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Abstract: In this work we investigate the effect a crystalline quark–hadron mixed phase can
have on the neutrino emissivity from the cores of neutron stars. To this end we use relativistic
mean-field equations of state to model hadronic matter and a nonlocal extension of the three-flavor
Nambu–Jona–Lasinio model for quark matter. Next we determine the extent of the quark–hadron
mixed phase and its crystalline structure using the Glendenning construction, allowing for the
formation of spherical blob, rod, and slab rare phase geometries. Finally, we calculate the neutrino
emissivity due to electron–lattice interactions utilizing the formalism developed for the analogous
process in neutron star crusts. We find that the contribution to the neutrino emissivity due to the
presence of a crystalline quark–hadron mixed phase is substantial compared to other mechanisms at
fairly low temperatures (<∼109 K) and quark fractions (<∼30%), and that contributions due to lattice
vibrations are insignificant compared to static-lattice contributions. There are a number of open issues
that need to be addressed in a future study on the neutrino emission rates caused by electron–quark
blob bremsstrahlung. Chiefly among them are the role of collective oscillations of matter, electron
band structures, and of gaps at the boundaries of the Brillouin zones on bremsstrahlung, as discussed
in the summary section of this paper. We hope this paper will stimulate studies addressing
these issues.

Keywords: quark matter; hadronic matter; quark deconfinement; neutron star matter; nuclear
equation of state; phase transition; crystalline structure; neutrino emissivities

1. Introduction

It was shown by Glendenning [1,2] that if electric charge neutrality in a neutron star [3–5] is
treated globally rather than locally, the possible first order phase transition from hadronic matter to
quark matter in the neutron star core will result in a mixed phase in which both phases of matter
coexist. To minimize the total isospin asymmetry energy the two phases will segregate themselves,
which results in positively charged regions of hadronic matter and negatively charged regions of
quark matter, with the rare phase occupying sites on a Coulomb lattice. The situation is schematically
illustrated in Figure 1. Further, the competition between the Coulomb and surface energy densities
will cause the matter to arrange itself into energy minimizing geometric configurations [1,2].
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Figure 1. Schematic illustrating the rare phase structures that may form in the quark–hadron mixed
phase [6,7]). An increase in the volume fraction of quark matter, described by χ, is accompanied by an
increase in baryon number density and depth within a neutron star.

The presence of the Coulomb lattice and the nature of the geometric configurations of matter in
the quark–hadron mixed phase may have a significant effect on the neutrino emissivity from the core.
More specifically, neutrino-antineutrino pairs will be created by the scattering of electrons from these
charged lattice structures,

e− + (Z, A)→ e− + (Z, A) + ν + ν̄ , (1)

and this will increase the emissivity in the mixed phase. This process is analogous to neutrino-pair
bremsstrahlung of electrons in the neutron star crust, where ions exist on a lattice immersed in an
electron gas, and for which there exists a large body of work (see, for example [8–14]). The situation is
more complicated in the quark–hadron mixed phase, but the operative interaction is still the Coulomb
interaction. Thus, to estimate the neutrino-pair Bremsstrahlung of electrons from rare phase structures
in the quark–hadron mixed phase we rely heavily on this body of work (particularly [8]). We will refer
to this additional mechanism as mixed phase Bremsstrahlung (MPB).

Neutrino emissivity due to the interaction of electrons with a crystalline quark–hadron mixed
phase has been previously studied in this manner in [6,15]. In the present work we use a set of
nuclear equations of state which are in better agreement with the latest nuclear matter constraints at
saturation density than those utilized in [6], and are consistent with the 2.01 M� mass constraint set
by PSR J0348 + 0432 [16]. To describe quark matter we use the nonlocal SU(3) Nambu–Jona–Lasinio
(n3NJL) model discussed in [6,17–21]. The n3NJL parametrization used is given as “Set I” in [22],
and is in better agreement with the empirical quark masses than the parametrization utilized in [6].
We consider three geometries for the range of possible structures in the mixed phase including spherical
blobs, rods, and slabs, and calculate the associated static lattice contributions to the neutrino emissivity.
Phonon contributions to the emissivity for rod and slab geometries are not considered, though a
comparison of the phonon and static lattice contributions for spherical blobs is given and indicates
that phonon contributions may not be significant. Finally, the extent of the conversion to quark matter
in the core was determined in [7], and this allows for a comparison between emissivity contributions
from standard and enhanced neutrino emission mechanisms including the direct Urca (DU), modified
Urca (MU), and baryon–baryon and quark–quark Bremsstrahlung (NPB) processes, and contributions
from electron–lattice interactions. For a detailed summary including the equations and coefficients
used for the calculation of the standard and enhanced neutrino emission mechanisms, see [7].

The results for different parametrizations are numerous and qualitatively similar, so the DD2
parametrization will be presented exclusively in this paper. The results of the other parametrizations
can be found in [7].

2. Improved Set of Models for the Nuclear Equation of State

Hadronic matter is modeled in the framework of the relativistic nonlinear mean-field (RMF)
approach [23,24], which describes baryons interacting through the exchange of scalar, vector,
and isovector mesons (for details, see [6,7,25]). The RMF approach is parametrized to reproduce
the following properties of symmetric nuclear matter at saturation density n0 (see Table 1): the binding
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energy per nucleon (E0), the nuclear incompressibility (K0), the isospin asymmetry energy (J),
and the effective mass (m∗/mN). In addition, the RMF parametrizations used in this work employ
a density-dependent isovector–meson–baryon coupling constant that can be fit to the slope of
the asymmetry energy (L0) at n0. The scalar- and vector-meson–baryon coupling constants of
the density-dependent relativistic mean-field models DD2 and ME2 are fit to properties of finite
nuclei [7,26,27]. These models are an extension of the standard RMF approach that account for medium
effects by making the meson–baryon coupling constants dependent on the local baryon number
density [28]. The density-dependence of the meson–baryon coupling constants is given by

giB(n) = giB(n0) fi(x), (2)

where i ∈ {σ, ω, ρ}, x = n/n0, and fi(x) provides the functional form for the density dependence.
The most commonly utilized ansatz for fi(x) are given by [29]

fi(x) = ai
1 + bi(x + di)

2

1 + ci(x + di)2 , (3)

for i ∈ {σ, ω}, and
fρ(x) = exp

[
−aρ (x− 1)

]
. (4)

The nine parameters of the density dependence (aσ, bσ, cσ, dσ, aω, bω, cω, dω, aρ), the values of the
meson–nucleon couplings at n0 (gσN(n0), gωN(n0), gρB(n0)), and the mass of the scalar meson (mσ) are
all fit to properties of symmetric nuclear matter at n0 and to the properties of finite nuclei including
but not limited to binding energies, charge and diffraction radii, spin–orbit splittings, and neutron
skin thickness (see [27,30]).

In addition to the nucleons, hyperons and delta isobars (∆s) are also considered in the composition
of hadronic matter. The scalar-meson–hyperon coupling constants are fit to the following hypernuclear
potentials at saturation (see [7] and references therein),

U(N)
Λ = −28 MeV, U(N)

Σ = +30 MeV, U(N)
Ξ = −18 MeV . (5)

The vector-meson–hyperon coupling constants are taken to be those given by the ESC08 model in
SU(3) symmetry [7,31,32],

gωΛ = gωΣ ≈ 0.79 gωN , gωΞ ≈ 0.59 gωN . (6)

The scalar- and vector-meson–∆ coupling constants are given as follows,

xσ∆ = xω∆ = 1.1, xρ∆ = 1.0 . (7)

Finally, the isovector-meson–hyperon and isovector-meson–∆ coupling constants are taken to
be universal, with the differences in the baryon isospin accounted for by the isospin operator in
the lagrangian.



Universe 2018, 4, 64 4 of 15

Table 1. Properties of symmetric nuclear matter at saturation density for the hadronic parametrizations
of this work.

Saturation Property SWL [7] GM1L [1,7] DD2 [26] ME2 [27]

n0 (fm−3) 0.150 0.153 0.149 0.152
E0 (MeV) −16.00 −16.30 −16.02 −16.14
K0 (MeV) 260.0 300.0 242.7 250.9
m∗/mN 0.70 0.70 0.56 0.57
J (MeV) 31.0 32.5 32.8 32.3

L0 (MeV) 55.0 55.0 55.3 51.3

3. Crystalline Structure of the Quark–Hadron Mixed Phase

A mixed phase of hadronic and quark matter will arrange itself so as to minimize the total energy
of the phase. Under the condition of global charge neutrality, this is the same as minimizing the
contributions to the total energy due to phase segregation, which includes the surface and Coulomb
energy contributions. Expressions for the Coulomb (εC) and surface (εS) energy densities can be
written as [1,2]

EC = 2πe2 [qH(χ)− qQ(χ)
]2 r2x fD(x) , (8)

ES = Dxα(χ)/r , (9)

where qH (qQ) is the hadronic (quark) phase charge density, r is the radius of the rare phase structure,
and α(χ) is the surface tension between the two phases. The parameter χ, which varies between 0 and
1, represents the volume fraction of quark matter at a given density. The quantities x and fD(x) in (8)
are defined as

x = min(χ, 1− χ) (10)

and

fD(x) =
1

D + 2

[
1

D− 2
(2− D x1−2/D) + x

]
, (11)

where D is the dimensionality of the lattice. The phase rearrangement process will result in the
formation of geometrical structures of the rare phase distributed in a crystalline lattice that is immersed
in the dominant phase (see Figure 1). The rare phase structures are approximated for convenience as
spherical blobs, rods, and slabs [1,2]. The spherical blobs occupy sites in a three dimensional (D = 3)
body centered cubic (BCC) lattice, the rods in a two dimensional (D = 2) triangular lattice, and the
slabs in a simple one dimensional (D = 1) lattice [8]. At χ = 0.5 both hadronic and quark matter exist
as slabs in the same proportion, and at χ > 0.5 the hadronic phase becomes the rare phase with its
geometry evolving in reverse order (from slabs to rods to blobs).

Direct determination of the surface tension of the quark–hadron interface is problematic because
of difficulties in constructing a single theory that can accurately describe both hadronic matter and
quark matter. Therefore, we employ an approximation proposed by Gibbs where the surface tension is
taken to be proportional to the difference in the energy densities of the interacting phases [1,2],

α(χ) = ηL
[
EQ(χ)− EH(χ)

]
, (12)

where L is proportional to the surface thickness which should be on the order of the range of the strong
interaction (1 fm), and η is a proportionality constant. In this work we maintain the energy density
proportionality but set the parameter η = 0.08 so that the surface tension falls below 70 MeV fm−2 for
all parametrizations, a reasonable upper limit for the existence of a quark–hadron mixed phase [33].
The surface tension as a function of χ is given in Figure 2 for the nuclear DD2 parametrization,
introduced in Section 2.
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Figure 2. Surface tension α in the quark–hadron mixed phase for the DD2 parametrization [7]. The red
shading indicates the range for the maximum quark fraction χmax for the two values of the quark
vector coupling constant GV . (Left panel) Only nucleons and leptons are included in the hadronic
phase. (Center panel) Hyperons are included in the hadronic phase. (Right panel) Delta isobars are
included in addition to hyperons in the hadronic phase. Similar figures for the SWL, GM1L, and ME2
parametrizations can be found in Reference [7].

We note that, in this work, we restricted ourselves to considering GV values that are in the range
of 0 < GV < 0.05GS, as this choice leads to gravitational masses of neutron stars with quark-hybrid
compositions that satisfy the 2 M� constraint. Exploring the possibility of larger GV values would
certainly be worthwhile, but this is beyond the scope of this work.

The size of the rare phase structures is given by the radius (r) and is determined by minimizing
the sum of the Coulomb and surface energies, ∂(EC + ES)/∂r, and solving for r [1,2],

r(χ) =

(
Dα(χ)

4πe2 fD(χ)
[
qH(χ)− qQ(χ)

]2
) 1

3

. (13)

Rare phase structures are centered in the primitive cell of the lattice, taken to be a Wigner–Seitz
cell of the same geometry as the rare phase structure. The Wigner–Seitz cell radius R is set so that the
primitive cell is charge neutral,

R(χ) = rx−1/D . (14)

Figure 3 shows r and R as a function of the quark fraction in the mixed phase. Both r and R
increase with an increase in the baryonic degrees of freedom, particularly when χ <∼ 0.5 and the vector
interaction is included. Note that the blob radius should vanish for χ ∈ {0, 1}, but does not due to the
approximate nature of the geometry function fD(χ) [15]. The number density of rare phase blobs will
be important for calculating the phonon contribution to the emissivity. Since there is one rare phase
blob per Wigner–Seitz cell, the number density of rare phase blobs (nb) is simply the reciprocal of the
Wigner–Seitz cell volume,

nb = (4πR3/3)−1 . (15)

The density of electrons in the mixed phase is taken to be uniform throughout. Charge densities
in both the rare and dominant phases are also taken to be uniform, an approximation supported by
a recent study by Yasutake et al. [33]. The uniformity of charge in the rare phase also justifies the
use of the nuclear form factor (F(q)) presented in Section 4. The total charge number per unit volume
(|Z| /VRare) of the rare phase structures is given in Figure 4.
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Figure 3. Radius of the rare phase structure r and Wigner–Seitz cell R in the quark–hadron mixed
phase for the DD2 parametrization [7]. See Figure 2 for additional details. Similar figures for the SWL,
GM1L, and ME2 parametrizations can be found in Reference [7].
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Figure 4. Charge number per unit volume of the rare phase structures for the DD2 parametrization [7].
See Figure 2 for additional details. Similar figures for the SWL, GM1L, and ME2 parametrizations can
be found in Reference [7].

4. Neutrino Emissivity Due to a Crystalline Quark–Hadron Lattice

We begin this section with a brief discussion of the neutrino emissivity due to a crystalline
quark–hadron lattice [6]. Modeling the complex interactions of electrons with a background of neutrons,
protons, hyperons, muons, and quarks is an exceptionally complicated problem. However, to make a
determination of the neutrino emissivity that is due to electron–lattice interactions in the quark–hadron
mixed phase we need only consider the Coulomb interaction between them. This simplifies the problem
greatly, as a significant body of work exists for the analogous process of electron–ion scattering that
takes place in the crusts of neutron stars.

To determine the state of the lattice in the quark–hadron mixed phase we use the dimensionless
ion coupling parameter given by

Γ =
Z2e2

RkBT
. (16)

Below Γmelt = 175 the lattice behaves as a Coulomb liquid, and above as a Coulomb crystal [34,35].
It was shown in Reference [15] that the emissivity due to electron-blob interactions in the mixed phase
was insignificant compared to other contributions at temperatures above T >∼ 1010 K. Therefore, in this
work we consider temperatures in the range 107 K ≤ T ≤ 1010 K. At these temperatures the value of
the ion coupling parameter is well above Γmelt, and so the lattice in the quark–hadron mixed phase is
taken to be a Coulomb crystal.
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To account for the fact that the elasticity of scattering events is temperature dependent we need to
compute the Debye–Waller factor, which is known for spherical blobs only and requires the plasma
frequency and temperature given by

ωp =

√
4πZ2e2nb

mb
, (17)

Tp =
h̄ωp

kB
, (18)

where mb is the mass of a spherical blob [8]. The Debye–Waller factor is then given by

W(q) =


aq2

8k2
e

(
1.399 e−9.1tp + 12.972 tp

)
spherical blobs ,

0 rods and slabs ,
(19)

where q = |q| is a phonon or scattering wave vector, a = 4h̄2k2
e /(kBTpmb), and tp = T/Tp [8,36].

In order to smooth out the charge distribution over the radial extent of the rare phase structure we
adopt the nuclear form factor given in [8],

F(q) =
3

(qR3)
[sin(qR)− qR cos(qR)] . (20)

Screening of the Coulomb potential by electrons is taken into account by the static dielectric factor
ε(q, 0) = ε(q), given in [10]. However, the charge number of the rare phase structures is high and the
electron number density is low, so setting this factor to unity has no noticeable effect on the calculated
neutrino emissivity. Finally, the effective interaction is given by [8]

V(q) =
4πeρZF(q)

q2ε(q, 0)
e−W(q) . (21)

General expressions for the neutrino emissivity due to the MPB electron–lattice interactions were
derived by Haensel et al. [37] for spherical blobs and by Pethick et al. [14] for rods and slabs,

εblobs
MPB ≈ 5.37× 1020 nT6

9 Z2L erg s−1 cm−3 , (22)

εrods,slabs
MPB ≈ 4.81× 1017 keT8

9 J erg s−1 cm−3 , (23)

where L and J are dimensionless quantities that scale the emissivities. Both L and J contain a
contribution due to the static lattice (Bragg scattering), but we consider the additional contribution
from lattice vibrations (phonons) for spherical blobs, so L = Lsl + Lph. We note that the T8 temperature
dependence in Equation (23) is somewhat deceiving since the J factor also depends on temperature
and, for a wide range of parameters, is proportional to 1/T2. In effect, the neutrino emissivity εrods,slabs

MPB
is therefore proportional to T6.

4.1. Phonon Contribution to Neutrino Emissivity

The expressions for determining the neutrino emissivity due to interactions between electrons and
lattice vibrations (phonons) in a Coulomb crystal, with proper treatment of multi-phonon processes,
were obtained by Baiko et al. [38] and simplified by Kaminker et al. [8]. The phonon contribution to
the emissivity is primarily due to Umklapp processes in which a phonon is created (or absorbed) by
an electron that is simultaneously Bragg reflected, resulting in a scattering vector q that lies outside the
first Brillouin zone, q0

>∼ (6π2nb)
1/3 [39,40], where nb is given by Equation (15).
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The contribution to MPB due to phonons is contained in Lph and given by Equation (21) in [8],

Lph =
∫ 1

y0

dy
Seff(q)|F(q)|2

y|ε(q, 0)|2

(
1 +

2y2

1− y2 ln y
)

, (24)

where y = q/(2ke), and the lower integration limit y0 excludes momentum transfers inside the first
Brillouin zone. The structure factor Seff is given by (24) and (25) in [8]),

Seff(q) = 189
(

2
π

)5
e−2W

∫ ∞

0
dξ

1− 40ξ2 + 80ξ4

(1 + 4ξ2)
5 cosh2 (πξ)

×
(

eΦ(ξ) − 1
)

, (25)

Φ(ξ) =
h̄q2

2mb

〈
cos (ωst)

ωssinh (h̄ωs/2kBT)

〉
, (26)

where ξ = tkBT/h̄ and 〈. . .〉 denotes averaging over phonon frequencies and modes,

〈 fs(k)〉 =
1

3VB
∑

s

∫
VB

dk fs(k) . (27)

It is assumed that there are three phonon modes s, two linear transverse and one longitudinal.
The frequencies of the transverse modes are given by ωti = aik, where i = 1, 2, a1 = 0.58273,
and a2 = 0.32296. The frequency of the longitudinal mode ωl is determined by Kohn’s sum rule,
ω2

l = ω2
p −ω2

t1
−ω2

t2
[41].

Umklapp processes proceed as long as the temperature TUmklapp
>∼ TpZ1/3e2/(h̄c), below which

electrons can no longer be treated in the free electron approximation [39]. This limits the phonon
contribution to the neutrino emissivity to only a very small range in temperature for a crystalline
quark–hadron mixed phase (see Figure 5), and renders it negligible compared to the static lattice
contribution as will be shown in the next section.
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Figure 5. Temperature below which Umklapp processes are frozen out (TUmklapp), and contributions
to the neutrino emissivity due to electron–phonon interactions become negligible for the DD2
parametrization [7]. See Figure 2 for additional details. Similar figures for the SWL, GM1L, and ME2
parametrizations can be found in [7].

4.2. Static Lattice Contribution to Neutrino Emissivity

Pethick and Thorsson [14] found that with proper handling of electron band-structure effects the
static lattice contribution to the neutrino emissivity in a Coulomb crystal was significantly reduced
compared to calculations performed in the free electron approximation. Kaminker et al. [8] presented
simplified expressions for calculating the static lattice contribution (Lsl) using the formalism developed
in [14]. The dimensionless quantities Lsl and J that scale the neutrino emissivities for spherical blobs
and rods/slabs, respectively, are given by

Lsl =
1

12Z ∑
K 6=0

(1− y2
K)

y2
K

|F(K)|2
|ε(K)|2 I(yK, tV) e−2W(K) (28)



Universe 2018, 4, 64 9 of 15

and

J = ∑
K 6=0

y2
K

t2
V

I(yK, tV) , (29)

where K = |K| is a scattering vector and restricted to linear combinations of reciprocal lattice vectors,
yK = K/(2ke), tV = kBT/

[
|V(K)|(1− y2

K)
]
, and I(yK, tV) is given by Equation (39) in [8]. The sum

over K in (28) and (29) terminates when K > 2ke, prohibiting scattering vectors that lie outside the
electron Fermi surface.

5. Neutrino Emissivity Results

The neutrino emissivities due to MPB and the additional emissivity mechanisms are given in
Figures 6 and 7 for GV = 0 and GV = 0.05 GS respectively at temperatures between 107 K and 1010 K.
The MPB emissivity is for most of the mixed phase the weakest of the emissivity mechanisms,
peaking at low χ (at χ <∼ 0.05 the MPB emissivity may be overestimated due to the limitations
of the dimensionality function), and appears to be slightly larger when hyperons and ∆s are included
in the composition. Including the vector interaction (GV = 0.05 GS) also results in a slight increase
in the MPB emissivity. Both additional baryonic degrees of freedom and inclusion of the vector
interaction delay the onset of the quark–hadron phase transition, and therefore it may be concluded
that the greater the density in the mixed phase, the greater the contribution to the emissivity from MPB.
The MPB emissivity is most comparable to the modified Urca emissivity, particularly at 108–109 K.
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Figure 6. Neutrino emissivity in the quark–hadron mixed phase for the DD2 parametrization
with GV = 0 [7]. Contributions due to mixed phase Bremsstrahlung (MPB), nucleon–nucleon and
quark–quark neutrino pair Bremsstrahlung (NPB), the nucleon and quark modified Urca processes
(MU), and the hyperon and quark direct Urca (DU) processes are included. See Figure 2 for additional
details. Similar figures for the SWL, GM1L, and ME2 parametrizations can be found in [7].
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Figure 7. Neutrino emissivity in the quark–hadron mixed phase for the DD2 parametrization with
GV = 0.05 GS [7]. Contributions due to mixed phase Bremsstrahlung (MPB), nucleon–nucleon and
quark–quark neutrino pair Bremsstrahlung (NPB), the nucleon and quark modified Urca processes
(MU), and the hyperon and quark direct Urca (DU) processes are included. See Figure 2 for additional
details. Similar figures for the SWL, GM1L, and ME2 parametrizations can be found in [7].

Electron–phonon interactions contribute to the MPB emissivity when the mixed phase consists
of spherical blobs (χ <∼ 0.21 and χ >∼ 0.79) and only when T > TUmklapp (Figure 5), which for the
given choices of temperature implies T = 1010 K. Figure 8 shows that the static-lattice contribution to
the MPB emissivity dominates the phonon contribution rendering it negligible, particularly at quark
fractions relevant to the neutron stars of this work (χ < 0.5). Therefore, the MPB emissivity is almost
entirely due to the static-lattice contribution (Bragg scattering).

Equations (28) and (29) indicate that the static-lattice contribution to the MPB emissivity is
calculated as a sum over scattering vectors K that satisfy K < 2ke. At the onset of the mixed phase ke

and NK are at a maximum, but as the quark–hadron phase transition proceeds the negatively charged
down and strange quarks take over the process of charge neutralization. Thus, the electron number
density and consequently ke continue to decrease at about the same rate as before the start of the
mixed phase. This leads to the steep decline in NK with increasing χ for χ < 0.5 shown in Figure 9.
Further, the rod and slab dimensionality drastically reduces the number of available scattering vectors
which contributes to the decrease of the MPB emissivity in those phases, particularly in the slab
phase. However, (29) shows that the MPB emissivity from rod and slab phases is dependent on T8,
rather than T6 for the blob phase, and this explains the dramatic decrease in the MPB emissivity with
decreasing temperature.

Direct Urca processes dominate the mixed phase neutrino emissivity at all temperatures,
with contributions from the Λ hyperon DU process (Λ→ peν̄) operating beyond χmax. Nucleonic DU
processes do not operate for any of the parametrizations considered in this work [7]. The hyperon
DU process emissivities can be identified as any contribution with an emissivity above that for the
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quark DU process in the npeµ composition, and are shown to step down in the mixed phase, vanishing
prior to the onset of a pure quark phase. In the absence of the hyperonic DU process, the quark DU
process would still dominate the Bremsstrahlung and modified Urca processes unless curtailed by the
presence of color superconductivity.
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Figure 8. Comparison of the static lattice and phonon contributions to the neutrino emissivity at
T = 1010 K for the spherical blob geometry only and the DD2 parametrization [7].
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Figure 9. The number of scattering vectors that satisfy the condition K < 2ke as a function of the
quark fraction [7] (see Figure 2 for additional details). Similar figures for the SWL, GM1L, and ME2
parametrizations can be found in [7].

6. Discussion and Summary

In this work we determined that quark blob, rod, and slab structures may exist in a crystalline
quark–hadron mixed phase. The study is based on relativistic mean-field equations of state which
are used to model hadronic matter and a nonlocal extension of the three-flavor Nambu–Jona–Lasinio
model for quark matter. We determined the neutrino emissivities that may result from the elastic
scattering of electrons off these quark structures (mixed phase Bremsstrahlung (MBP)), and compared
them to standard neutrino emissivity processes that may operate in the mixed phase as well.

We found that the emissivity from the MPB process is comparable to that of the modified Urca
process at low volume fractions of quark matter, χ, and in the temperature range of 108 K <∼ T <∼ 109 K.
The MPB emissivity was found to increase with the inclusion of the vector interaction among quarks
and with additional baryonic degrees of freedom in the form of hyperons and ∆ baryons [7], both of
which lead to an increase in the quark–hadron phase transition density and a higher density core.
Further, contributions to the MPB emissivity from phonons were shown to be negligible compared to
those from Bragg scattering. Finally, baryonic and quark DU processes were shown to operate in the
mixed phase and dominate all other neutrino emissivity mechanisms.
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Since it is believed that the hypothetical quark–hadron lattice structures in the core regions
of neutron stars are qualitatively reminiscent to the hypothesized structures in the crustal regions
of neutron stars [1,2,42–44], we have adopted the Bremsstrahlung formalism developed in the
literature for the crustal regions of neutron stars to assess the neutrino emission rates resulting from
electron–quark blob (rod, slab) scattering in the cores of neutron stars with quark–hybrid compositions.
Because of the complexity of the problem, however, there are several issues that need to be studied
further in order to develop refined estimates of the neutrino emission rates presented in this paper.
The remaining part of this section is devoted to this topic.

Properties of the sub-nuclear crustal region: Thehypothetical structures in the crustal regions
of neutron stars range in shape from spheres to rods to slabs at mass densities 1014 g cm−3 <∼ ρ <∼
1.5× 1014 g cm−3, which is just below the nuclear saturation density of 2.5× 1014 g cm−3. At densities
where the nuclei are still spherical in such matter, the chemical potential of the electrons is µe ∼ 80 MeV
and the atomic number of the nuclei is Z ∼ 50 [45]. The corresponding Wigner–Seitz cell has a radius
of R ∼ 18 fm, and the radius of the nucleus inside the cell is r ∼ 9 fm [45]. The electrons moving
in the crystalline lattice formed by the ions are highly relativistic and strongly degenerate. The ion
coupling parameter, defined in Equation (16), is Γ ∼ 2.3 × 1012/T, and the melting temperature
Tmelt ∼ (Ze)2/(RkBΓmelt) has a value of Tmelt ∼ 1.3× 1010 K.

Properties of the quark–hadron lattice: The size of the Wigner–Seitz cells associated with spherical
quark blobs in the crystalline quark–hadron phase is similar to the size of the Wigner–Seitz cells
in the crust. (Here, we do not consider the crystalline phases made of quark rods and quark
slabs since they contribute much less to Bremsstrahlung because of the much smaller number of
electrons in those phases.) For spherical quark blobs at the onset of quark deconfinement, which
occurs in our models at densities of around three times nuclear saturation, 3n0, the electron
chemical potential is µe = ke ∼ 140 MeV. Hence, like at sub-nuclear densities, the electrons are
ultra-relativistic (h̄ke/mc2 = 275) and strongly degenerate. The electron degeneracy temperature is
around TF ∼ 1.6× 1012 K, which is much higher than the temperature range (<∼1010 K) considered
in this paper. From the results shown in Figure 3, one sees that the radii of the Wigner–Seitz cells
containing spherical quark-blobs are around R ∼ 12 fm and that the quark blobs inside the cells have
radii of r ∼ 8 fm. The density of the Wigner–Seitz cells is (4πR3/3)−1 ∼ 1.4× 10−4 fm−3 and the
atomic number of the quark blobs inside the Wigner–Seitz cell is around Z ∼ 200.

Plasma temperature and melting temperature: The ion (quark blob) coupling parameter
Γ = (Ze)2/(RkBT) is given by Γ = 6.7 × 1013/T and the melting temperature of the ion crystal
is Tmelt = (Ze)2/(RkB172) ∼ 4× 1011 K. Here we have used Γmelt = 174 for which a solid is expected
to form [34,35]. Since the melting temperature of the quark crystal exceeds 1011 K the quark blobs
are expected to be in the crystalline phase at all temperatures (<∼1010 K) considered in our study.
The plasma temperature of the system follows from TP = 7.83× 109

√
ZYeρ12/Ai, where Ye = ne/nb

is the number of electrons per baryon, ne the number density of electrons, nb the number density of
baryons, and ρ12 the mass density in units of 1012 g/cm3. For quark blobs with mass numbers of
A ∼ 2000, atomic number Z ∼ 200, and Ye ∼ 0.06 one obtains a plasma temperature of TP ∼ 2× 1010 K.

Electron–phonon scattering and Umklapp processes: In an Umklapp process, the electron
momentum transfer in a scattering event, h̄~q, lies outside the first Brillouin zone, that is, h̄q >∼ h̄q0.
This is in contrast to the normal processes where h̄~q remains in the first Brillouin zone and h̄q <∼ h̄q0,
where q0 ≈ (6π2nBlob)

1/3. For the quark–blob phase we find h̄q0 ∼ 30 MeV so that q0/(2ke) ∼
0.13 for the quark–blob lattice, which is of the same order of magnitude as for the crust where
q0/(2ke) = (4Z)−1/3 ∼ 0.01 [8]. The temperature below which the Umklapp processes are frozen out
is TUmklapp ∼ TPZ1/3e2 ∼ 8× 108 K, with the plasma temperature TP given just above. We find that
the temperatures obtained for TUmklapp, TP, and Tmelt in the quark–blob phase are rather similar to
their counterparts in the nuclear lattice just below nuclear saturation density, namely TUmklapp ∼ 108

K, TP ∼ 109 K, and Tmelt ∼ 1010 K. In our study, both the Umklapp process and the normal process are
taken into account since temperatures in the range of 106 K < T < 1010 K are considered.
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Debye–Waller factor: The effective interaction between electrons and quark blobs depends on the
thermal quark–blob lattice vibrations which effectively smear-out the quark blob charges. This feature
is taken into account via the Debye-Waller factor given in Equation (19). Since estimates for the
Debye–Waller factor are only known for spherical blob structures, the Debye–Waller may be the largest
source of uncertainty in our study.

Role of electron band structure effects: It has been shown in [46] that gaps in the electron
dispersion relation at the boundaries of Brillouin zones can noticeably reduce the static lattice
contribution. For point-like quark blobs with atomic number Z and for the smallest reciprocal lattice
vector in a bcc lattice, we estimate the electron band splitting from 0.018(Z/60)2/3ke [46]. This leads to
a splitting of ∼6 MeV for the quark-blob phase, which is around 1 MeV or more for the nuclear lattice
case [46].
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