent in the free Lagrangian,
one may express them in terms of the physical fields by means of appropriate constraints implemented



Universe 2018, 4, 34 11 of 14

via Lagrange multipliers [4,6,52–54]. Then, up to pure gauge parts, the extra fields are given by
derivatives of the physical fields. The extra fields therefore induce higher-derivative terms in the
interactions, while their absence in the free Lagrangian merely reflects the absence of higher-derivative
kinetic terms. Explicit solutions of the aforementioned constraints are difficult and actually not needed.
The main idea of the so-called Fradkin–Vasiliev formalism [52–54] is that one can treat the extra fields
as independent variables since most of the gauge-invariant curvatures vanish on shell.

Acknowledgments: The author is grateful to N. Boulanger, A. Campoleoni, G. Lucena Gómez, M. Henneaux
and especially to E. D. Skvortsov for valuable inputs and useful comments. He would like to thank the organizers
of the 4th Mons Workshop on Higher Spin Gauge Theories (2017), during which this study was initiated.
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Appendix A. Metric-Like Formulation

The metric-like formulation of gauge fermions originated in the work of Fang and Fronsdal [11,12],
who studied the massless limit of the Lagrangian for massive higher-spin fermions. The Fang–Fronsdal
Lagrangian can be derived uniquely by considering gauge invariance and supersymmetry
transformations for a massless system involving the pair of spins

(
s, s + 1

2

)
[55]. The construction

was later generalized for maximally-symmetric spaces with arbitrary dimension in [43–45]. In the
metric-like formulation, a spin s = n + 1

2 gauge fermion is described by a completely symmetric rank-n
tensor-spinor ψµ(n) in the world indices. It satisfies the triple γ-trace condition:

6ψ′µ(n−3) = 0. (A1)

It is convenient to describe metric-like theories in the operator formalism, where contraction and
symmetrization of indices are realized through auxiliary variables and tensor operations are simplified
in terms of operator calculus. Symmetric tensor-spinor fields are represented by:

ψ(x, u) = 1
n! ψµ1 ...µn(x) ē µ1

a1 (x)ua1 . . . ē µn
an (x)uan , (A2)

where ē µ
a (x) is the background vielbein and ua is an auxiliary tangent variable. The action of the

covariant derivative is defined as a differential operation involving both x and u:

∇µ = ∇̄µ + ω̄µ
abua

∂
∂ub , (A3)

where ∇̄µ is the standard covariant derivative acting on naked tensorial indices and ω̄µ
ab the

background spin connection. In what follows, we work only with the contracted auxiliary variable
and the associated derivative:

uµ ≡ ē µ
a (x)ua, ∂

µ
u ≡ ē µa(x) ∂

∂ua . (A4)

The vielbein postulate then implies that [∇µ, uν] = 0, as well as [∇µ, ∂ν
u] = 0. The commutator of

covariant derivatives on a spinor function of u and ∂u will be given by:

[∇µ,∇ν] = Rµνρσ(x)uρ∂σ
u +

1
4 Rµνρσ(x)γρσ. (A5)

One would have to use the following set of operators [43–45]:

G =
{
6 ∇, ∂u ·∇, u·∇, 6∂u, 6u, ∂2

u, u2, u·∂u

}
. (A6)

The set comprises eight operators: the Dirac operator 6 ∇, divergence ∂u ·∇, symmetrized-gradient
u·∇, γ-trace 6∂u, symmetrized-γ 6u, trace ∂2

u, symmetrized-metric u2 and rank u·∂u. These operators
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have nontrivial commutation relations because of [∂µ
u , uν] = ḡ µν and the non-commutativity (A5) of

the covariant derivatives if the background is non-flat.
Then, the Lagrangian for a massless fermionic field in AdS space can be written as (for a Majorana

fermion, certain terms in the Lagrangian are equivalent up to total derivatives) [45]:

1√−ḡ L = − 1
2 ψ̄(∗n)

(
6 ∇ − u·∇6∂u − 6u ∂u ·∇+ 6u 6 ∇6∂u + 1

2 6u u·∇ ∂2
u + 1

2 u2 ∂u ·∇ 6∂u − 1
4 u2 6 ∇ ∂2

u

)
ψ

+ 1
2 µ ψ̄(∗n)

(
1− 6u 6∂u − 1

4 u2 ∂2
u

)
ψ, (A7)

where the operation: (∗k) ≡
(←−

∂u ·
−→
∂u

)k
enables contraction between two rank-k tensor-spinors and has

the properties: (∗k)uµ = k
←−
∂u

µ(∗k−1) and (∗k)
−→
∂u

µ = (k + 1)−1uµ(∗k+1) . The mass parameter:

µ =
1
l

(
n + D−4

2

)
, (A8)

is uniquely fixed by gauge invariance [44,45], where l is the AdS radius. The gauge symmetry of the
Lagrangian (A7) is w.r.t. a symmetric γ-traceless rank-(n− 1) tensor-spinor parameter:

ε = 1
(n−1)! εµ1 ...µn−1 uµ1 . . . uµn−1 , 6∂uε = 0, (A9)

while the triple γ-tracelessness condition (A1) on the field translates in the operator formalism to:

6∂u∂2
uψ = ∂2

u 6∂uψ = 0. (A10)

Explicitly, the gauge transformations are given by:

δψ = u·∇ε− 1
2l
6u ε. (A11)

This can be verified by using the commutator (A5), which reduces in AdS space to:

[∇µ,∇ν] = −
1
l2

(
u[µdν] +

1
2 γµν

)
, (A12)

and the various commutators of the operators in G given the properties (A9) and (A10).
The metric-like description of higher-spin gauge fermions in flat-space is easily obtained by taking

the limit l → ∞ of the gauge invariant system (A7)–(A12). The degrees of freedom count in flat [13]
and AdS [14] spaces are of course the same and given by:

∆Metric =

(
D + n− 4

n

)
fD, (A13)

where fD for a Majorana fermion is given in Equation (12), while for a Dirac fermion, the value is
twice as much. Note that Equation (A13) counts the number of physical dynamical fields plus their
conjugate momenta. In AdS space, one of course gets the same number since the counting of dynamical
equations, constraints and gauge freedom works in the same way.

As already mentioned in the Introduction, the γ-trace constraints (A9)–(A10) on the gauge
parameter and the higher-spin fermionic field can be avoided by recourse to other formulations. These
include the non-local formulation [15], the Becchi–Rouet–Stora–Tyutin (BRST) formulation [17,22],
the higher-derivative compensator formulation [20], the quartet formulation [21] and the non-minimal
formulation with no higher derivatives [24].



Universe 2018, 4, 34 13 of 14

References

1. Vasiliev, M.A. ‘gauge’ Form Of Description Of Massless Fields With Arbitrary Spin. Sov. J. Nucl. Phys. 1980,
32, 439. (In Russian)

2. Aragone, C.; Deser, S. Higher Spin Vierbein Gauge Fermions and Hypergravities. Nucl. Phys. B 1980, 170,
329–352.

3. Aragone, C.; Deser, S. Hypersymmetry in D = 3 of Coupled Gravity Massless Spin 5/2 System.
Class. Quantum Gravity 1984, 1, L9.

4. Vasiliev, M.A. Free Massless Fields of Arbitrary Spin in the De Sitter Space and Initial Data for a Higher Spin
Superalgebra. Fortschr. Phys. 1987, 35, 741–770.

5. Lopatin, V.E.; Vasiliev, M.A. Free Massless Bosonic Fields of Arbitrary Spin in d-dimensional De Sitter Space.
Mod. Phys. Lett. A 1988, 3, 257–270.

6. Vasiliev, M.A. Free Massless Fermionic Fields of Arbitrary Spin in d-dimensional De Sitter Space. Nucl. Phys. B
1988, 301, 26–68.

7. Vasiliev, M.A. Cubic interactions of bosonic higher spin gauge fields in AdS5. Nucl. Phys. B 2001, 616, 106–162;
Erratum in 2003, 652, 407.

8. De Wit, B.; Freedman, D.Z. Systematics of Higher Spin Gauge Fields. Phys. Rev. D 1980, 21, 358.
9. Fronsdal, C. Massless Fields with Integer Spin. Phys. Rev. D 1978, 18, 3624.
10. Fronsdal, C. Singletons and Massless, Integral Spin Fields on de Sitter Space. Phys. Rev. D 1979, 20, 848–856.
11. Fang, J.; Fronsdal, C. Massless Fields with Half Integral Spin. Phys. Rev. D 1978, 18, 3630.
12. Fang, J.; Fronsdal, C. Massless, Half Integer Spin Fields in De Sitter Space. Phys. Rev. D 1980, 22, 1361.
13. Rahman, R.; Taronna, M. From Higher Spins to Strings: A Primer. arXiv 2015, arXiv:1512.07932.
14. Campoleoni, A.; Henneaux, M.; Hörtner, S.; Leonard, A. Higher-spin charges in Hamiltonian form. II. Fermi

fields. J. High Energy Phys. 2017, 2017, 58.
15. Francia, D.; Sagnotti, A. Free geometric equations for higher spins. Phys. Lett. B 2002, 543, 303–310.
16. Bekaert, X.; Boulanger, N. On geometric equations and duality for free higher spins. Phys. Lett. B 2003, 561,

183–190.
17. Buchbinder, I.L.; Krykhtin, V.A.; Pashnev, A. BRST approach to Lagrangian construction for fermionic

massless higher spin fields. Nucl. Phys. B 2005, 711, 367–391.
18. Francia, D.; Sagnotti, A. Minimal local Lagrangians for higher-spin geometry. Phys. Lett. B 2005, 624, 93–104.
19. Bekaert, X.; Boulanger, N. Tensor gauge fields in arbitrary representations of GL(D,R). II. Quadratic actions.

Commun. Math. Phys. 2007, 271, 723–773.
20. Francia, D.; Mourad, J.; Sagnotti, A. Current Exchanges and Unconstrained Higher Spins. Nucl. Phys. B 2007,

773, 203–237.
21. Buchbinder, I.L.; Galajinsky, A.V.; Krykhtin, V.A. Quartet unconstrained formulation for massless higher

spin fields. Nucl. Phys. B 2007, 779, 155–177.
22. Buchbinder, I.L.; Krykhtin, V.A.; Reshetnyak, A.A. BRST approach to Lagrangian construction for fermionic

higher spin fields in (A)dS space. Nucl. Phys. B 2007, 787, 211–240.
23. Francia, D. Geometric Lagrangians for massive higher-spin fields. Nucl. Phys. B 2008, 796, 77–122.
24. Campoleoni, A.; Francia, D.; Mourad, J.; Sagnotti, A. Unconstrained Higher Spins of Mixed Symmetry. II.

Fermi Fields. Nucl. Phys. B 2010, 828, 405–514.
25. Campoleoni, A.; Fredenhagen, S.; Pfenninger, S.; Theisen, S. Towards metric-like higher-spin gauge theories

in three dimensions. J. Phys. A 2013, 46, 214017.
26. Fredenhagen, S.; Kessel, P. Metric- and frame-like higher-spin gauge theories in three dimensions. J. Phys. A

2015, 48, 035402.
27. Campoleoni, A.; Henneaux, M. Asymptotic symmetries of three-dimensional higher-spin gravity: The metric

approach. J. High Energy Phys. 2015, 2015, 143.
28. Boulanger, N.; Kessel, P.; Skvortsov, E.D.; Taronna, M. Higher spin interactions in four-dimensions: Vasiliev

versus Fronsdal. J. Phys. A 2016, 49, 095402.
29. Konstein, S.E.; Vasiliev, M.A. Extended Higher Spin Superalgebras and Their Massless Representations.

Nucl. Phys. B 1990, 331, 475–499.
30. Vasiliev, M.A. Properties of equations of motion of interacting gauge fields of all spins in (3+1)-dimensions.

Class. Quantum Gravity 1991, 8, 1387–1417.



Universe 2018, 4, 34 14 of 14

31. Vasiliev, M.A. More on equations of motion for interacting massless fields of all spins in (3+1)-dimensions.
Phys. Lett. B 1992, 285, 225–234.

32. Sezgin, E.; Sundell, P. Higher spin N = 8 supergravity. J. High Energy Phys. 1998, 1998, 16.
33. Sezgin, E.; Sundell, P. Higher spin N = 8 supergravity in AdS(4). In Proceedings of the Johns Hopkins

Workshop on Current Problems in Particle Theory 22, Göteborg, Sweden, 20–22 August 1998; p. 241
34. Sezgin, E.; Sundell, P. Analysis of higher spin field equations in four-dimensions. J. High Energy Phys. 2002,

2002, 55.
35. Engquist, J.; Sezgin, E.; Sundell, P. On N = 1, N = 2, N = 4 higher spin gauge theories in four-dimensions.

Class. Quantum Gravity 2002, 19, 6175–6196.
36. Sezgin, E.; Sundell, P. Supersymmetric Higher Spin Theories. J. Phys. A 2013, 46, 214022.
37. Alkalaev, K.B. Free fermionic higher spin fields in AdS(5). Phys. Lett. B 2001, 519, 121–128.
38. Alkalaev, K.B. Mixed-symmetry massless gauge fields in AdS(5). Theor. Math. Phys. 2006, 149, 1338–1348.
39. Sorokin, D.P.; Vasiliev, M.A. Reducible higher-spin multiplets in flat and AdS spaces and their geometric

frame-like formulation. Nucl. Phys. B 2009, 809, 110–157.
40. Zinoviev, Y.M. Frame-like gauge invariant formulation for massive high spin particles. Nucl. Phys. B 2009,

808, 185–204.
41. Zinoviev, Y.M. Frame-like gauge invariant formulation for mixed symmetry fermionic fields. Nucl. Phys. B

2009, 821, 21–47.
42. Skvortsov, E.D.; Zinoviev, Y.M. Frame-like Actions for Massless Mixed-Symmetry Fields in Minkowski space.

Fermions. Nucl. Phys. B 2011, 843, 559–569.
43. Hallowell, K.; Waldron, A. Constant curvature algebras and higher spin action generating functions.

Nucl. Phys. B 2005, 724, 453–486.
44. Metsaev, R.R. Gauge invariant formulation of massive totally symmetric fermionic fields in (A)dS space.

Phys. Lett. B 2006, 643, 205–212.
45. Metsaev, R.R. CFT adapted approach to massless fermionic fields, AdS/CFT, and fermionic conformal fields.

arXiv 2013, arXiv:1311.7350.
46. Metsaev, R.R. Massive totally symmetric fields in AdS(d). Phys. Lett. B 2004, 590, 95–104.
47. Freedman, D.Z.; Van Proeyen, A. Supergravity; Cambridge University Press: Cambridge, UK, 2012; ISBN-10:

0521194016.
48. Fuentealba, O.; Matulich, J.; Troncoso, R. Extension of the Poincaré group with half-integer spin generators:

Hypergravity and beyond. J. High Energy Phys. 2015, 2015, 3.
49. Henneaux, M.; Lucena Gómez, G.; Rahman, R. The uniqueness of hypergravity. Unpublished work, 2018.
50. Henneaux, M.; Gómez, G.L.; Rahman, R. Higher-Spin Fermionic Gauge Fields and Their Electromagnetic

Coupling. J. High Energy Phys. 2012, 2012, 93.
51. Henneaux, M.; Gómez, G.L.; Rahman, R. Gravitational Interactions of Higher-Spin Fermions. J. High

Energy Phys. 2014, 2014, 87.
52. Fradkin, E.S.; Vasiliev, M.A. Candidate to the Role of Higher Spin Symmetry. Ann. Phys. 1987, 177, 63–112.
53. Fradkin, E.S.; Vasiliev, M.A. On the Gravitational Interaction of Massless Higher Spin Fields. Phys. Lett. B

1987, 189, 89–95.
54. Fradkin, E.S.; Vasiliev, M.A. Cubic Interaction in Extended Theories of Massless Higher Spin Fields.

Nucl. Phys. B 1987, 291, 141–171.
55. Curtright, T. Massless Field Supermultiplets With Arbitrary Spin. Phys. Lett. B 1979, 85, 219–224.

c© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Frame-Like Fermions in Flat Space
	Frame-Like Fermions in AdS Space
	Equivalence of Frame- and Metric-Like Formulations
	Remarks
	Metric-Like Formulation

