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Abstract: The possibility that dark matter particles could be constituted by extreme regular primordial
black holes is discussed. Extreme black holes have zero surface temperature, and are not subjected to
the Hawking evaporation process. Assuming that the common horizon radius of these black holes
is fixed by the minimum distance that is derived from the Riemann invariant computed from loop
quantum gravity, the masses of these non-singular stable black holes are of the order of the Planck
mass. However, if they are formed just after inflation, during reheating, their initial masses are about
six orders of magnitude higher. After a short period of growth by the accretion of relativistic matter,
they evaporate until reaching the extreme solution. Only a fraction of 3.8 × 10−22 of relativistic
matter is required to be converted into primordial black holes (PBHs) in order to explain the present
abundance of dark matter particles.
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1. Introduction

The detection of gravitational waves emitted during the merger of two black holes [1,2] represents
a robust demonstration of the reality of these objects. Previously, the study of the motion of several
individual stars around Sgr A*, a radio source located in the galactic center, led to the conclusion that
the orbits of those stars are controlled by the gravitation of a “black” object having a mass of about
4 × 106 M� [3]. These observations strongly suggest the presence of a supermassive black hole in the
center of the Milky Way, since no other adequate alternative for the nature of such a massive object
was proposed up until now. Thus, the existence of “stellar” black holes with masses of few tens of the
solar mass, or supermassive black holes with masses of six up to nine orders of magnitude the mass of
the Sun, seems to be well established.

From a simple mathematical point of view, a black hole represents a region of the space–time
causally disconnected from observers located at arbitrarily large distances. The surface separating both
regions of the space–time is the event horizon that, in fact, is a one-way membrane, since observers
inside the horizon can receive signals from outside, but the reverse is not true.

A massive object whose mass has been reduced to a “point singularity” of the space–time after it
underwent gravitational collapse, represents an unpleasant physical situation because singularities
denote points of the space–time where the classical theory breaks down. Einstein equations admit
both past and future singularities hidden by an event horizon [4,5], but this theory in incomplete,
because it ignores the presence of quantum effects. Such effects are expected to become significant in
the high curvature regions existing near the singularity, which modify the space–time structure and
make unreliable general relativity predictions.

Loop quantum gravity (LQG) has emerged in the past decades as a possible candidate for a
quantum gravity theory, and investigations of the interior inside the event horizon based on LQG led
to solutions free of the classical singularity. This is a consequence of the space–time continuum of
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general relativity being replaced by a discrete quantum geometry, which remains regular at the classical
singularity. A complete treatment of the space–time of a black hole in LQG is still lacking, but different
studies suggest that a singularity is not formed at the end of the gravitational collapse [6–8]. However,
there are many uncertainties about the solution after the “crossing” of the classical singularity, or even
about what replaces the black hole singularity. Some investigations [9] indicate that the structure of
the solution allows the existence of a Cauchy horizon near r = 0. Thus, after the gravitational collapse,
LQG solutions suggest that the interior inside of a black hole can be described by a singularity-free
Reissner–Nordström space–time, including a Cauchy and an event horizon.

The LQG picture described above has similar analogs in general relativity, where regular metrics
describing black holes have been proposed by Bardeen [10] and Hayward [11], among others.
These solutions are non-singular, and both have an inner Cauchy horizon as well as an outer event
horizon. Inside the Cauchy horizon, both geometries behave like a de Sitter space–time. It is interesting
to mention that already in the sixties, Andrei Sakharov [12] had the intuition that at very high densities,
the matter approaches a vacuum state with a finite density. Such a non-divergence implies that the
local geometry should be described by a de Sitter metric.

In this paper, some aspects of these regular solutions will be reviewed, as well as, in particular,
their associated thermodynamic properties. Both Bardeen and Hayward space–times are described by
metrics characterized by free parameters that define the mass density distribution. Here, these scale
parameters are fixed under the assumption that the radius of the Cauchy horizon is equivalent to the
minimum distance derived from LQG. Under this condition, extremal black holes have masses of the
order of the Planck mass. Then, based on thermodynamic principles, it will be shown that primordial
regular black holes of about 106 times the Planck mass can be formed at the end of the inflationary
epoch, when the oscillations of the inflaton field are intense, and reheating occurs. These newly
formed black holes have a short period of growth, and then they evaporate until reaching masses
close to the extremal case. Such black hole remnants are possible candidates for dark matter particles.
It will be shown that only a small fraction of relativistic matter (3.8 × 10−22) needs to collapse into
black holes in order to explain the present dark matter abundance. The paper is organized as follows.
In Section 2, the main properties of the Bardeen and the Hayward black holes are reviewed, while the
thermodynamic properties of these objects are discussed in Section 3. Then, in Section 4, the formation
of regular black holes in the early universe is considered, and finally, in Section 5, the main results
are discussed.

2. Regular Black Holes

Since the original investigation of regular black holes by Bardeen [10], different studies have
been addressed to the analysis of non-singular space–times [13–15]. In the case of static space–times,
the considered general metric (in geometric units) is:

ds2 = − f (r)dt2 + f−1(r)dr2 + r2dΩ2 (1)

where f (r) is the lapse function. The zeros of the lapse function define the position of the event horizon
and the inner Cauchy horizon, when it exists. In the case of the Bardeen geometry, the lapse function
is defined by:

f (r) = 1− 2Mr2

(r2 + g2)3/2 (2)

In the above equation, M is the mass of the black hole, and g is a suitable scale. Ayon-Beato and
Garcia [16] interpreted the scale parameter g as the monopole charge of a magnetic field in the context
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of a non-linear electrodynamic theory. Here, such a parameter is considered simply as a scale defining
the mass distribution derived from Einstein equations, that is:

ρ(r) =
3Mg2

4π(r2 + g2)5/2 (3)

Notice that when r � g, the lapse function reduces to the Schwarzschild geometry, while when
r → 0 , the metric becomes essentially de Sitter, namely, regular at r = 0. Define now two dimensionless
variables x and γ as:

x =
r

2M
and γ =

g
2M

(4)

It worth mentioning that the quantities above are dimensionless in geometric units, but their real
physical dimensions are always recovered when necessary. Studying the zeros of the lapse function,
the existence or not of horizons depends on the following condition: if γ < 2/

√
27, two horizons exist,

while if the inequality is not satisfied, there are no horizons. In the case of equality, the Cauchy and the
event horizons coincide at the dimensionless coordinate xH =

√
8/27. This corresponds to the case of

an extreme Bardeen black hole.
The existence of horizons depends on the ratio between the scale parameter and the mass of the

black hole. Is it possible to estimate the scale parameter g in an independent way? A positive answer
can be given within the following context: we will consider the extreme case for reasons that will be
explained later, and we will consider that the common horizon radius rH is fixed by the minimum
distance from the origin derived from the Riemann curvature invariant computed in terms of the
volume operator in LQG [6]. Hence:

rH =

√
π

2
`P (5)

where `P is the Planck distance scale. From the relation above and the previous results, one obtains
trivially that g =

√
(π/4) `P, and that the mass of an extreme Bardeen black hole is:

M∗ =
√

27π

8
MP (6)

where MP is the Planck mass. Thus, our hypothesis concerning the scale parameter leads to a mass of
the order of the Planck mass for an extreme Bardeen black hole. Using these results and Equation (2),
the central density can be estimated (here the physical constants were recovered):

ρo =
3
√

27
4π2

}c
`4

P
(7)

This result should be compared with the expected density derived from loop quantum cosmology
(LQC) at the bounce (see, for instance, Craig [17]):

ρ0 =

√
3

32π2γ3
I

}c
`4

P
(8)

In the equation above, γI ' 0.2375 is the so-called Barbero–Immirzi parameter. The numerical
coefficient in Equation (7) is 0.395, while in Equation (8), it is about 0.409. Thus, under our assumptions,
the expected central energy density for the extreme Bardeen black hole is comparable to the maximum
density of the universe, which was attained at the instant of the bounce within the LQC scenario.

Similar computations can be performed in the case of the Hayward [11] metric that is characterized
by the lapse function:

f (r) = 1− 2Mr2

(r3 + 2ML2)
(9)
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where L is a scale parameter. In this case, the energy density distribution resulting from Einstein
equations is:

ρ(r) =
3M2L2

2π(r3 + 2ML2)2 (10)

Introducing as before the dimensionless quantities x = r/2M and β = L/2M, the analysis of
the roots of the lapse function indicate that there a critical value for the scale parameter β∗ = 2/

√
27,

corresponding to the critical coordinate x∗ = 2/3. If b is smaller than the critical value, two horizons
exist while in the opposite situation, there is no black hole solution. The critical value defines the
extreme case when both horizons coincide.

The scale parameter is fixed by assuming as before that the radial coordinate of the critical solution
is equal to the minimum distance derived from LQG. In this case, one obtains:

L =

√
π

6
`P (11)

From this result, the mass of the extreme Hayward black hole is:

M∗ =
3
√

π

4
MP (12)

which is a value slightly greater than the Planck mass. The central energy density in this case is:

ρ0 =
9

4π2
}c
`4

P
(13)

which is smaller than that derived for a Bardeen black hole approximately by factor of two.

3. Thermodynamics of Regular Black Holes

An important breakthrough in the theory of black holes was the recognition that the laws of
the mechanics governing the structure of these objects are analogous to the laws of thermodynamics,
when the gravity at the horizon and the surface of the horizon are associated respectively to temperature
and entropy [18,19]. Such an analogy was reinforced by the discovery by Hawking [20] that black
holes can emit radiation as a grey body at the temperature defined by the horizon gravity. In fact,
the emission spectrum, including particles other than photons, has a Planckian form only if the black
hole is uncharged and non-rotating [21]. As a consequence of such a radiation, small black holes
“evaporate”, and primordial black holes with masses less than 3 × 1014 g have already disappeared by
now. It is worth mentioning that the Hawking radiation reinforces the connection between mechanic
and thermodynamic laws, suggesting that the horizon surface should be interpreted as the physical
entropy and the surface gravity as the physical temperature of the black hole.

The evaporation process raises some questions as, for instance: do black holes evaporate
completely without leaving a remnant? Is the singularity suppressed at the end of the evaporation
process [22,23]? String theory suggests a possible modification of the Heisenberg uncertainty principle,
such as:

∆
→
x ∆
→
p ≈ }

2

1 + α2`2
P

∆
→
p

2

}2

 (14)

where α is a constant of the order of the unity representing the string tension. Using the above relation,
it is possible from first principles to estimate the associated black hole temperature at the horizon (see,
for instance, Adler et al. [24]):

kT =
Mc2

πα2

1−

√
1−

α2M2
P

4M2

 (15)
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For masses greater than the Planck mass, the usual result is recovered. However, Equation (15)
indicates that during the evaporation process, the black hole mass reaches a minimum value
Mmin = αMP/2; otherwise, the temperature becomes imaginary. In this case, the remnant of the
evaporation process has a mass of the order of the Planck mass. However, according to Equation (15),
such a remnant has a finite temperature, which is in fact a maximum, given by:

kT∗ =
MPc2

2απ
(16)

This is an unpleasant physical situation, since the surface temperature of the remnant is not zero,
and no radiation is allowed, since the mass cannot decrease. However, a thermally stable situation
exists for extreme black holes, since the horizon temperature is zero. This is the case for an extreme
Reissner–Nordström black hole, as well as for extreme Bardeen and Hayward black holes, as we shall
see below.

The horizon temperature is given by the well-known relation:

TH =
f ′(rH)

4π
(17)

Using the lapse function corresponding to the Bardeen metric and the dimensionless variables
defined previously, one obtains for the temperature:

TH =
1

8πM

(
1− 2γ2

x2
H

)
x−1/3

H (18)

Recalling that for the extreme case γ∗ = 2/
√

27 and x∗ =
√

8/27, it is trivial to verify from
Equation (18) that the horizon temperature is zero. For non-extreme Bardeen black holes, the variation
of the temperature as a function of the horizon radius is shown in Figure 1.Universe 2018, 4, x FOR PEER REVIEW  6 of 15 
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black holes as a function of the horizon radius in units of the Planck scale distance.

An inspection of Figure 1 reveals that for (rH/`P)� 1, the horizon temperature of the Bardeen
black hole approaches the Schwarzschild behavior, as expected, decaying proportionally to the
inverse of the horizon radius. For smaller masses, deviations between both temperatures become
important when the horizon radius is of the order of 80`P. Contrary to the Schwarzschild case,
the Bardeen black hole has a maximum temperature at the horizon radius rH ' 2.39`P. For still smaller
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masses, the temperature drops quite fast, reaching the zero value (extreme case) at the horizon radius
rH =

√
(π/2) `P.

Similar calculations can be performed for the case of the Hayward metric, which permits obtaining
the horizon temperature in terms of the dimensionless quantities defined previously, that is:

TH =
1

8πM

(
1− 3β2

x2
H

)
x−1

H (19)

Since for an extreme Hayward black hole x∗ = 2/3 and β∗ = 2/
√

27, it is easy to verify that the
temperature is zero, as expected. The temperature for Hayward black holes of different masses was
computed numerically, and it is shown in Figure 2.
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Figure 2. Normalized horizon temperature for Hayward (black curve) and Schwarzschild (red curve)
black holes as a function of the horizon radius in units of the Planck scale distance.

Notice that already for black holes with a horizon radius higher than 7`P the temperatures for
both black holes are practically indistinguishable. For lower masses, the Schwarzschild temperature
diverges, while for the Hayward black hole, the temperature reaches a maximum near rH ' 2.17`P
and becomes zero again at rH =

√
(π/2) `P, which is the extreme case. This later value is equal to the

precedent case, since, by assumption, the horizon radius of both black holes was assumed to be equal
to the minimum distance derived from LQG.

It is interesting to evaluate the specific heat of these regular black hole solutions, which give some
additional insight on their thermal properties. Define the quantity:

cV =
1
k

∂E
∂T

(20)

which represents the dimensionless specific heat. In order to evaluate the derivative above, it is
necessary to specify a prescription for the energy (including the contribution of the gravitational field),
which is an ill defined quantity in the general relativity theory. A compilation of energy-momentum
complexes for different prescriptions was performed by Virbhadra [25], and here, the Einstein
formulation was adopted. In this case, for the metric defined by Equation (1), the energy enclosed by a
spherical surface of area A and radius r = (A/4π)1/2 is:

E =
c4r
2G

[1− f (r)] (21)

If the considered surface is the horizon, f (rH) = 0 and the energy is proportional to the horizon
radius. Consequently, in the case of the Schwarzschild metric, the energy is simply given by the mass
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of the black hole, that is, E = Mc2. Since for a Schwarzschild black hole, the horizon temperature is
inversely proportional to the mass, from Equation (20), one obtains a negative specific heat, which is
a well-known result. This means that if the black hole absorbs energy, its temperature decreases.
However, the situation is not exactly the same for the regular black holes here discussed. Firstly,
since the energy enclosing the horizon depends directly on the horizon radius, its trivial to show that:

E = xMc2 (22)

where the variable x was defined by Equation (4), and its value is derived from the zeros of the lapse
function. For an extremal Hayward black hole, x = 2/3, while for a Bardeen black hole, x =

√
8/27.

This means that these extremal black holes have energies smaller than a Schwarzschild black hole of
the same mass. For larger masses x → 1 , all of the black holes of a given mass have the same energy
inside the horizon. Secondly, since the energy and the temperature are functions of the horizon radius,
the specific heat can be computed as:

cV =
1
k

∂E
∂rH

∂rH
∂T

(23)

Computing the derivatives using the expressions for the temperature derived above, for the
Hayward regular black hole, one obtains:

cV =
2πr2

H
k`2

P

(
9L2

r2
H
− 1

)−1

(24)

This result indicates that the specific heat for Hayward black holes is positive if the horizon radius
is in the range

√
3 L (extremal black hole) and 3L. The upper limit corresponds to the temperature

maximum and the specific heat diverges here. Beyond this critical value, the specific heat becomes
negative. This behavior is consistent with the trend observed in the horizon temperature curve
(see Figure 2). The extremal case has T = 0, and the temperature increases as the mass increases,
since the specific heat is positive. The maximum temperature occurs for rH = 3L =

√
3π/2 `P ≈ 2.17`P,

as mentioned previously. Once the specific heat becomes negative, the temperature decreases as the
mass of the black hole increases, following the behavior observed for Schwarzschild black holes.
A similar behavior occurs for the Bardeen case.

It is interesting to compute also the emission rate (luminosity) due to the Hawking process for
these regular black holes. Assuming that the horizon radiates like a black body, the luminosity of the
Bardeen black hole is given by:

LB = KBγ2x2/3
[

1− 2γ2

x2

] 4

(25)

where the quantities x and γ have the same meaning as before, and are derived by computing the
zeros of the lapse function. The constant KB is defined as:

KB =
σs

8π4`2
P

(
}c
k

)4
(26)

where σs is the Stephan radiation constant and k is the Boltzmann constant. Similar computations can
be performed for the Hayward metric, and one obtains:

LH = KH β2x−2
[

1− 3β2

x

] 4

(27)

The constant in the equation above satisfies KH = 3KB/4, and the dimensionless quantities are
again as before. Figure 3 shows a plot of the luminosities normalized either to KB or KH as a function
of the horizon radius.
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A simple inspection of Figure 3 indicates that the luminosity for both regular black holes does not
diverge as in the Schwarzschild case, since they are zero for the extreme case, when r∗ =

√
(π/2) `P.

In both cases, the luminosity reaches a maximum respectively at rH ≈ 2.8`P for the Hayward black
hole, and at rH ≈ 3.6`P for the Bardeen black hole.

4. Primordial Regular Black Holes

In the previous sections, we have seen that the Bardeen and the Hayward regular black holes have
a geometric structure similar to that derived from investigations of the gravitational collapse based
on LQG; in other words, a space–time including two horizons without any singularity. The extreme
case has zero surface temperature, and it is thermally stable if the black hole is isolated, which is
in agreement with the detailed investigations performed in the case of the Reissner–Nordström
metric [26,27]. Under the assumption that the horizon radius of these extreme regular black holes
are equal to the minimal distance derived from LQG, it is possible to conclude that their masses are
comparable to the Planck mass. These objects could be possible candidates to be identified with dark
matter particles if they were produced in the early universe. This possibility was already suggested by
MacGibbon [28] in the late eighties. He postulated the existence of black holes with Planck masses,
which would be relics of the Hawking process.

The formation of black holes in the early universe was already considered either by Zeldovich and
Novikov [29], or by Hawking [30]. These black holes are expected to be formed by the gravitational
collapse of primordial density fluctuations in the radiation-dominated phase of the early universe.
In order to collapse against matter pressure, the collapsing region must be larger than the Jeans length
at maximum expansion. Moreover, the condition that the gravitational radius should be smaller than
the particle horizon fixes the maximum mass of the black hole that can be formed in a given instant of
time. Two aspects play a central role in the formation of primordial black holes (PBHs): first, for each
horizon-sized region, there exists a critical threshold density contrast δc, above which the collapse
occurs. Comparing the Jeans and the horizon lengths at the time when the collapsing region breaks
away from the Hubble expansion, one finds that the critical density contrast must be of the order of
the unity. The second key assumption concerns the final mass of the black hole, which is commonly
supposed to be approximately close to the horizon mass at the epoch of formation.

Investigations using a variety of initial density perturbation profiles, based on self-similarity and
scaling led to a relation between the PBH mass and the horizon-scale of the form [31,32]:

M = KMH(δ− δc)
η (28)

where MH is the horizon mass scale, and K and h are constants. Since the PBH mass goes to zero as the
density contrast is close to δc, the existence of critical phenomena suggests the possibility that masses
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at formation could be much smaller than the horizon scale. Recent studies indicate that PBHs with a
broad mass spectrum can be formed in the high peaks of the co-moving curvature power spectrum
resulting from single field inflation [33]. However, the converted mass fraction into black holes is
sensitive to possible non-Gaussianities in the amplitude distribution of such large and rare density
fluctuations [34].

Astronomical observations can put severe constraints on the mass of PBHs that are able to explain
the observed cosmological dark matter abundance. Data on extragalactic γ-rays, the femtolensing
of γ-ray bursts, white-dwarf explosions, neutron-star captures, and quasar microlensing have been
reviewed by Kühnel and Freese [35], and no severe limits exist either for PBH masses less than
10−17 M� or higher than 10 M�. Hence, present astronomical data do not impose any constraint on
the existence of Planck mass black holes, and on the interpretation of these objects as dark matter
particles. However, an opposite direction has been taken by some authors, who have suggested that
dark matter candidates are more massive black holes either with masses of about 30 M� [36] or in the
range of 10–105 M� [37].

Lower Limits for PHBs Masses from Thermodynamics

As we have seen, PBH masses cannot be larger than the horizon scale. On the low side of the mass
spectrum, Equation (28) suggests that PBH with very small masses can be formed. We will assume
that these PBHs are formed just after inflation during reheating. At end of the inflationary period,
the inflaton field is subjected to strong oscillations and decay. Those oscillations can be the origin
of density fluctuations that satisfy the conditions fixed by Equation (28), and thereby forming black
holes. However, the PBH masses cannot be arbitrarily small, and limits are fixed by thermodynamics.
Consider a small spherical perturbation with a co-moving volume V. The entropy of such a perturbation
if constituted by relativistic matter is:

Sm =
4εV
3kT

(29)

Let α < 1 be the efficiency of the gravitational collapse. In this case, the mass of the resulting
black hole is M = α(εV)/c2. Since the entropy of the collapsing matter cannot be larger than that of
the resulting black hole, the following condition must be satisfied:

4Mc2

3αkT
<

πr2
H

`2
P

(30)

Using the dimensionless quantities defined in the previous section, in the case of the Bardeen
space–time, the following condition relates the matter temperature T with the scale parameter γ and
the black hole horizon xH :

kT ≥ 4

3α
√

π3

γ

x2
H

MPc2 (31)

For numerical purposes, the collapse efficiency is taken as α = 0.5, and the reheating temperature
is taken as 1012 GeV. Recalling that γ and xH are connected by the equation f (x, γ) = 0, the numerical
solution of these equations gives γ ≈ 1.7× 10−7. The associated black hole mass is:

M
MP

=

√
π

4γ
≈ 2.6× 106 (32)

Similarly, for the Hayward case, the following condition must be satisfied:

kT ≥ 4β

α
√

3π3

MPc2

x2
H

(33)
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Assuming the same conditions as before, one obtains β ≈ 10−7, and a black hole mass:

M
MP

=

√
π

12
1
β
≈ 5× 106 (34)

These results indicate that PBHs formed at reheating have masses that are a few million times
higher than the masses of the extreme case. Hence, a natural question arises: do these PBHs evaporate
until the stable state is attained, or do they grow by accretion of relativistic matter? In order to answer
this question, the evaporation and the accretion timescales must be compared.

The evaporation timescale can be estimated from the relations for the Hawking luminosity derived
previously, since tevap = Mc2/L. At formation, the Hawking luminosity of a Bardeen black hole is
L = 1.25× 1042 erg/s, implying an evaporation timescale of 4.0× 10−20 s. A similar calculation for a
Hayward black hole leads to a timescale of 1.7× 10−19 s. On the other side, the accretion timescale
can be defined as tacc = M/(dM/dt). In order to estimate the accretion rate, we have followed the
same procedure as that by de Freitas Pacheco [38] concerning the accretion of relativistic matter by a
Reissner–Nordström black hole. Since a detailed analysis of the accretion flow is beyond the purposes
of this paper, only the main points are recalled here. The position of the critical point and of the radial
velocity there can be generalized for a metric defined by Equation (1), and are given respectively by:

rc =
4 f (rc)

f ′(rc)

V2

(1−V2)
(35)

where f (r) and f ′(r) are respectively the lapse function and its derivative with respect to the radial
coordinate taken at the critical point. The generalized sound velocity is defined by:

V2 =
dlg(P + ε)

dlgn
− 1 (36)

In the case of a relativistic fluid (P+ ε) ∝ n4/3, and one obtains trivially that V = 1/
√

3. The radial
component of the four-velocity at the critical point is given:

u2
c =

V2

(1−V2)
f (rc) (37)

A numerical solution of these equations for the case of the Hayward metric is shown in Figure 4.
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These calculations indicate significant deviations with respect to the Schwarzschild space–time
for masses close to the Planck value. For larger masses, the critical radius and the radial velocity at
this point approach asymptotically the Schwarzschild results, that is, rc → 3rg/2 and uc → 1/

√
6 .

Notice that the crossing of the critical point occurs always subsonically.
Once the critical radius and the radial velocity at this point were computed, the accretion rate can

be estimated from the equation:
dM
dt

=
4π

c
r2

c Tr
t (38)

where Tk
i is the stress-energy tensor of the accreting fluid evaluated at the critical point.

For the Hayward black hole formed at reheating, the estimated accretion rate is 9.1 × 1026g·s−1,
which corresponds to an accretion timescale of 1.2× 10−25 s−1. This value is six orders of magnitude
smaller than the evaporation timescale derived above, indicating that the newly formed black hole will
grow. The scenario is the same for the Bardeen case. However, the accretion rate either for the Hayward
or Bardeen black holes depends on the energy density of the cosmic relativistic matter, which varies
with the temperature as ε ∝ T4. Due to the fast expansion of the universe, the temperature decreases
with a timescale tcol = T/|dT/dt| = 1/H. At reheating, this is about 4.7× 10−31 s, which is several
orders of magnitude smaller than the two other timescales. This means that these PBHs have initially
a very short phase of growth, and then, the evaporation process dominates until the extreme situation
is reached.

If the density fluctuations giving origin to PBHs are assumed to be spherically symmetric with a
Gaussian distribution and are scale invariant, the mass spectrum of the formed black holes is of the
form [39]:

dN
dM

∝ M−5/2 (39)

This implies that the average mass of PBHs is < M >= 3Mmin, where Mmin is the minimum mass
estimated previously on the basis of thermodynamic arguments. Consequently, most of the formed
PBHs have masses approximately of the order of the minimum value, which will evolve according to
the picture above.

Finally, it is useful to estimate the energy fraction of PBHs formed at reheating required to explain
the present dark matter abundance. A simple calculation gives the ratio between the PBH energy
density and the relativistic matter energy density at formation:

ρreh
εreh

=
Ωdm
Ωγ

(
g0

greh

)1/3( T0

Treh

)
(40)

where Ωdm and Ωγ are the present density parameters of dark matter and radiation, the gis are the
number of degrees of freedom at the present epoch and at reheating, and the Ts are the temperatures at
the same considered cosmological times. Numerically, Equation (40) gives the initial fraction between
dark matter and radiation 3.8 × 10−22. Hence, only a very small fraction of the relativistic matter
needs to undergo the gravitational collapse in order to explain the observed amount of dark matter.
Notice that such a small value is a consequence of the different dilution factors for non-relativistic and
relativistic matter as the universe expands as well as the huge mass of the particles (~1019 GeV/c2),
implying presently that only a low-particle density is required to explain the observations.

5. Discussions

Up until now, there has been no direct or indirect evidence for dark matter, which would be
respectively the consequence of collisions with baryons in the laboratory, or the annihilation resulting
from collisions between particles and antiparticles of dark matter. Gravitational effects remain the
only source of inference concerning the existence of such a form of exotic matter. In particular,
primordial density fluctuations in a universe constituted only by baryons, whose amount is fixed
by primordial nucleosynthesis and the density of relic photons, will never reach the non-linear
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regime in timescales of 13–14 Gyr. Consequently, galaxies could not presently exist [40,41]. However,
among particles issued from the Standard Model (SM), there are no relic candidates with the required
DM abundance that is able to explain the observations. Neutrinos are generally excluded because
they are not massive enough, and decouple relativistically from the cosmic plasma, constituting a
model for “hot” dark matter, which has problems with the matter power spectrum at scales smaller
than 1014 − 1015M�. As a result of these difficulties, modifications of the Standard Model have been
proposed, in particular a minimal supersymmetric extension (MSSM). In this model, the neutralino,
the lightest supersymmetric particle, is the “preferred” candidate [42]. However, from the experimental
side, there are many difficulties with this theory, since up to now, no signal of supersymmetry has been
seen in experiments related to the decay of B mesons, which do not indicate the presence of “exotic”
particles such as charginos and/or neutralinos [43,44].

These tensions between astronomical and physical data led to alternative proposals such as
modifications of general relativity theory [45], dark matter particles having masses of about few
MeV/c2 [46], or on the contrary, having masses around few TeV/c2, resulting from the SO(10)
breaking [47]. In the present work, the possibility that primordial regular black holes could be identified
with dark matter particles was investigated. This possibility is not new, and past studies always had
difficulties with the existence or not of remnants left by the evaporation process. Investigations of
the gravitational collapse based on LQG suggest the appearance of a non-singular space–time with
a Reissner–Nordström-like metric or, in other words, including two horizons. This behavior is
well reproduced by regular black holes, whose geometry is described either by the Bardeen or the
Hayward metric.

The Bardeen and the Hayward space–times approach the de Sitter solution in the region inside
the Cauchy (or inner) horizon, implying that the equation of state of matter is similar to that of the
vacuum (P = −ρ). In both metrics, there is a critical solution in which the two horizons coincide,
representing the case of an extreme black hole. Extreme black holes have zero surface temperature,
and consequently, no Hawking emission is present. These objects are thermally stable, and can be
imagined as being in its “ground” state. The basic assumption of the present investigation is to
consider that the horizon radius of these extreme black holes is equal to the minimum distance derived
from the Riemann invariant computed from LQG. Under this hypothesis, the extreme black hole
mass either in the Bardeen or in the Hayward case is of the order of Planck mass. Consequently,
our hypothetical dark matter particle does not evaporate, and does not hide any space–time singularity.
It is worth mentioning the work by Dymnikova and Khoplov [48], who considered regular black holes
whose space–time is asymptotically de Sitter instead of Minkowski. These regular black holes have
three horizons: the inner or Cauchy, the event, and the cosmological. According to these authors,
regular PBHs with de Sitter interiors are formed when the collapse of a primordial fluctuation does
not lead to a central singularity, stopping at a given very high density with a vacuum equation of state,
as conjectured by Sakharov [12] many years ago. In this case, the de Sitter vacuum is formed with an
energy density corresponding to that of the GUT symmetry restoration scale. Under these conditions,
the Dymnikova–Khoplov regular black hole has a mass of about 2.7× 107MP.

If our considered regular black holes are formed at the end of inflation, when the strong
oscillations and decay of the inflaton field occur, their minimum mass is fixed by the condition
that the entropy of the collapsing matter must be lower than the resulting black hole entropy. If the
reheating temperature is 1012 GeV, the minimum masses are respectively 2.6× 106MP for the Bardeen
solution, and 5.0× 106MP for the Hayward case. Recently, a similar scenario has been investigated [49],
in which black hole formation occurs during the oscillatory phase after inflation in conditions of
slow reheating. The authors have estimated that the minimum black hole mass at formation is
Mmin = 4πMP(MP/H∗) ∼ 106MP, since the expansion rate during inflation derived from Planck
2015 is H∗ ≈ 1014 GeV. Notice that this value compares quite well with our own estimates based on
thermodynamic arguments.
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As we have shown above, the newly formed black holes have initially a short phase of growth,
followed by an evaporation phase, in which they lose mass until the stable extreme condition is reached.
If the initial mass spectrum has the form given by Equation (39), most of the PBHs have masses that
are few times the minimum value, and therefore, all of these objects will follow the same evolutionary
path leading to the same end point. In conclusion, dark matter particles could be constituted by regular
PBHs with masses around 1019 GeV/c2, and only a very small fraction of the relativistic matter at
reheating is needed to be converted into PBHs in order to explain the observed dark matter abundance,
in agreement with the estimates made by Carr et al. [49].
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