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Abstract: Strange stars are one of the possible compact stellar objects formed in the core collapse of
supernovae. These hypothetical stars are made by deconfined quark matter and are selfbound. In our
study, we focus on the torsional oscillations of a non bare strange star, i.e., a strange star with a thin
crust made of standard nuclear matter. We construct a theoretical model assuming that the inner parts
of the star are in two different phases, namely the color flavour locked phase and the crystalline colour
superconducting phase. Since the latter phase is rigid, with a large shear modulus, it corresponds to a
first stellar crust. Above this crust a second small crust made by standard nuclear matter is suspended
thanks to a strong electromagnetic dipolar moment. We focus on the electromagnetically coupled
oscillations of the two stellar crusts. Notably, we find that if a small fraction of the energy of a glitch
event like a typical Vela glitch is conveyed in torsional oscillations, the small nuclear crust will likely
break. This is due to the fact that in this model the maximum stress, due to torsional oscillations,
is likely located near the star surface.
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1. Introduction

The properties of hadronic matter at densities higher than the nuclear saturation density are
under intense theoretical and experimental inspection [1,2]. The high temperature regime is studied
in relativistic heavy ion experiments [1], leading to the production and identification of the quark
gluon plasma. The low temperature regime (T . 1 MeV) is relevant in the physics of compact stellar
objects (CSOs), originating from the collapse of a supernova. The CSOs can be divided into three
classes: neutron stars, hybrid stars and strange stars. Neutron stars are the widely studied class of
CSOs and are mainly made of nucleons, electrons and muons (to ensure the charge neutrality of the
star). If deconfined quarks are present in the core, we are in the presence of the second class of CSOs,
the hybrid stars. Strange stars are instead almost completely made of deconfined quark matter [3,4].
The astronomical observations indicate that the mass of CSOs is between 1.2 M� and 2 M�, where
M� is the solar mass. The estimated radius is of the order of ten kilometers. Unfortunately using these
observed values it is not possible to determine the nature of the CSOs because strange stars and hybrid
stars can masquerade as standard neutron stars [5].

The existence of strange stars is based on the hypothesis of Bodmer [6] and Witten [7] that standard
nuclei are in a metastable state. According to this hypothesis, the real ground state of hadronic matter
is a configuration that corresponds to an hypothetical short range free-energy minimum of the strong
interaction. This is a collapsed state of matter and we can imagine a strange star as a huge collapsed
state of hadrons. The interaction that binds the star is the strong interaction, i.e., the star is self bound,
with gravity playing a role only for very massive stars. So strange stars have no lower limit on mass
and can be arbitrarily small.
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Unfortunately, assuming that strange matter is the ground state of hadronic matter does not
unambiguously define the properties of the system, even at the densities reachable in the CSOs.
The essential point is that Quantum Chromodynamics (QCD) is not in the perturbative regime, so it is
not under quantitative control. Therefore, we have to use some approximate scheme. Analysis with
various methods indicates that strange matter should be in a superconducting phase [8], i.e., a phase
in which quarks form Cooper pairs and break the SU(3) color gauge symmetry. In the inner part of the
star, at high density, the color flavour locked (CFL) phase should be favored [9]. In the CFL phase u, d,
s quarks of all colors pair coherently in a BCS-like state, maximizing the free-energy gain. However, it is
conceivable that CFL is not the unique color superconducting phase realized in strange stars. In fact,
at lower densities, the chemical potential of the strange quark becomes comparable with its mass,
so coherent pairing cannot happen. For that reason a different superconducting phase can be favored;
one possibility is the crystalline color superconducting (CCSC) phase [10,11]. One important feature is
that the CCSC phase is characterized by a periodic modulation of the diquark pairing. The periodic
modulation of the pairing implies that the CCSC phase is mechanically rigid and it turns out that it has
an extremely large shear modulus [11,12], which is a key ingredient for torsional oscillations [13,14].
Indeed, the existence of a phase with a large shear modulus suggests that torsional oscillations of
large amplitude can be sustained by this structure. Torsional oscillations of strange stars with a CCSC
crust have been first analyzed in [15], while in [16] the coupled oscillations of the CCSC crust and of
the ionic crust have been studied. In the present contribution to the proceedings of the CSQCD VI
conference we report on the latter study.

2. The Model

2.1. Background Configuration

The star composition we have hypothesized in [16] is shown in Figure 1.

Figure 1. Schematic picture (not in scale) of the stellar model we propose. The mass of the structure is
around 1.4 M�, and the total radius is R ' 9.2 km. The electrosphere has a thickness of few hundred
fm, while the ionic crust has a thickness of about 200 m [16].

The inner part of the strange star, called the quarksphere, is populated by deconfined quarks
(u, d and s). In the core, at the highest density, the CFL phase is realized and above it, at a radius RCFL,
there is a transition to the CCSC phase. The actual radius RCFL is unknown, so we will consider it as a
parameter of the model. In the CCSC phase, due to the lack of strange quarks, electrons are present to
guarantee the charge neutrality. Above the quarksphere, there is a very small layer (about a hundred
fermi thick) populated only by electrons, forming the so-called Electrosphere. This is possible because
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quarks are confined within the quarksphere of radius Rq by the strong interaction, but electrons do not
feel the strong interaction and can therefore get outside the quarksphere. They are only bound by the
electrostatic interaction on a range of hundreds of fm. On the top of this structure there is a small
standard ionic crust, which is electromagnetically suspended due to the positive charge present at the
surface of the quarksphere [3].

To determine the mass and the radius of our structure, we solve the Tolman Oppenheimer Volkov
(TOV) equations that are a generalization of the hydrostatic equilibrium in non rotating spherical metric.
For that reason we have to choose an Equation of State (EoS) that can describe our system. Since QCD
is not perturbative, it is not possible to determine the actual EoS. The strange star temperature is
much lower than the typical scale of QCD, thus it could be considered equal to zero. This means that
we can consider our system as a Fermi liquid at zero temperature. To take into account the strong
interaction we use a Taylor expansion of the grand potential as a function of the average baryonic
chemical potential, µ, as proposed in [5]:

ΩQM = − 3
4π2 a4µ4 +

3
4π2 a2µ2 + Beff (1)

where a4, a2 and Beff are independent of µ. We use the set of parameters a4 = 0.7, a2 = (200 MeV)2

and Beff = (165 MeV)4 discussed in [15].
We assume that the previous EoS describes the whole quarksphere and is matched with an EoS

valid for the standard ionic crust at Rq, corresponding to a pressure of the quarksphere equal to the
pressure corresponding to the neutron drip in the standard ionic crusts. In fact if the density exceeds
the neutron drip density, neutrons in the ionic crust are ripped off from the nuclei and fall down into
the quarksphere, where they are eventually converted in deconfined light quarks. For the ionic crust
we assume that it consists of a Coulomb crystal embedded in a degenerate electron gas, and we use
the data reported in [17].

Setting the central density to ρc = 1.5× 1015 (g/cm3) we obtain a star of 1.4 M� with a radius of
R ' 9.2 km. The ionic crust is about 200 m thick, and so the radius at which we have the transition
between quark matter and standard nuclear matter is Rq ' 9 km.

2.2. Torsional Oscillation

The two considered crusts have a nonvanishing shear modulus and so non radial modes can
be excited. We briefly review the equations governing the non radial modes. Defining as ~u the
displacement vector, the non radial modes obey to ∇ · ~u = 0, with a vanishing radial component,
that is ur = 0. Furthermore, assuming that u = eiσtξ(r), in the newtonian limit and considering
the fluid description, according to [13] we can write the Euler’s equation in spherical coordinates
as follows

σ2Wi(r) = ν2
i

[
−dlogνi

dr

(
dWi
dr
− Wi

r

)
− 1

r
d
dr

(
r2 dWi

dr

)
+

l(l + 1)
r

Wi

]
, (2)

where i = 1, 2 characterizes the two crusts, νi are the corresponding shear moduli and W is a function
of r defined as

ξϑ = W
1

sinϑ

∂Ylm
∂φ

, ξφ = −W
∂Ylm
∂ϑ

. (3)

To solve this equation in both the two crusts we have to know the shear modulus of the CCSC
crust, of the ionic crust and set the appropriate boundary conditions.

The rigidity of the CCSC crust has been studied in [12]. The shear modulus calculated for the
CCSC matter is:

ν ' ν0

(
∆

10MeV

)2( µq

400MeV

)2

, (4)
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where ∆ is the pairing energy of the condensate, µq is the quark chemical potential and the reference
value is:

ν0 = 2.47
MeV
fm3 . (5)

This is the value that we will use in our study, because we expect that ∆ ∼ 10 MeV and the quark
chemical potential is roughly constant within the CCSC phase, see [15] for a discussion. The actual
value of the CCSC shear modulus can be different from the reference value also because the procedure
for its evaluation relies on a number of approximations, see [11]. However, the most important aspect
for our discussion is that the shear modulus of the CCSC matter is much larger than the shear modulus
of standard nuclear matter. Note also that the effect of the pairing gap in the EoS is effectively included
in the a2 coefficient of Equation (1), see [5] and the discussion in [15].

The shear modulus of the ionic crust strongly depends on the particular crystalline structure of
the crust and on the plane of application. Actually, we do not know the crystalline structure of the
ionic crust, but we can calculate an effective shear modulus [18] as:

νeff = c
nN(r)(Z(r)e)2

aN(r)
, (6)

where nN(r) is the density of nucleons as a function of the radial coordinate r, Z(r) is the number of
protons in the nuclei, and aN(r) = (3/(4πnN))

(1/3) is the average inter-ion spacing. The constant c
has been evaluated in [18,19] and it is c ' 0.1.

The boundary conditions that we impose are the followings(
dW1

dr
− W1

r

)∣∣∣∣
R=RCFL

= 0 (7)

ν1

(
dW1

dr
− W1

r

)∣∣∣∣
R=Rq

= ν2

(
dW2

dr
− W2

r

)∣∣∣∣
R=Rq

(8)

W1(Rq) = W2(Rq) (9)(
dW2

dr
− W2

r

)∣∣∣∣
R=Rocean

= 0 , (10)

where Rocean ' 9.15 km and the ocean is the region in which the density is less than 107 g/cm3.
The first, the second and the last equations are no-traction conditions, while the third one is a no-slip
condition. The no-traction condition means that there is no force acting between two adjacent layers.
The no-slip condition means that the displacement at the interface of two layers is the same. See [16]
for more details on these boundary conditions.

3. Results

In our study we focus on the l = 1 modes that we call 1tn, where n indicates the number of nodes,
corresponding to a twist of the two crusts . We numerically solve the equation for the non radial
modes, considering the density inside the CCSC crust as a constant (the estimated error made with this
approximation is less than 10%) and a realistic radial density dependence in the ionic crust. Since the
transition between the CFL and CCSC phase depends on the unknown pressure difference between
the two phases, we define RCFL = aRq with a a parameter that varies between 0 and 1, and we study
the problem varying a.

In Figure 2 we show the obtained frequencies of the 1t1, 1t2,1t3 modes as a function of a. As we
can easily see, the typical frequencies are of the order of 10 kHz and we can identify two different
behaviors. There is one kind of oscillations, dependent on the parameter a, associated to a non radial
coupled crusts oscillation (CCSO), in which both crusts are sensibly displaced. A second kind of
oscillations is almost independent of a and is associated to a sensible displacement of only the ionic
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crust (ICO). To show the amplitude of the oscillation we assume that the energy of the order of the one
released in a Vela-like glitch (E ∼ 5× 1042 erg) is conveyed to the 1tn modes.

Figure 2. Frequencies of the modes 1t1 (solid blue), 1t2 (dashed red) and 1t3 (dotted green) as a function
of a = Rq/RCFL. As it is possible to see, we have two kind of features. There are oscillations whose
frequencies depends on a and oscillations with frequencies independent of a [16].

In Figure 3 we show the amplitude of 1t1 oscillations in two different cases. In the left panel we
choose a = 0.4 while for the right panel we choose a = 0.8. For a = 0.4 the energy is divided by the
CCSC crust and the ionic crust, corresponding to a CCSO-type mode. The maximum amplitude of the
oscillation is of the order of 20 cm. In the right panel we consider the a = 0.8 case. In this case all the
energy is conveyed on the ionic crust, corresponding to a ICO-type mode, and the amplitude of the
oscillation is of the order of the km.

Figure 3. Radial dependence of the amplitude of the 1t1 mode oscillation inside our strange star
model. Left: Oscillation of the coupled crusts oscillation (CCSO)-type (see text) obtained choosing
a = 0.8. The amplitude of the oscillation is of the order of 20 cm. Right: Oscillation of the ISO-type
(see text) obtained choosing a = 0.4. In the nuclear crust the amplitude can reach values of the order of
few km [16].

To better understand our results we study the deformation of the solid crusts due to the torsional
oscillation. A measure of the deformation is the shear strain. For our study, due to symmetry of the
problem, we restrict our analysis to the radial component of the strain, that is defined as:

|s| =
∣∣∣∣dW

dr
− W

r

∣∣∣∣. (11)



Universe 2018, 4, 41 6 of 7

For the shear strain in the case a = 0.8 we obtain a maximum near the surface of the star. This is a
particularly relevant result because in previous analysis, such as [13], the maximum strain is far inside
the inner crust and it is impossible to break the crust. For the ionic crust, despite the high uncertainties,
the maximum strain should be between 10−4 and 10−2 [20] but in perfect crystals values of the order
of 10−1 could be appropriate [21]. Since in our model we obtain maximum strains larger than these
values, of the order of unity, this probably means that in our model it is possible to break the ionic
crust during a glitch or in any other event releasing a comparable amount of energy.

4. Conclusions

We have considered a model of a nonbare strange star comprising a quarksphere of
superconducting quark matter surmounted by a standard nuclear matter crust [16]. The quarksphere is
in two different phases: the CFL phase and the rigid CCSC phase. The CCSC crust and the ionic crust
are separated by an electron layer a few hundred fm thick. We have solved the TOV equations using
a simple parameterization of the EoS of quark matter in function of the baryon chemical potential
matched with a realistic EoS for the description of the ionic crust.

Both the CCSC and the ionic crusts are rigid, so electromagnetically coupled torsional oscillations
are possible. We have found two types of oscillations, the first involves the two crusts with comparable
amplitude (CCS0-type), and the second confined in the ionic crust (ICO-type). If the CCSC is thinner
than around 2 km, ICOs are the only relevant oscillations.

We have studied in detail the l = 1 torsional modes, obtaining frequencies of the order of 10 kHz.
These modes correspond to oscillatory twists of the crust and do not conserve angular momentum.
For that reason we have assumed that they are triggered by a pulsar glitch and following this idea we
have assumed that the energy of a Vela-like glitch is conveyed to the strange star crust. If the CCSC
crust is sufficiently thin, then ISOs are triggered and it is possible to break the ionic crust. Indeed,
computing the strain as a function of the radial coordinate, we find that its maximum is located a few
tens of meters below the stellar surface and is of the order of unity. This probably means that within
our model it is possible to break the ionic crust during a glitch or any other stellar event conveying a
comparable amount of energy to the torsional oscillations.

Possible observables related to torsional oscillations are giant Gamma Ray Burst (see [22]) and
Quasi Periodic Oscillations (see [23–27]).
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