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Abstract: The gravitational wave provides a new method to examine General Relativity and its
alternatives in the high speed, strong field regime. Alternative theories of gravity generally predict
more polarizations than General Relativity, so it is important to study the polarization contents of
theories of gravity to reveal the nature of gravity. In this talk, we analyze the polarization contents
of Horndeski theory and f (R) gravity. We find out that in addition to the familiar plus and cross
polarizations, a massless Horndeski theory predicts an extra transverse polarization, and there is a mix
of pure longitudinal and transverse breathing polarizations in the massive Horndeski theory and f (R)
gravity. It is possible to use pulsar timing arrays to detect the extra polarizations in these theories.
We also point out that the classification of polarizations using Newman–Penrose variables cannot
be applied to massive modes. It cannot be used to classify polarizations in Einstein-æther theory or
generalized Tensor-Vector-Scalar (TeVeS) theory, either.
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1. Introduction

The gravitational wave (GW) was detected by the Laser Interferometer Gravitational-Wave
Observatory (LIGO) Scientific and Virgo collaborations, which further supports General Relativity
(GR) [1–6]. It is also a new tool to probe gravitational physics in the high speed, strong field regime.
To confirm that GR is the theory of gravity, the polarizations of GWs need be determined. It is well
known that there are only two polarizations in GR, the plus and the cross. In contrast, a generic
modified theory gravity predicts up to four extra polarizations [7], so it is possible to probe the nature
of gravity by examining the polarization content of the GWs detected [8,9]. This can be done by Laser
Interferometer Space Antenna (LISA) [10], TianQin [11], pulsar timing arrays (PTAs) [12,13], and the
network of Advanced LIGO (aLIGO) and Virgo. Ref. [14] proposed to use spherical antenna to detect
the massive GWs. In fact, GW170814 was the first GW event to test the polarization content of GWs.
The analysis revealed that the pure tensor polarizations are favored against pure vector and pure scalar
polarizations [4,15]. With the advent of more advanced detectors, there exists a better chance to pin
down the polarization content and thus, the nature of gravity in the near future.

According to their transformation properties under the little group E(2) of the Lorentz group,
the six polarizations of the null plane GWs can be classified in terms of the Newman–Penrose
(NP) variables: Ψ2, Ψ3, Ψ4 and Φ22 [16–18]. Among them, Ψ4 represents the plus and the cross
polarizations, Φ22 donates the transverse breathing polarization, Ψ3 corresponds to the vector-x and
vector-y polarizations, and Ψ2 is for the longitudinal polarization. This classification can be applied
to any metric theory of gravity which respects the local Lorentz invariance and predicts null GWs,
such as Brans–Dicke theory, the simplest scalar-tensor theory [19]. In this theory, there are plus and
cross modes Ψ4 due to the massless graviton, and there also exists the transverse breathing mode Φ22

induced by the massless scalar field [17].
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The most general scalar-tensor theory of gravity is Horndeski theory, whose action contains
derivatives of the metric tensor gµν and a scalar field φ higher than the second order [20].
However, this theory has only three physical degrees of freedom (d.o.f.) because the equations
of motion are at most of the second order. So, it is expected that there is one extra polarization state.
Our analysis showed that the extra polarization state is the transverse breathing mode if the scalar field
is massless, and it is a mix of the transverse breathing and the longitudinal modes if the scalar field is
massive [21]. f (R) gravity [22] is equivalent to a scalar-tensor theory of gravity [23,24]. The equivalent
scalar field is massive, and it excites both the longitudinal and transverse breathing modes [25–27].
So, this theory has the similar polarization content to the massive Horndeski theory [28].

We show that the classification based on E(2) symmetry cannot be applied to the massive
Horndeski theory or f (R) gravity, as there are massive modes in these two theories. In fact, it cannot
be used to identify the polarizations in Einstein-æther theory [29] or generalized Tensor-Vector-Scalar
(TeVeS) theory [30–32], as the local Lorentz invariance is violated in both theories [33].

The talk is organized in the following way. Section 2 quickly goes over E(2) classification for
identifying the polarization content of null GWs. In Section 3, the GW polarization content of f (R) gravity
is obtained. In Section 4, the polarization content of Horndeski theory is discussed. Section 5 discusses
the polarizations of Einstein-æther theory as well as the generalized TeVeS theory. Finally, Section 6 is
a brief summary. In this talk, natural units will be used and the speed of light is c = 1.

2. Review of E(2) Classification

E(2) classification is a framework [17,18] to categorize the null GWs in a generic, local Lorentz
invariant metric theory of gravity using the Newman–Penrose variables [16]. For the GW traveling in
the +z direction, the suitable null tetrad basis, Eµ

a = (kµ, lµ, mµ, m̄µ), is given by

kµ =
1√
2
(1, 0, 0, 1), lµ =

1√
2
(1, 0, 0,−1), mµ =

1√
2
(0, 1, i, 0), m̄µ =

1√
2
(0, 1,−i, 0), (1)

where bar indicates the complex conjugation. They are normalized such that −kµlµ = mµm̄µ = 1,
and the remaining inner products are zero. With this choice of coordinate system, the Riemann tensor
is Rabcd = Rabcd(u) with u = t − z, so Rabcd,p = 0, where (a, b, c, d) take values in (k, l, m, m̄) and
(p, q, r, · · · ) take values in (k, m, m̄). Using the Bianchi identity and the symmetries of Rabcd, one obtains
that Rabcd has only six independent nonzero components. In terms of the NP variables, they are

Ψ2 = −1
6

Rklkl , Ψ3 = −1
2

Rklm̄l , Ψ4 = −Rm̄lm̄l , Φ22 = −Rmlm̄l . (2)

Other nonvanishing NP variables are Φ11 = 3Ψ2/2, Φ12 = Φ̄21 = Ψ̄3 and Λ = Ψ2/2. Note that
Ψ2 and Φ22 are real, while Ψ3 and Ψ4 are complex.

These four NP variables {Ψ2, Ψ3, Ψ4, Φ22} can be classified based on how they transform under
the little group E(2). Under E(2) transformation,

Ψ′2 = Ψ2, Ψ′3 = e−iϑ(Ψ3 + 3ρ̄Ψ2), (3)

Ψ′4 = e−i2ϑ(Ψ4 + 4ρ̄Ψ3 + 6ρ̄2Ψ2), Φ′22 = Φ22 + 2ρΨ3 + 2ρ̄Ψ̄3 + 6ρρ̄Ψ2, (4)

where ϑ ∈ [0, 2π) and ρ is complex [17]. Using these, six classes are defined below [17],

Class II6 Ψ2 6= 0; for any observer, there is the same Ψ2 6= 0 mode, but all other modes are
observer-dependent;

Class III5 Ψ2 = 0, Ψ3 6= 0; for any observer, there are the Ψ2 = 0 mode and the same Ψ3 6= 0 mode,
but the remaining modes Ψ4 and Φ22 are observer-dependent;

Class N3 Ψ2 = Ψ3 = 0, Ψ4 6= 0 6= Φ22;
Class N2 Ψ2 = Ψ3 = Φ22 = 0, Ψ4 6= 0;
Class O1 Ψ2 = Ψ3 = Ψ4 = 0, Φ22 6= 0;
Class O0 Ψ2 = Ψ3 = Ψ4 = Φ22 = 0; no wave is observed.
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For Classes N3, N4 and N5, the presence or absence of all modes depends on the observer. Note
that by setting ρ = 0 in Equation (3), one finds out that Ψ2 and Φ22 have a helicity of 0, Ψ3 has a helicity
of 1 and Ψ4 has a helicity of 2.

The relation between {Ψ2, Ψ3, Ψ4, Φ22} and the polarizations of the GW can be found by
examining the linearized geodesic deviation equation [17],

ẍj =
d2xj

dt2 = −Rtjtkxk, (5)

where xj gives the deviation vector between two nearby test particles and j, k = 1, 2, 3. The electric
component Rtjtk is important and given by the following matrix,

Rtjtk =

 − 1
2 (<Ψ4 + Φ22)

1
2=Ψ4 −2<Ψ3

1
2=Ψ4

1
2 (<Ψ4 −Φ22) 2=Ψ3

−2<Ψ3 2=Ψ3 −6Ψ2

 , (6)

where < and = represent the real and imaginary parts, respectively. Therefore, <Ψ4 and =Ψ4 donate the
plus and the cross polarizations, respectively; Φ22 gives the transverse breathing polarization, and Ψ2

gives the longitudinal polarization; finally, <Ψ3 and =Ψ3 stand for vector-x and vector-y polarizations,
respectively. Or, one can also use Rtjtk to label different polarizations.Tthe plus mode is labeled by
P̂+ = −Rtxtx + Rtyty, the cross mode is by P̂× = Rtxty, the transverse breathing mode is donated by
P̂b = Rtxtx + Rtyty, the vector-x mode is donated by P̂xz = Rtxtz, the vector-y mode is given by P̂yz = Rtytz,
and the longitudinal mode is given by P̂l = Rtztz. According to the E(2) classification, the longitudinal
mode (Ψ2 6= 0) belongs to Class II6, so all six polarizations exist in some coordinate systems.

One can apply the E(2) classification to some paricular modified theories of gravity. For Brans–Dicke
theory, one gets

RBD
tjtk =

 − 1
2 (<Ψ4 + Φ22)

1
2=Ψ4 0

1
2=Ψ4

1
2 (<Ψ4 −Φ22) 0

0 0 0

 . (7)

In the next sections, the plane GW solutions are calculated for f (R) gravity, Horndeski theory,
Einstein-æther theory, and generalized TeVeS theory. Then, the polarization contents are determined.
We show that E(2) classification cannot be applied to the massive mode in f (R) gravity or Horndeski
theory. It cannot be applied to the local Lorentz violating theories, for instance, Einstein-æther theory
and generalized TeVeS theory, either.

3. Gravitational Wave Polarizations in f (R) Gravity

f (R) gravity has an action taking the following form [22],

S =
1

2κ

∫
d4x
√
−g f (R), (8)

which can be reexpressed as

S =
1

2κ

∫
d4x
√
−g[ f (ϕ) + (R− ϕ) f ′(ϕ)], (9)

where f ′(ϕ) = d f (ϕ)/dϕ. So f (R) gravity is equivalent to a scalar-tensor theory [23,24]. One varies
the action to calculate the equations of motion,

f ′(R)Rµν −
1
2

f (R)gµν −∇µ∇ν f ′(R) + gµν� f ′(R) = 0, (10)

where � = gµν∇µ∇ν. The trace of Equation (10) is thus

f ′(R)R + 3� f ′(R)− 2 f (R) = 0. (11)
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If f (R) = R + αR2, Equation (10) becomes

Rµν −
1
2

ηµνR− 2α
(
∂µ∂νR− ηµν�R

)
= 0, (12)

Taking the trace of Equation (12) or using Equation (11), one gets

(�−m2)R = 0, (13)

where m2 = 1/(6α) with α > 0. GW170104 puts an upper bound on the graviton mass
m < mb = 7.7× 10−23 eV/c2 [3].

Before discussing the GW solutions, let us point it out that there are several constraints on f (R)
theory from experiments, notably from the observations of binary pulsars. Refs. [34–38] studied the
rate of the orbital decay of the binary pulsar system using the parameterized post-Newtonian (PPN) or
the parameterized post-Keplerian formalisms. Refs. [39,40] also studied the solar system tests of f (R)
gravity and calculated the PPN parameters γ and β. However, all of these works ignore the chameleon
mechanism, which was taken into account by Ref. [41]. In this work, the authors considered the solar
system tests and various constraints from the observations of cosmology and the binary pulsars.

Now, we want to get the GW solutions in the Minkowski background, so we perturb gµν about the
fundamental metric ηµν such that gµν = ηµν + hµν with hµν of the first order, and define a new tensor

h̄µν = hµν −
1
2

ηµνh− 2αηµνR. (14)

Under a gauge transformation xµ → x′µ = xµ + εµ, this tensor transforms according to

h̄′µν = h̄µν − ∂µεν − ∂νεµ + ηµν∂ρερ. (15)

So, in the transverse traceless gauge

∂µ h̄µν = 0, h̄ = ηµν h̄µν = 0. (16)

In this gauge, one obtains
�h̄µν = 0. (17)

Therefore, Equations (13) and (17) are the equations of motion.
The plane wave solutions are given below:

h̄µν = eµν exp(iqµxµ) + c.c., (18)

R = φ1 exp(ipµxµ) + c.c., (19)

where c.c. indicates the complex conjugation, eµν and φ1 are the amplitudes with qνeµν = 0 and
ηµνeµν = 0, and qµ and pµ are the wave numbers satisfying ηµνqµqν = 0, ηµν pµ pν = −m2.

3.1. Physical Degrees of Freedom

The number of physical degrees of freedom (d.o.f.) in f (R) gravity can be determined using the
Hamiltonian analysis. The action (9) is used to carry out the Hamiltonian analysis. The metric written
in the standard Arnowitt–Deser–Misner (ADM) form [42] is,

ds2 = −N2dt2 + hjk(dxj + N jdt)(dxk + Nkdt), (20)

where N is the lapse function, N j is the shift function and hjk is the induced metric on the constant
t slice Σt. Set nµ = −N∇µt, then Kµν = ∇µnν + nµnρ∇ρnν is the exterior curvature. In terms of the
ADM variables and setting κ = 1 for simplicity, Equation (9) becomes

S =
∫

d4xN
√

h
[1

2
f ′(R − ϕ) +

1
2

f +
1
2

f ′(KjlK
jl − K2) +

K
N
(NjDj f ′ − f ′′ ϕ̇) + Dj f ′Dj ln N

]
, (21)
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where R is the spatial Ricci scalar calculated with hjk and K = hjkKjk. Note that the action contains 11
dynamical variables: N, Nj, hjk and ϕ. The calculation shows that there are four primary constraints:

πN =
δS
δṄ
≈ 0, π j =

δS
δṄj
≈ 0. (22)

After obtaining the conjugate momenta for hjk and ϕ, one finds the following Hamiltonian:

H =
∫

Σt
d3x
√

h(NC + NjCj), (23)

where the boundary terms have been ignored. Then, the consistency conditions are checked which lead
to four secondary constraints, i.e., C ≈ 0 and Cj ≈ 0. Finally, it is checked whether these are all the

constraints within this theory. Since all the constraints belong to the first class, there are
22− 8× 2

2
= 3,

as expected.

3.2. Polarization Content

The polarizations of GWs are contained in the geodesic deviation equations. Let the GWs travel
in the +z direction with the following wave vectors:

qµ = ω(1, 0, 0, 1), pµ = (Ω, 0, 0,
√

Ω2 −m2), (24)

for h̄µν and R, respectively. From Equation (14), hµν = h̄µν(t− z)− 2αηµνR(vt− z) is obtained with
v =
√

Ω2 −m2/Ω. So, clearly, h̄µν excites the plus and the cross polarizations. Now, h̄µν = 0 is set,
so the geodesic deviation equations are

ẍ = αR̈x, ÿ = αR̈y, z̈ = −αm2Rz = −1
6

Rz, (25)

which states that the massive scalar field induces a mix of the longitudinal and the transverse
breathing modes.

The NP formalism [17,18] is not suitable for identifying the polarizations of f (R) gravity.
Indeed, Ψ2 = 0 is found, which implies the absence of the longitudinal polarization according
to the NP formalism. However, Equation (25) clearly means that the longitudinal polarization exists.
Nevertheless, the six polarizations can still be described by Rtjtk.

4. Gravitational Wave Polarizations in Horndeski Theory

The action of Horndeski theory is [20]

S =
∫

d4x
√
−g(L2 + L3 + L4 + L5), (26)

where

L2 = K(φ, X), L3 = −G3(φ, X)�φ, L4 = G4(φ, X)R + G4,X

[
(�φ)2 − (∇µ∇νφ)(∇µ∇νφ)

]
,

L5 = G5(φ, X)Gµν∇µ∇νφ− 1
6

G5,X

[
(�φ)3 − 3(�φ)(∇µ∇νφ)(∇µ∇νφ)

+2(∇µ∇ρφ)(∇ρ∇νφ)(∇ν∇µφ)
]

.

Here, X = −∇µφ∇µφ/2, �φ = ∇µ∇µφ, the functions K, G3, G4 and G5 depend on φ and X,
and Gj,X(φ, X) = ∂Gj(φ, X)/∂X with j = 4, 5. Note that G3 = G5 = 0, K = f (φ) − φ f ′(φ) and
G4 = f ′(φ) with f ′(φ) = d f (φ)/dφ can be set to reproduce f (R) gravity.
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Since the observation of GW170817 and GRB 170817A [5,43,44], many alternative theories of
gravity have been highly constrained by the speed bound of the GW [45],

− 3× 10−15 ≤ vGW − vEM

vEM
≤ 7× 10−16, (27)

where vGW is the speed of the GW, and vEM is that of the photon, usually taken to be 1. This bound also
severely constrains the Horndeski theory. The analyses done in Refs. [46–49] showed that G4 = G4(φ)

and G5 = 0. Ref. [50] discussed the constraints on Horndeski theory from the solar system test.
For more constraints derived from the GW speed bound, please refer to Refs. [48,51,52].

4.1. Gravitational Wave Solutions

To find the GW solutions in the Minkowski background, the metric tensor and the scalar field
are perturbed such that gµν = ηµν + hµν and φ = φ0 + ϕ with φ0 a constant. The consistence of the
equations of motion leads to K(φ0, 0) = 0 and K,φ0 = ∂K(φ, X)/∂φ|φ=φ0,X=0 = 0. The linearized
equations of motion are

(�−m2)ϕ = 0, G(1)
µν −

G4,φ0

G4(0)
(∂µ∂ν ϕ− ηµν�ϕ) = 0, (28)

where G(1)
µν is the linear Einstein tensor, G4(0) = G4(φ0, 0), K,X0 = ∂K(φ, X)/∂X|φ=φ0,X=0. The scalar

field is generally massive, and its mass squared is

m2 = −
K,φ0φ0

K,X0 − 2G3,φ0 + 3G2
4,φ0

/G4(0)
. (29)

Analogously to Equation (14), a field h̃µν is introduced,

h̃µν = hµν −
1
2

ηµνηρσhρσ −
G4,φ0

G4(0)
ηµν ϕ, (30)

and in the transverse traceless gauge ∂µ h̃µν = 0, ηµν h̃µν = 0 by using the gauge freedom,
Equation (28) become,

(�−m2)ϕ = 0, �h̃µν = 0. (31)

4.2. Polarization Content

The similarity between Equations (13), (17) and (31) makes it clear that there are plus and the
cross polarizations, and the massive scalar field φ excites a mix of the transverse breathing and the
longitudinal polarizations. The electric component Rtjtk can be calculated, given the below equation:

Rtjtk =

 − 1
2 q2

t σϕ + 1
2 Ω2h̃xx

1
2 Ω2h̃xy 0

1
2 Ω2h̃xy − 1

2 q2
t σϕ− 1

2 Ω2h̃xx 0
0 0 − 1

2 m2σϕ

 , (32)

for a GW with wave vectors given by Equation (24), and σ = G4,φ0 /G4(0). From this, it is found out that
h̃µν excites the plus and the cross polarizations by setting ϕ = 0. Now, h̃µν = 0 is set. If the scalar field is
massless (m = 0), then Rtztz = 0, so ϕ excites merely the transverse breathing polarization (Rtxtx = Rtyty).
If m 6= 0, in the rest frame of the scalar field (qz = 0), the geodesic deviation equations are,

ẍj =
1
2

m2σϕxj, j = 1, 2, 3. (33)
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Integrating the above equations twice leads to

δxj ≈ −1
2

σϕxj
0 (34)

with xj
0 being the initial deviation vector. Equation (34) implies that the massive scalar field induces

the longitudinal polarization together with the breathing polarization.
In a generic frame where qz 6= 0, one has

δx ≈ −1
2

σϕx0, δy ≈ −1
2

σϕy0, δz ≈ −1
2

m2

q2
t

σϕz0. (35)

From this, it is clearly shown that when m 6= 0, the scalar field excites a mix of the longitudinal and
transverse breathing polarizations, while when m = 0, it excites merely the transverse breathing mode.

The NP variables can also be calculated. One obtains

Ψ2 =
1
12

(Rtxtx + Rtyty − 2Rtztz + 2Rxyxy − Rxzxz − Ryzyz) +
1
2

iRtzxy = 0, (36)

as well as several nonvanishing NP variables:

Ψ4 = −ω2(h̃xx − ih̃xy), Φ22 =
(Ω +

√
Ω2 −m2)2

4
σϕ, (37)

Φ00 =
4(Ω−

√
Ω2 −m2)2

(Ω +
√

Ω2 −m2)2
Φ22, Φ11 = −Λ =

4m2

(Ω +
√

Ω2 −m2)2
Φ22. (38)

Note that for null GWs, only Ψ2 = −Rtztz/6, and in general cases, we should use Equation (36).
Next, Rtjtk is expressed in terms of NP variables,

Rtjtk =

 Υ− 1
2<Ψ4

1
2=Ψ4 0

1
2=Ψ4 Υ + 1

2<Ψ4 0
0 0 −2(Λ + Φ11)

 , (39)

with Υ = −2Λ− Φ00 + Φ22
2 . The difference from Equation (7) is that the NP formalism fails to identify

the polarization content of the massive mode.

4.3. Experimental Tests

The detection of GWs by interferometers is done to measure the differences in the changes in
the propagation times of photons traveling in the two arms. The interferometer response function is
important [25,53]. It is defined to be the Fourier transform of the change in the round-trip propagation
time of photons traveling in a single arm. To calculate it for the longitudinal polarization, we assume
that the arm is pointing in the propagating direction of the GW, while, for the transverse breathing
polarization, the arm is in the direction perpendicular to the propagating direction. Figure 1 displays the
absolute values of the response functions for the longitudinal and the transverse breathing polarizations
for aLIGO if the mass of ϕ is 1.2× 10−22 eV/c2 [1] or 7.7× 10−23 eV/c2 [3]. This graph shows that
interferometers such as aLIGO are not suitable for testing the probe of longitudinal polarization.

A second method to detect GWs is to use pulsar timing arrays (PTAs) [54–60]. The propagation
of radial pulses emanating from pulsars is affected by the stochastic GW background. It causes the
timing residuals R̃(t) which can be detected and measured by PTAs [54]. The timing residuals of
two pulsars (labeled i and j) are correlated, which is characterized by the cross-correlation function
C(θ) = 〈R̃i(t)R̃j(t)〉, where θ is the angle between the two pulsars. The brackets imply the ensemble
average over the stochastic GW background. Figure 2 shows the behaviors of ζ(θ) = C(θ)/C(0) for
different polarizations. The solid black curve shows ζ(θ) induced by h̃µν, and the dashed blue curve
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is for the massless scalar field ϕ. The remaining three curves represent ζ(θ), induced by the mixed
polarization of the transverse and longitudinal ones when m 6= 0 at different values of α, which is
called the power–law index [55]. From Figure 2, it is possible to identify the polarizations of GWs.
Note that Figure 2 shows the cross-correlation functions for the pure tensor and the pure scalar modes,
while, in the actual detection, both modes exist. So in reality, the cross-correlation function should be
some combination of these for the pure modes. In order to calculate it, one has to know the energy
density of each mode, or at least, the ratio between the tensor and the scalar modes. However, the
energy densities or their ratio depend on the processes that generate the stochastic GW background.
Calculating them is beyond the scope of the present work. Nevertheless, Figure 2 shows the possibility
of distinguishing different polarizations. The mass of the scalar field also affects the cross-correlation
function for the mixed polarization of the transverse and the longitudinal polarizations. Figure 3
shows ζ(θ) for the massless (labeled by Breathing) and the massive (five different masses in units of
mb) scalar field. It is shown that ζ(θ) for ϕ is changes quite a lot with small masses (m ≤ mb), while, for
larger masses, ζ(θ) remains almost the same.

|Yl| at 1.2×10-22 eV/c2

|Yb|

|Yl| at 7.7×10-23 eV/c2

10-7 10-5 0.001 0.100 10 1000

10-20

10-15

10-10

10-5

1

f(Hz)

|Y
(f
)|

Figure 1. The absolute values of the response functions for the longitudinal (|Yl( f )|) and transverse
breathing (|Yb( f )|) polarizations for aLIGO if the mass of ϕ is 1.2× 10−22 eV/c2 [1] (brown dashed
curve) or 7.7× 10−23 eV/c2 [3] (red dot-dashed curve). |Yb( f )| is given by the solid black curve.

GR

Breathing

α=0

α=-2/3

α=-1

0 50 100 150

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

θ

ζ(
θ)

Figure 2. The normalized cross correlations ζ(θ) = C(θ)/C(0) for different polarization states.
The black solid curve is for the plus and the cross modes, and so is labeled by “GR”. The purple
dashed curve is for the massless scalar field, and so is labeled by “Breathing”. The remaining curves
are for the massive scalar field with m = mb = 7.7× 10−23 eV/c2 at different values of the power–law
index α. It is assumed that the observation takes T = 5 years.
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Figure 3. ζ(θ) v.s. m when α = 0. It is assumed that the observation takes T = 5 years.

5. Gravitational Wave Polarizations in Einstein-æther Theory and Generalized TeVeS Theory

Finally, we briefly talk about the GW polarizations in Einstein-æther theory [29] as well as
generalized TeVeS Theory [30–32]. These theories have more d.o.f., which excite more polarizations.
They both contain the unit timelike vector fields, so the local Lorentz invariance is violated. This allows
superluminal propagation. Although all polarizations are massless, NP formalism cannot be applied
either. The experimental constraints and the implications for the future experimental tests of these
theories can be found in Refs. [33,61].

5.1. Einstein-æther Theory

Einstein-æther theory contains the metric tensor gµν and the æther field uµ to mediate gravity.
The action is

SEH-æ =
1

16πG

∫
d4x

√
−g[R− c1(∇µuν)∇µuν − c2(∇µuµ)2 − c3(∇µuν)∇νuµ

+ c4(uρ∇ρuµ)uσ∇σuµ + λ(uµuµ + 1)],
(40)

where G is the gravitational constant, λ is a Lagrange multiplier, and ci (i = 1, 2, 3, 4) are the coupling
constants. A special solution solves the equations of motion, i.e., gµν = ηµν and uµ = uµ = δ

µ
0 .

Linearizing the equations of motion (gµν = ηµν + hµν and uµ = uµ + vµ), and using the gauge-invariant
variables defined in Ref. [33], one obtains the following equations of motion

c14

2− c14
[c123(1 + c2 + c123)− 2(1 + c2)

2]Ω̈ + c123∇2Ω = 0, (41)

c14Σ̈j −
c1 − c2

1/2 + c2
3/2

1− c13
∇2Σj = 0, (42)

1
2
(c13 − 1)ḧTT

jk +
1
2
∇2hTT

jk = 0, (43)

where c13 = c1 + c3, c14 = c1 + c4, and c123 = c1 + c2 + c3. There are five propagating d.o.f., and they
propagate at three speeds. The squared speeds are given by

s2
g =

1
1− c13

, s2
v =

c1 − c2
1/2 + c2

3/2
c14(1− c13)

, s2
s =

c123(2− c14)

c14(1− c13)(2 + 2c2 + c123)
. (44)

These speeds generally differ from one another and 1. In fact, the lack of the gravitational
Cherenkov radiation requires them to be superluminal [62].
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The polarization content can be obtained in terms of the gauge-invariant variables [63],

Rtjtk = −
1
2

ḧTT
jk + Ξ̇(j,k) + Φ,jk −

1
2

Θ̈δjk. (45)

Again, it is assumed that the GWs have the following wave vectors:

kµ
s = ωs(1, 0, 0, 1/ss), kµ

v = ωv(1, 0, 0, 1/sv), kµ
g = ωg(1, 0, 0, 1/sg), (46)

for the scalar, vector and tensor GWs, respectively. The calculation reveals that there are five polarization
states. The plus polarization is represented by P̂+ = −Rtxtx + Rtyty = ḧ+, and the cross polarization
is P̂× = Rtxty = −ḧ×; the vector-x polarization is donated by P̂xz = Rtxtz ∝ ∂3Σ̇1, and the
vector-y polarization is P̂yz = Rtxty ∝ ∂3Σ̇2; the transverse breathing polarization is specified by
P̂b = Rtxtx + Rtyty ∝

...
Ω, and the longitudinal polarization is P̂l = Rtztz ∝

...
Ω. Note that Ω excites both the

transverse breathing and the longitudinal modes, so Ω excites a mixed state of P̂b and P̂l [21,64].
Although the five polarizations are null, the NP formalism cannot be applied, as they propagate at

speeds other than 1. Indeed, the calculation showed that none of the NP variables vanish in general [33].
Finally, let us mention that Einstein-æther theory is highly constrained by various experimental

observations, especially the speed bound derived from GW170817 and GRB 170817A [5,43–45].
Apart from this speed bound and the absence of the gravitational Cherenkov radiation, there are
constraints from the observations of pulsars (such as the post-Newtonian parameters, |α1| < 4× 10−5 [65]
and |α2| < 2× 10−9 [66,67]1), and the requirement that the energy carried by GW be positive
((2c1 − c2

1 + c2
3)(1− c13) > 0 and c14(2− c14) > 0 [68]), etc. In addition, Refs. [69,70] specifically obtained

the constraints on this theory based on the orbital evolution of the binary pulsars. Combining all these
observational constraints, it is found that all of the coupling constants (cis) are of the order of 10−9 ∼ 10−15

if all speeds are of the order 1. For more details, please refer to Refs. [33,71].

5.2. Generalized TeVeS Theory

Tensor-Vector-Scalar (TeVeS) theory is the relativistic realization of Milgrom’s modified Newtonian
dynamics (MOND) [30,72–74]. It has an additional scalar field σ to mediate gravity. The vector field uµ

has an action similar to that of the electromagnetic field. Later, it was generalized and replaced by the
action for the æther field to solve some of the problems which TeVeS theory suffers from [31]. The new
theory is simply called the generalized TeVeS theory, whose actions include Equation (40) and the one
for the scalar field:

Sσ = − 8π

2`2G

∫
d4x

√
−gF (`2 jµνσ,µσ,ν), (47)

where jµν = gµν − uµuν,  > 0 is dimensionless, and ` is a constant with the dimension of
length. The dimensionless function, F , must have the property to reproduce the relativistic
MOND phenomena.

We use a similar method to obtain the polarization content for this theory as for Einstein-æther
theory. Compared with Einstein-æther theory, this theory has one additional polarization state:
a mix polarization of the longitudinal and transverse breathing polarizations due to the new d.o.f. σ.
This polarization state is also massless and travels at a fourth speed other than 1. So, the NP formalism
cannot be applied to this theory, either.

Ref. [33] also discussed the constraints that the generalized TeVeS theory should satisfy. Similarly
to Einstein-æther theory, it is also constrained by the solar system test (i.e., the constraints on
α1 and α2

2), the absence of the gravitational Cherenkov radiation, and the recent GW speed
bound [45], etc. Taking all the constraints into account, it was found that the speed of the one

2 The expressions for α1 and α2 in generalized TeVeS theory are even more complicated, so they are not presented here, either.
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of scalar d.o.f. is much greater than 1, in general. A very large scalar speed might lead to the strong
coupling of the scalar field, and if that happens, the linearization cannot be applied. Ref. [33] discussed
the conditions for the strong coupling to take place. The analysis showed that in some parameter
regions, the strong coupling does not happen, so this theory should be excluded. However, in other
parameter regions, the strong coupling exists, and the validity of the theory remains to be determined
by further analysis. For details, please refer to Ref. [33].

6. Conclusions

In this talk, we discussed the polarization contents in several alternative theories of gravity:
f (R) gravity, Horndeski theory, Einstein-æther theory, and generalized TeVeS theory. Each theory
predicts at least one extra polarization states due to the additional d.o.f. provided by it. In the case of
the local Lorentz invariant theories, such as f (R) gravity and Horndeski theory, the massive scalar
field excites a mix of P̂l and P̂b; the massless scalar field induces merely P̂b. For the local Lorentz
violating theories, such as Einstein-æther theory and generalized TeVeS theory, each of the scalar
d.o.f. is massless, but it propagates at speeds different from 1, so it also excites a mix of P̂l and P̂b.
Einstein-æther theory and generalized TeVeS theory also have vector polarizations due to the presence
of the vector fields. E(2) classification was designed to categorize the polarizations for the null GWs
in the local Lorentz invariant theories, so it cannot be applied to these theories discussed in this talk.
The observational tests of the extra polarizations were also discussed. The analysis showed that the
interferometers are not sensitive to the longitudinal polarization which might be detected using PTAs.

Author Contributions: Conceptualization, S.H. and Y.G.; Methodology, S.H. and Y.G.; Validation, S.H. and Y.G.;
Formal Analysis, S.H.; Investigation, S.H. and Y.G.; Writing—Original Draft Preparation, S.H.; Writing—Review
& Editing, S.H. and Y.G.; Visualization, Y.G.; Funding Acquisition, Y.G.

Funding: This research was supported in part by the Major Program of the National Natural Science Foundation
of China under Grant No. 11690021 and the National Natural Science Foundation of China under Grant
No. 11475065.

Acknowledgments: We also thank Cosimo Bambi et al. for the organization of the conference International
Conference on Quantum Gravity that took place in Shenzhen, China, 26–28 March, 2018. This paper is based on
a talk presented at the mentioned conference.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.;
Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger.
Phys. Rev. Lett. 2016, 116, 061102. [CrossRef] [PubMed]

2. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.;
Addesso, P.; Adhikari, R.X.; et al. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass
Binary Black Hole Coalescence. Phys. Rev. Lett. 2016, 116, 241103. [CrossRef] [PubMed]

3. Scientific, L.I.; Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.;
Addesso, P.; Adhikari, R.X.; et al. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence
at Redshift 0.2. Phys. Rev. Lett. 2017, 118, 221101.

4. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.;
Adya, V.B.; et al. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole
Coalescence. Phys. Rev. Lett. 2017, 119, 141101. [CrossRef] [PubMed]

5. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star
Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [CrossRef] [PubMed]

6. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
Adhikari, R.X.; Adya, V.B.; et al. GW170608: Observation of a 19-solar-mass Binary Black Hole Coalescence.
Astrophys. J. 2017, 851, L35. [CrossRef]

http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://www.ncbi.nlm.nih.gov/pubmed/26918975
http://dx.doi.org/10.1103/PhysRevLett.116.241103
http://www.ncbi.nlm.nih.gov/pubmed/27367379
http://dx.doi.org/10.1103/PhysRevLett.119.141101
http://www.ncbi.nlm.nih.gov/pubmed/29053306
http://dx.doi.org/10.1103/PhysRevLett.119.161101
http://www.ncbi.nlm.nih.gov/pubmed/29099225
http://dx.doi.org/10.3847/2041-8213/aa9f0c


Universe 2018, 4, 85 12 of 14

7. Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Relativ. 2014, 17, 4.
[CrossRef] [PubMed]

8. Isi, M.; Weinstein, A.J.; Mead, C.; Pitkin, M. Detecting Beyond-Einstein Polarizations of Continuous
Gravitational Waves. Phys. Rev. D 2015, 91, 082002. [CrossRef]

9. Isi, M.; Pitkin, M.; Weinstein, A.J. Probing Dynamical Gravity with the Polarization of Continuous
Gravitational Waves. Phys. Rev. D 2017, 96, 042001, [CrossRef]

10. Amaro-Seoane, P.; Audley, H.; Babak, S.; Baker, J.; Barausse, E.; Bender, P.; Berti, E.; Binetruy, P.; Born, M.;
Bortoluzzi, D.; et al. Laser Interferometer Space Antenna. arXiv 2017, arXiv:1702.00786.

11. Luo, J.; Chen, L.S.; Duan, H.Z.; Gong, Y.G.; Hu, S.; Ji, J.; Liu, Q.; Mei, J.; Milyukov, V.; Sazhin, M.; et al.
TianQin: A space-borne gravitational wave detector. Class. Quant. Gravity 2016, 33, 035010. [CrossRef]

12. Hobbs, G.; Archibald, A.; Arzoumanian, Z.; Backer, D.; Bailes, M.; Bhat, N.D.; Burgay, M.; Burke-Spolaor, S.;
Champion, D.; Cognard, I.; et al. The international pulsar timing array project: Using pulsars as
a gravitational wave detector. Class. Quant. Gravity 2010, 27, 084013. [CrossRef]

13. Kramer, M.; Champion, D.J. The European Pulsar Timing Array and the Large European Array for Pulsars.
Class. Quant. Gravity 2013, 30, 224009. [CrossRef]

14. Prasia, P.; Kuriakose, V.C. Detection of massive Gravitational Waves using spherical antenna.
Int. J. Mod. Phys. D 2014, 23, 1450037. [CrossRef]

15. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.;
Adya, V.B.; et al. First search for nontensorial gravitational waves from known pulsars. Phys. Rev. Lett. 2018,
120, 031104. [CrossRef] [PubMed]

16. Newman, E.; Penrose, R. An Approach to Gravitational Radiation by a Method of Spin Coefficients.
J. Math. Phys. 1962, 3, 566–578. [CrossRef]

17. Eardley, D.M.; Lee, D.L.; Lightman, A.P. Gravitational-wave observations as a tool for testing relativistic
gravity. Phys. Rev. D 1973, 8, 3308–3321. [CrossRef]

18. Eardley, D.M.; Lee, D.L.; Lightman, A.P.; Wagoner, R.V.; Will, C.M. Gravitational-wave observations as a tool
for testing relativistic gravity. Phys. Rev. Lett. 1973, 30, 884–886. [CrossRef]

19. Brans, C.; Dicke, R.H. Mach’s Principle and a Relativistic Theory of Gravitation. Phys. Rev. 1961, 124, 925–935.
[CrossRef]

20. Horndeski, G.W. Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys.
1974, 10, 363–384. [CrossRef]

21. Hou, S.; Gong, Y.; Liu, Y. Polarizations of Gravitational Waves in Horndeski Theory. Eur. Phys. J. C 2018,
78, 378. [CrossRef]

22. Buchdahl, H.A. Non-linear Lagrangians and cosmological theory. Mon. Not. R. Astron. Soc. 1970, 150, 1–8.
[CrossRef]

23. O’Hanlon, J. Intermediate-Range Gravity: A Generally Covariant Model. Phys. Rev. Lett. 1972, 29, 137–138.
[CrossRef]

24. Teyssandier, P.; Tourrenc, P. The Cauchy problem for the R+ R2 theories of gravity without torsion. J. Math. Phys.
1983, 24, 2793–2799. [CrossRef]

25. Corda, C. The production of matter from curvature in a particular linearized high order theory of gravity and
the longitudinal response function of interferometers. J. Cosmol. Astropart. Phys. 2007, 2007, 009. [CrossRef]

26. Corda, C. Massive gravitational waves from the R**2 theory of gravity: Production and response of
interferometers. Int. J. Mod. Phys. A 2008, 23, 1521–1535. [CrossRef]

27. Capozziello, S.; Corda, C.; De Laurentis, M.F. Massive gravitational waves from f(R) theories of gravity:
Potential detection with LISA. Phys. Lett. B 2008, 669, 255–259. [CrossRef]

28. Liang, D.; Gong, Y.; Hou, S.; Liu, Y. Polarizations of gravitational waves in f (R) gravity. Phys. Rev. D 2017,
95, 104034. [CrossRef]

29. Jacobson, T.; Mattingly, D. Einstein-Aether waves. Phys. Rev. D 2004, 70, 024003. [CrossRef]
30. Bekenstein, J.D. Relativistic gravitation theory for the MOND paradigm. Phys. Rev. D 2004, 70, 083509.

[CrossRef]
31. Seifert, M.D. Stability of spherically symmetric solutions in modified theories of gravity. Phys. Rev. D 2007,

76, 064002. [CrossRef]
32. Sagi, E. Propagation of gravitational waves in generalized TeVeS. Phys. Rev. D 2010, 81, 064031. [CrossRef]

http://dx.doi.org/10.12942/lrr-2014-4
http://www.ncbi.nlm.nih.gov/pubmed/28179848
http://dx.doi.org/10.1103/PhysRevD.91.082002
http://dx.doi.org/10.1103/PhysRevD.96.042001
http://dx.doi.org/10.1088/0264-9381/33/3/035010
http://dx.doi.org/10.1088/0264-9381/27/8/084013
http://dx.doi.org/10.1088/0264-9381/30/22/224009
http://dx.doi.org/10.1142/S0218271814500370
http://dx.doi.org/10.1103/PhysRevLett.120.031104
http://www.ncbi.nlm.nih.gov/pubmed/29400511
http://dx.doi.org/10.1063/1.1724257
http://dx.doi.org/10.1103/PhysRevD.8.3308
http://dx.doi.org/10.1103/PhysRevLett.30.884
http://dx.doi.org/10.1103/PhysRev.124.925
http://dx.doi.org/10.1007/BF01807638
http://dx.doi.org/10.1140/epjc/s10052-018-5869-y
http://dx.doi.org/10.1093/mnras/150.1.1
http://dx.doi.org/10.1103/PhysRevLett.29.137
http://dx.doi.org/10.1063/1.525659
http://dx.doi.org/10.1088/1475-7516/2007/04/009
http://dx.doi.org/10.1142/S0217751X08038603
http://dx.doi.org/10.1016/j.physletb.2008.10.001
http://dx.doi.org/10.1103/PhysRevD.95.104034
http://dx.doi.org/10.1103/PhysRevD.70.024003
http://dx.doi.org/10.1103/PhysRevD.70.083509
http://dx.doi.org/10.1103/PhysRevD.76.064002
http://dx.doi.org/10.1103/PhysRevD.81.064031


Universe 2018, 4, 85 13 of 14

33. Gong, Y.; Hou, S.; Liang, D.; Papantonopoulos, E. Gravitational waves in Einstein-æther and generalized
TeVeS theory after GW170817. Phys. Rev. D 2018, 97, 084040. [CrossRef]

34. De Laurentis, M.; De Martino, I. Testing f (R)-theories using the first time derivative of the orbital period of
the binary pulsars. Mon. Not. R. Astron. Soc. 2014, 431, 741–748. [CrossRef]

35. De Laurentis, M.; De Martino, I. Probing the physical and mathematical structure of f (R)-gravity by PSR
J0348 + 0432. Int. J. Geom. Methods Mod. Phys. 2015, 12, 1550040. [CrossRef]

36. Dyadina, P.I.; Alexeyev, S.O.; Capozziello, S.; De Laurentis, M.; Rannu, K.A. Strong-field tests of f (R)-gravity
in binary pulsars. Int. J. Mod. Phys. Conf. Ser. 2016, 41, 1660131. [CrossRef]

37. Dyadina, P.; Alexeyev, S.; Capozziello, S.; De Laurentis, M. Verification of f (R)-gravity in binary pulsars.
EPJ Web Conf. 2016, 125, 03005. [CrossRef]

38. Dyadina, P.I.; Alexeyev, S.O.; Rannu, K.A.; Capozziello, S.; Laurentis, M.D. Tests of f (R)-gravity in binary
pulsars. In Proceedings of the 14th Marcel Grossmann Meeting on Recent Developments in Theoretical
and Experimental General Relativity, Astrophysics, and Relativistic Field Theories (MG14) (In 4 Volumes),
Rome, Italy, 12–18 July 2015; Volume 2, pp. 1273–1278.

39. Faulkner, T.; Tegmark, M.; Bunn, E.F.; Mao, Y. Constraining f(R) Gravity as a Scalar Tensor Theory. Phys. Rev. D
2007, 76, 063505. [CrossRef]

40. Hu, W.; Sawicki, I. Models of f(R) Cosmic Acceleration that Evade Solar-System Tests. Phys. Rev. D 2007,
76, 064004. [CrossRef]

41. Liu, T.; Zhang, X.; Zhao, W. Constraining f (R) gravity in solar system, cosmology and binary pulsar systems.
Phys. Lett. B 2018, 777, 286–293. [CrossRef]

42. Arnowitt, R.L.; Deser, S.; Misner, C.W. The Dynamics of general relativity. Gen. Relativ. Gravit. 2008, 40, 1997–2027.
[CrossRef]

43. Goldstein, A.; Veres, P.; Burns, E.; Briggs, M.S.; Hamburg, R.; Kocevski, D.; Wilson-Hodge, C.A.; Preece, R.D.;
Poolakkil, S.; Roberts, O.J.; et al. An Ordinary Short Gamma-Ray Burst with Extraordinary Implications:
Fermi-GBM Detection of GRB 170817A. Astrophys. J. 2017, 848, L14. [CrossRef]

44. Savchenko, V.; Ferrigno, C.; Kuulkers, E.; Bazzano, A.; Bozzo, E.; Brandt, S.; Chenevez, J.; Courvoisier, T.L.;
Diehl, R.; Domingo, A.; et al. INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with
the Gravitational-wave Event GW170817. Astrophys. J. 2017, 848, L15. [CrossRef]

45. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
Adhikari, R.X.; Adya, V.B.; et al. Gravitational Waves and Gamma-Rays from a Binary Neutron Star
Merger: GW170817 and GRB 170817A. Astrophys. J. 2017, 848, L13. [CrossRef]

46. Baker, T.; Bellini, E.; Ferreira, P.G.; Lagos, M.; Noller, J.; Sawicki, I. Strong constraints on cosmological gravity
from GW170817 and GRB 170817A. Phys. Rev. Lett. 2017, 119, 251301. [CrossRef] [PubMed]

47. Creminelli, P.; Vernizzi, F. Dark Energy after GW170817 and GRB170817A. Phys. Rev. Lett. 2017, 119, 251302.
[CrossRef] [PubMed]

48. Sakstein, J.; Jain, B. Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor
Theories. Phys. Rev. Lett. 2017, 119, 251303. [CrossRef] [PubMed]

49. Ezquiaga, J.M.; Zumalacárregui, M. Dark Energy after GW170817: Dead Ends and the Road Ahead.
Phys. Rev. Lett. 2017, 119, 251304. [CrossRef] [PubMed]

50. Hou, S.; Gong, Y. Constraints on Horndeski Theory Using the Observations of Nordtvedt Effect, Shapiro
Time Delay and Binary Pulsars. Eur. Phys. J. C 2018, 78, 247. [CrossRef]

51. Gong, Y.; Papantonopoulos, E.; Yi, Z. Constraints on Scalar-Tensor Theory of Gravity by the Recent
Observational Results on Gravitational Waves. arXiv 2017, arXiv:gr-qc/1711.04102.

52. Crisostomi, M.; Koyama, K. Vainshtein mechanism after GW170817. Phys. Rev. D 2018, 97, 021301, [CrossRef]
53. Rakhmanov, M. Response of test masses to gravitational waves in the local Lorentz gauge. Phys. Rev. D

2005, 71, 084003, [CrossRef]
54. Hellings, R.W.; Downs, G.S. Upper Limits on the Isotropic Gravitational Radiation Background from Pulsar

Timing Analysis. Astrophys. J. 1983, 265, L39–L42. [CrossRef]
55. Lee, K.J.; Jenet, F.A.; Price, R.H. Pulsar Timing as a Probe of Non-Einsteinian Polarizations of Gravitational

Waves. Astrophys. J. 2008, 685, 1304–1319. [CrossRef]
56. Lee, K.; Jenet, F.A.; Price, R.H.; Wex, N.; Kramer, M. Detecting massive gravitons using pulsar timing arrays.

Astrophys. J. 2010, 722, 1589–1597. [CrossRef]

http://dx.doi.org/10.1103/PhysRevD.97.084040
http://dx.doi.org/10.1093/mnras/stt216
http://dx.doi.org/10.1142/S0219887815500401
http://dx.doi.org/10.1142/S2010194516601319
http://dx.doi.org/10.1051/epjconf/201612503005
http://dx.doi.org/10.1103/PhysRevD.76.063505
http://dx.doi.org/10.1103/PhysRevD.76.064004
http://dx.doi.org/10.1016/j.physletb.2017.12.051
http://dx.doi.org/10.1007/s10714-008-0661-1
http://dx.doi.org/10.3847/2041-8213/aa8f41
http://dx.doi.org/10.3847/2041-8213/aa8f94
http://dx.doi.org/10.3847/2041-8213/aa920c
http://dx.doi.org/10.1103/PhysRevLett.119.251301
http://www.ncbi.nlm.nih.gov/pubmed/29303333
http://dx.doi.org/10.1103/PhysRevLett.119.251302
http://www.ncbi.nlm.nih.gov/pubmed/29303308
http://dx.doi.org/10.1103/PhysRevLett.119.251303
http://www.ncbi.nlm.nih.gov/pubmed/29303345
http://dx.doi.org/10.1103/PhysRevLett.119.251304
http://www.ncbi.nlm.nih.gov/pubmed/29303304
http://dx.doi.org/10.1140/epjc/s10052-018-5738-8
http://dx.doi.org/10.1103/PhysRevD.97.021301
http://dx.doi.org/10.1103/PhysRevD.71.084003
http://dx.doi.org/10.1086/183954
http://dx.doi.org/10.1086/591080
http://dx.doi.org/10.1088/0004-637X/722/2/1589


Universe 2018, 4, 85 14 of 14

57. Chamberlin, S.J.; Siemens, X. Stochastic backgrounds in alternative theories of gravity: Overlap reduction
functions for pulsar timing arrays. Phys. Rev. D 2012, 85, 082001. [CrossRef]

58. Lee, K.J. Pulsar timing arrays and gravity tests in the radiative regime. Class. Quant. Gravit. 2013, 30, 224016.
[CrossRef]

59. Gair, J.; Romano, J.D.; Taylor, S.; Mingarelli, C.M.F. Mapping gravitational-wave backgrounds using methods
from CMB analysis: Application to pulsar timing arrays. Phys. Rev. D 2014, 90, 082001. [CrossRef]

60. Gair, J.R.; Romano, J.D.; Taylor, S.R. Mapping gravitational-wave backgrounds of arbitrary polarisation
using pulsar timing arrays. Phys. Rev. D 2015, 92, 102003. [CrossRef]

61. Hou, S.; Gong, Y. Gravitational Waves in Einstein-æther Theory and Generalized TeVeS Theory after
GW170817. Universe 2018, 4, 84. [CrossRef]

62. Elliott, J.W.; Moore, G.D.; Stoica, H. Constraining the new Aether: Gravitational Cerenkov radiation.
J. High Energy Phys. 2005, 2005, 066. [CrossRef]

63. Flanagan, E.E.; Hughes, S.A. The Basics of gravitational wave theory. New J. Phys. 2005, 7, 204. [CrossRef]
64. Gong, Y.; Hou, S. Gravitational Wave Polarizations in f (R) Gravity and Scalar-Tensor Theory. In Proceedings

of the 13th International Conference on Gravitation, Astrophysics and Cosmology and 15th Italian-Korean
Symposium on Relativistic Astrophysics (IK15), Seoul, Korea, 3–7 July 2017; Volume 168, p. 01003.

65. Shao, L.; Wex, N. New tests of local Lorentz invariance of gravity with small-eccentricity binary pulsars.
Class. Quant. Gravit. 2012, 29, 215018. [CrossRef]

66. Shao, L.; Caballero, R.N.; Kramer, M.; Wex, N.; Champion, D.J.; Jessner, A. A new limit on local Lorentz
invariance violation of gravity from solitary pulsars. Class. Quant. Gravit. 2013, 30, 165019. [CrossRef]

67. Shapiro, I.I. A century of relativity. Rev. Mod. Phys. 1999, 71, S41–S53. [CrossRef]
68. Jacobson, T. Einstein-aether gravity: A Status report. In Proceedings of the From Quantum to Emergent

Gravity: Theory and Phenomenology, Trieste, Italy, 11–15 June 2007.
69. Yagi, K.; Blas, D.; Yunes, N.; Barausse, E. Strong Binary Pulsar Constraints on Lorentz Violation in Gravity.

Phys. Rev. Lett. 2014, 112, 161101. [CrossRef] [PubMed]
70. Yagi, K.; Blas, D.; Barausse, E.; Yunes, N. Constraints on Einstein-Æther theory and Hoǎva gravity from
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