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Abstract: We review some of the recent results which can be useful for better understanding of
the problem of stability of vacuum and in general classical solutions in higher derivative quantum
gravity. The fourth derivative terms in the purely gravitational vacuum sector are requested by
renormalizability already in both semiclassical and complete quantum gravity theories. However,
because of these terms, the spectrum of the theory has unphysical ghost states which jeopardize the
stability of classical solutions. At the quantum level, ghosts violate unitarity, and thus ghosts look
incompatible with the consistency of the theory. The “dominating” or “standard” approach is to treat
higher derivative terms as small perturbations at low energies. Such an effective theory is supposed
to glue with an unknown fundamental theory in the high energy limit. We argue that the perspectives
for such a scenario are not clear, to say the least. On the other hand, recently, there was certain
progress in understanding physical conditions which can make ghosts not offensive. We survey
these results and discuss the properties of the unknown fundamental theory which can provide these
conditions satisfied.
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1. Introduction

Numerous tests and verifications performed during the last century have shown that General
Relativity (GR) is a complete theory of classical gravitational phenomena. GR proved valid and useful
in the wide range of energies and distances. At the same time, the presence of singular regions in
physically relevant solutions of GR indicates the need for extending the theory. One can assume that
GR is not valid at all scales, especially at very short distances and/or when the curvature becomes
very large. In this situation, one can expect that the gravitational phenomena should be described
by a more extensive and complicated theory. Indeed, one should expect that this unknown theory
coincides with GR at large distances and/or in the weak field limit.

The dimensional arguments indicate that the origin of deviations from GR is most likely related
to quantum effects. For example, the existence of fundamental Planck units (MP ∼ 1019 GeV) hints
at the possibility of some sort of a new fundamental physics at the very high energy scale, where
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relativistic, quantum and gravitational effects become relevant at the same time. How can we interpret
such a result of the dimensional analysis?

One can introduce a simple general classification of all possible approaches to Quantum
Gravity (QG), which is based on the object of quantization. There are three distinct groups of
approaches, namely

(i) Quantize both gravity and matter fields. This is, definitely, the most fundamental possible
approach.

(ii) Quantize only matter fields on classical curved background (semiclassical approach). This is,
in some sense, the most important approach, since we know for sure that matter fields should be
quantized on a curved background. The main question is: What is the effect (back-reaction) of
such a quantum theory on the gravitational equations of motion?

(iii) Quantize “something else”. For example, in the case of (super)string theory, both matter and
gravity are induced, and the fundamental object of quantization is the two-dimensional (2D) string,
which lives in the external D-dimensional background and defines its geometry and dynamics.

Which of these approaches is “better”? The final verdict can be achieved only in experiments,
and purely theoretical arguments can only help us to select what we regard more consistent, simple and
natural. On the other hand, all these approaches have something in common, namely there are higher
derivative terms in the gravitational action in all cases. In the next section, we briefly consider this
issue in the framework of semiclassical approach. After that, in Section 3, we discuss that a very similar
situation takes place in the theory of quantum gravity and also is quite similar in string theory. Starting
from Section 4, we review the original results of Refs. [1,2] concerning recent advances in exploring the
unitarity of quantum theory in the presence of complex conjugate pairs of higher derivative ghosts
and in the study of stability on the cosmological backgrounds.

2. Semiclassical Approach and Higher Derivatives

Without quantization of gravity, at the quantum level, the classical action of vacuum is replaced
by the effective action, that includes contributions of quantum matter fields Φ [3,4] (see also [5] for
a more recent review),

eiΓ(gµν) = eiSvac(gµν)
∫

dΦ eiSm(Φ, gµν). (1)

The form of the classical action of vacuum is defined by the consistency conditions, which means
that the theory should be renormalizable. The simplest minimal vacuum action of renormalizable
quantum field theory (QFT) in curved space is

Svac = SEH + SHD, (2)

where

SEH = − 1
16πG

∫
d4x
√
−g {R + 2Λ} (3)

is the Einstein–Hilbert action with the cosmological constant and

SHD =
∫

d4x
√
−g
{

a1C2 + a2E4 + a3�R + a4R2
}

(4)

includes fourth derivatives, e.g., is the square of the Weyl tensor and

E4 = R2
µναβ − 4R2

αβ + R2 (5)

is the integrand of the Gauss–Bonnet topological term.
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Without higher derivative (HD) terms in the vacuum sector, the semiclassical theory is not
consistent due to the non-renormalizability. Even if these terms are not included into the classical
action, they will emerge due to the renormalization group running in quantum theory. This can be
explicitly seen using the conformal anomaly, as discussed in [5,6]. Formally, regarding semiclassical
theory as fundamental (not effective) QFT, the higher derivative terms are not quantum corrections,
for they should be introduced already at the classical level.

3. Two Sides of Higher Derivatives in Quantum Gravity

Consider now the situation in QG. The renormalizability of QG models strongly depend on the
choice of the initial classical action. As the first example, let us consider quantum GR.

SEH = − 1
16πG

∫
d4x
√
−g (R + 2Λ) . (6)

Using the standard power counting arguments (see some details below), one can easily obtain
the relation

D + d = 2 + 2p, (7)

where D is the superficial degree of divergence of a diagram with p loops and d is the number of
derivatives acting on the external lines of the diagram. One can easily see from Equation (7) and
covariance of the counterterms that, at the one-loop level, there are logarithmically divergent term
which are quadratic in curvatures [7,8], namely

O(R2
...) = R2

µναβ, R2
µν, R2, �R. (8)

At the two-loop level, we have [9],

O(R3
...) = Rµν�Rµν , ... R3 , RµνRµ

α Rαν , RµναβRµν
ρσRµνρσ . (9)

Since the last of these structures does not vanish on-shell, the theory is not renormalizable in
the usual sense. Of course, one can rely on the effective approach and make sound calculations
(see, e.g., [10,11] and the review [12]), but the approximation behind this approach breaks down at the
Planck scale, where QG is supposed to be especially relevant.

Within the standard perturbative approach, non-renormalizability means the theory has no
predictive power. Every time we introduce a new type of a counterterm, it is necessary to fix
renormalization condition and this means a measurement. Thus, before making a single prediction,
it is necessary to have an infinite amount of experimental data.

What are the possible solutions of this problem? One of the options is to trade the standard
perturbative approach in QFT to something different. Another way out is to modify or generalize
the theory, i.e., start from another theory to construct QG. The first option is widely explored in the
asymptotic safety scenarios, the effective approaches to QG (which is mentioned above), induced
gravity approach (including string theory) and so on. Regardless of many options, their consistency
and relation to the general targets of the QG program are not completely clear, in all cases. In what
follows we concentrate on the second possibility and consider modified action of gravity as a starting
point to construct QG.

The most natural choice is start from the four derivative gravity model, because we need fourth
derivatives anyway to deal with the quantum matter field. Then, the starting action should be

Sgravity = SEH + SHD, (10)
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where SEU is the Einstein–Hilbert action (as mentioned before) and SHD includes square of the Weyl
tensor and R,

SHD = −
∫

d4x
√
−g
{

1
2λ

C2 +
ω

3λ
R2 + surface terms

}
. (11)

The propagators of metric and ghosts behave as O(k−4) (in the notations of [4,13] this means
rl = 4) and we have K4, K2, and K0 vertices with four, two and zero powers of momenta, respectively.
The superficial degree of divergence D of the diagram with an arbitrary number of loops satisfies
the relation

D + d = 4− 2K2 − 4K0, (12)

where d is the number of derivatives of external metric lines. Thus, this theory is definitely
renormalizable and the dimensions of possible counterterms are 4, 2, and 0, depending on number of
vertices with lower derivatives [13].

However, one has to pay a very high price for renormalizability, since this theory has massive
ghosts. This can be seen from the spin-two sector of the propagator [13],

Gspin−2(k) ∼
1

m2

( 1
k2 −

1
k2 + m2

2

)
, where m2 ∝ MP . (13)

The tree-level spectrum includes massless graviton and massive spin-2 “ghost” with negative
kinetic energy and a huge mass. The presence of a particle with negative energy means possible
instability of the vacuum state of the theory. For instance, the Minkowski space is not protected
from the spontaneous creation of massive ghost and (needed for energy conservation) compensating
gravitons from the vacuum.

Indeed, there are different sides of the High Derivative Quantum Gravity (HDQG) problems with
massive ghosts. For instance,

(i) In classical systems, higher derivatives may generate exploding instabilities at the non-linear
level [14] (see, e.g., recent review in [15]).

(ii) Interaction between massive unphysical ghost and gravitons leads to massive emission of
gravitons and unbounded acceleration of ghost. As a result, one should observe violation
of energy conservation in the massless sector [16], which means an explosion of gravitons.
In addition, ghosts produce violation of unitarity of the S-matrix, which also means similar
instability at the quantum level.

Due to the great importance of the problem of higher derivatives and ghosts, there are many
proposals to solve it (e.g., [17–20]). Let us consider another proposal, related to further generalization
of the action of the QG theory. One can include more than four derivatives [21],

S = SEH +
N

∑
n=0

∫
d4x
√
−g
{

ωC
n Cµναβ�

nCµναβ + ωR
n R�nR

}
+O

(
R3

...
)
. (14)

A simple analysis shows that in this theory massive ghost-like states are still present. For the real
poles, case we can write

G2(k) =
A0

k2 +
A1

k2 + m2
1
+

A2

k2 + m2
2
+ · · ·+ AN+1

k2 + m2
N+1

, (15)

and it has been shown [21] that, for any sequence of poles with 0 < m2
1 < m2

2 < m2
3 < · · · < m2

N+1,
the signs of the corresponding terms alternate, Aj · Aj+1 < 0. This means that one can not make all but
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one particle in the spectrum healthy and provide an infinite mass of the ghost. In this sense, the theory
in Equation (14) has the same level of problems with ghosts that the simpler fourth-derivative model.

However, the renormalization properties of these two theories are quite different. It is easy to
see that the theory in Equation (14) is superrenormalizable if both higher order terms are present,
ωC

N ·ωR
N 6= 0. To check this fact, consider the power counting in this case. For the sake of simplicity,

we can consider only the vertices with a maximal number Kν of maximal derivatives, rl = 2N + 4,
which obviously provide the maximal power of divergences.

The propagators of gravitational modes and ghosts in this model are O(k−rl ), where, combining
the general expression for power counting for the diagram with n vertices and p loops,

D + d = ∑
lint

(4− rl) − 4n + 4 + ∑
ν

Kν (16)

with the topological relation for the number of internal lines,

lint = p + n− 1, (17)

one can easily arrive at the estimate of d for the logarithmic divergences with D = 0,

d = 4 + N(1− p) . (18)

For N = 0, we meet the standard HDQG result, d = 4. Due to the covariance, this means that the
counterterms repeat the form of the four-derivative action Sgravity in Equation (10). It is remarkable
that the terms with six and higher derivatives do not get renormalized, but the coefficients of these
terms define the divergences. Starting from N = 1, we have superrenormalizable theory, where the
divergences show up only in p = 1, 2, 3 loops. For N ≥ 3, we have such a superrenormalizable theory,
where divergences exist only for p = 1, that is at the one-loop level. Let us stress that the one-loop
divergences are present for all N and that the logarithmic divergences always have zero, two and four
derivatives of the metric, independent of N.

The low-energy effects of complex and real ghosts in these models are recently discussed in [22–25].
Another interesting possibility is that one can derive exact β-functions in this superrenormalizable
QG model, by means of one-loop level calculations [21,26]. These calculations, anyway, may be very
difficult and for a while the results have been achieved only for the beta functions of cosmological and
Newton constants. They have the form

βΛ = µ
dρΛ

dµ
=

1
(4π)2

(5ωN−2,C

ωN,C
+

ωN−2,R

ωN,R
−

5ω2
N−1,C

2ω2
N,C

−
ω2

N−1,R

2ω2
N,R

)
, ρΛ =

Λ
8πG

; (19)

βG = µ
d

dµ

(
− 1

16πG

)
= − 1

6(4π)2

(5ωN−1,C

ωN,C
+

ωN−1,R

ωN,R

)
. (20)

Here, we used the standard notation for the density of the cosmological constant ρΛ.
Different from four-derivative quantum gravity, these β-functions do not depend on the choice

of a gauge-fixing condition [21,26]. This important feature follows from the fact that the classical
equations of motion and the the divergences in this theory have different number of metric derivatives.
Again, for N ≥ 3, these universal beta-functions are exact.

Overall, one can see that, from the theoretical side, there are positive and negative aspects of
introducing the higher derivative terms in quantum gravity. A consistent theory which is supposed
to work at arbitrary energy scale cannot be constructed without at least fourth derivatives. If the
higher derivative terms are included, then the tree-level spectrum will include massless graviton and
massive spin-2 “ghost” with negative kinetic energy and huge mass. If we do not include the higher
derivative terms into classical action, they will emerge with infinite coefficients and (most relevant)
with logarithmically running parameters. In any case, the nonphysical ghosts come back.



Universe 2018, 4, 91 6 of 16

Thus, we can reach the following general conclusion: there is no way to live with ghosts and,
on the other hand, there is no way to live without ghosts. The situation looks like a strange puzzle.
However, parallel to this strange conclusion there is one absolutely certain thing. As a matter of fact
the world exists, we live, and so there must be some explanation and resolution of the mentioned
puzzle, of course.

The standard (for some people, at least) logic to solve this issue is to consider, by definition,
all higher derivative terms to be small perturbations [27–30]. In this approach, all higher derivative
terms, including the terms in the classical action which are subject of renormalization, local and
nonlocal quantum corrections, running parameter, etc., are regarded as small perturbations over the
basic Einstein–Hilbert term of GR. Certainly, this approach is efficient in fighting ghosts. However,
the bad news is that it is a completely ad hoc approach. Furthermore, it is based on the approximation
which is efficient only for the energies which are much below the Planck scale. This is not what
we expect from the “theory of everything”, such as QG. As far as we approach the Planck energies,
the higher derivative terms cannot be treated as small. Another disadvantage is that this ad hoc
procedure brings a lot of ambiguity. For instance, how should we treat the R2 term? Taking it as
perturbation is somehow groundless, since it does not make ghosts. At the same time, from the
dimensional and conceptual viewpoints, there is no apparent difference between R2 and R2

µν terms,
so why should they be treated differently? Worst than that, by treating R2 term as perturbation, we are
forced to “forbid” the Starobinsky model of inflation, which is phenomenologically very successful.
Let us stress that this inflationary model is essentially based on treating R and R2 terms at the equal
level, and not taking the last one as a perturbation.

Another important issue is what to do with R3, RRµνRµν, and other similar terms. Why should
we treat all such terms as perturbations? Because they have higher derivatives? Regardless of the fact
they do not produce ghosts? What is the rule of splitting the action into the main part and perturbation?

We may think that, if the criterium is dimension, then this approach means that we assume that
quantum gravitational phenomena are relevant only far below the Planck scale. Let us repeat, this is
something opposite to what we expect from QG, since the original motivation was to deal with the
Planck energies.

4. Ghosts in String Theory and in the Non-Polynomial Quantum Gravity

Let us consider two examples of ghost-free HD models of gravity. Both models can be seen as
different representations of string or superstring theory. In string theory, the object of quantization is a
kind of non-linear sigma-model in two space-time dimensions. In this case, both metric and matter
fields are induced, implying unification of all fundamental forces. The sigma-model approach to string
theory (we consider only bosonic case) is a QFT in 2D curved space,

Sstring =
∫

d2σ
√

g
{

1
2α′

gµνGij(X)∂µXi∂νX j (21)

+
1
α′

εµν

√
g

Aij(X)∂µXi∂νX j + B(X)R + T(X)

}
, i, j = 1, 2, ..., D .

In the Polyakov approach, the conditions of anomaly cancellation emerge order by order in
α′. This expansion corresponds to the special order of functional integration and to the low-energy
effective action which corresponds to the growing orders of metric derivatives [31]. The critical
dimensions are

D = 26 for bosonic string and D = 10 for superstrings.

At the first order in α′, the effective equations give induced GR [32–34], coming from the condition
of Weyl invariance of string at the quantum level. In the second order in α′, the low-energy effective
action already has the same fourth order in derivatives terms, which we already met in QG. However,
in string theory there one extra possibility. Namely, one can use special reparameterization of the
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metric Gµν to remove ghosts at all orders in α′. In the simplest torsionless case, the effective action can
can be written as

SM =
2
κ2

∫
dDx
√

G e−2φ
{
− R + 4 (∂φ)2 + α′

(
a1RλµνρRλµνρ + a2RµνRµν + a3R2)}+ ... , (22)

where the dilation φ is related to the B(X) in Equation (22). Now, to remove ghosts, one performs
reparameterization of the background metric Gµν as follows:

Gµν −→ G′µν = Gµν + α′
(
x1 Rµν + x2 R Gµν

)
+ ... , (23)

where x1,2,... are specially tuned parameters [35–37].
It is important to note that the reparameterization in Equation (23) does not affect string S-matrix,

because it does not concern quantum fields [35–37]. At the same time, the coefficients x1, x2, x3, . . .
can be chosen in such a way that the effective low-energy theory of metric becomes free of massive
unphysical ghosts. For instance, the fourth derivative terms combine into the Gauss–Bonnet term in
Equation (5), namely ∫

dDx
√

G
{

RλµνρRλµνρ − 4RµνRµν + R2
}

, (24)

which is topological for 4D but does not contribute to the propagator in any space-time dimension D.
The same is true for the combination with extra factors of �,∫

dDx
√

G
{

Rλµνρ�
nRλµνρ − 4Rµν�nRµν + R�nR

}
, (25)

which may be achieved in the higher orders in α′ by correctly tuning higher order coefficients x3,4,....
As a result, the theory of string produces induced gravity which is free of ghosts and has no issues with
renormalizability, since gravity is all induced. All this means that string theory solves the problem of
QG in a satisfactory way, of course if we believe that gravity should be induced from string.

It is worthwhile, however, to look into further details of the scheme described above. The first
observation is that the reparameterization in Equation (23) is ambiguous and this actually produce
ambiguous physical solutions, e.g., in cosmology [38]. For instance, the terms of the form f (R) can
be arbitrarily changed or removed by this transformation, and this ambiguity and, in general, f (R),
do not affect the presence of ghosts at all. One can note, for example, that the most successful model
of inflation by Starobinsky [39] requires the R2 term with the well-defined coefficient. Then we have
to tune the parameter x2 in Equation (23) such that, after the compactification of extra dimensions,
one can provide this desirable value of the coefficient of R2, instead of making it zero.

Even more subtle point is that the effectively working ghost-killing transformation in Equation (23)
must be absolutely precise. An infinitesimal change in the fine-tuning of the parameters x1,2,3,4,... would
immediately create a ghost with a huge mass. Moreover, smaller violation of the absolutely precise
fine-tuning leads to a greater mass of the ghost, hence (according to a “standard wisdom”) a smaller
violation of the fine-tuning produces a greater gravitational instability.

Furthermore, we know from all our experience in Physics that at low energies quantum effects
are described, e.g., by QFT, and not by string theory. Even higher loop corrections in QED eventually
lead to the small violation of the absolutely precise ghost-killing transformation in Equation (23) and
produce a huge destructive ghost, as explained above. Hence, string theory is ghost-free and unitary
theory of QG, but only if it completely controls all QFT effects, even in the deep IR. It means that string
theory must be a real and complete theory of everything to be a consistent theory of QG. The reality of
such a control is not obvious, in our opinion.
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The second example is an interesting alternative to the original Zwiebach transformation in
Equation (23). In the non-local theory [40]

S = − 1
2κ

∫
d4x
√
−g

{
R + Gµν

a(�)− 1
�

Rµν
}

, a(�) = e−�/m2
. (26)

there are no ghosts, regardless of the presence of infinite derivatives in the action (an interesting
discussion of physical spectrum and Cauchy problem in the theories of this kind is recently
given in [41,42]).

In this and similar theories, propagator of metric perturbations has a single massless pole,
corresponding to gravitons. With this choice, there are no ghosts. The idea is to use Zwiebach-like
transformation in Equation (23), but arrive at the non-local theory in Equation (26), which is
non-polynomial in derivatives, instead of “killing” all higher derivatives that one can kill. From the
viewpoint of string theory, this means we have one more ambiguity in the effective low-energy action
of gravity.

However, the same action can be used in a distinct way. There is a proposal to use the same
kind of non-local models to construct superrenormalizable and unitary models of QG [43–46]. In such
a theory, the propagator is defined by terms bilinear in curvature,

S =
∫
x

{
− 1

κ2 R +
1
2

Cµναβ Φ(�)Cµναβ +
1
2

R Ψ(�) R
}

. (27)

The equation for defining the poles is,

p2
[
1 + κ2 p2Φ(−p2)

]
= p2 eαp2

= 0. (28)

In this particular case, there is only a massless pole corresponding to gravitons. However,
unfortunately, it is impossible to preserve the ghost-free structure at the quantum level [47]. Typically,
after taking the loop corrections into account, in the dressed propagator, there are infinitely many
poles on the complex plane. In this sense, the ghost-free structure of the theory cannot be preserved
beyond the tree level.

Thus, we can make a conclusion that there is no way to live without ghosts in QG. In all three
fundamental approaches to QG, namely semiclassical, legitimate QG, and induced gravity/strings,
there is no reasonable way to get rid of massive ghost-like states.

At this stage, we can only repeat that there is apparently no way to live with ghosts, since their
presence implies instability of all classical gravitational solutions and violation of unitarity. In other
words, at both classical and quantum level, ghosts do not enable one to have a consistent theory.
Therefore, we have a deep conflict between renormalizability and unitarity/stability. At the moment,
there is no solution of this great puzzle, but in what follows we present some recent advances in its
better understanding.

5. Complex Poles: Old Expectations in the New Setting

The importance of higher derivatives in semiclassical and quantum gravity has been fully
recognized since the early 1960s [48], and the bad features of ghosts was completely clear more
than 50 years ago [13]. Since then, there are numerous proposal on solving the contradiction between
renormalizability and unitarity in QG. In particular, there is a promising idea that ghosts may become
complex after taking the loop contributions into account. This means that there can be only complex
“massive” poles in the dressed propagator [17–19]. Such poles always come in complex conjugate
pair, which opens interesting possibilities, related to the Lee–Wick quantization scheme (let us note
that another, different approach to deal with ghosts was suggested by Hawking and Hertog [20]).
Similar approaches to solve the problem of higher derivative massive ghosts in fourth derivative QG
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are discussed in [49] and reviewed in [50]. In the last reference, it is shown that the definitive answer
on whether this mechanism works can be obtained only on the basis of the full non-perturbative
dressed propagator of the gravitational perturbations. One-loop effects of matter fields and proper
gravity, large-N approximation and lattice-based considerations indicated an optimistic picture,
but unfortunately all of these results are not conclusive, as explained in [50]. As we do not have
completely reliable nonperturbative approach to QG, the chances of obtaining complete information
about the exact dressed propagator look rather remote (let us mention an interesting attempt [51] to
use Functional Renormalization group method for this end). However, do we always need so much to
analyze the structure of the dressed propagator?

Starting from [17–19], the main hope for the “minimal” fourth-derivative QG was that the real
ghost pole splits into a couple of complex conjugate poles under the effect of quantum corrections.
We cannot control the position of these complex poles in the dressed propagator, since the higher loop
corrections can be complicated, essential and difficult to evaluate. However, for the theory of QG with
six or more derivatives [21], this is not necessary at all! In this case, one can simply start from the
tree-level theory which has complex conjugate massive poles from the very beginning, and hence there
is no need to rely on the precise knowledge of a dressed propagator. In this way, one can successfully
construct the theory of quantum gravity which is both unitary and superrenormalizable [52] (see also
generalization for an arbitrary dimension in [53]).

Furthermore, one can prove that, in this model, the unitary also holds at the quantum level,
in particular because, in such a superrenormalizable model, one can guarantee that the position of
the poles in the dressed propagator will be qualitatively the same as in the tree level theory. Further
features of this kind of models, such as reflection positivity, has been discussed recently in Refs. [54,55],
with somehow contradicting results. Therefore, in what follows we briefly review only the safe and
certain result of [52].

For the sake of simplicity, we consider only six-derivative models, as done in [52]. It proves useful
to write the six derivative action in a slightly different form,

S = − 2
κ2

∫
d4x
√
−gR −

∫
d4x
√
−g
{α

2
CµναβΠ2Cµναβ + αω RΠ0R

}
, (29)

where Π0,2 = Π0,2
(
�
)
= 1 + ... are polynomials of the first order. In the momentum representation,

one can write

Π2(p2) = 1 +
p2

2A2
, Π0(p2) = 1 +

p2

2A0
, (30)

where A0 and A2 are constants of the mass2 - dimension.
The part of the action which is quadratic in the perturbations, κhµν = gµν − ηµν, has the form

S(2)
red = −

∫
d4x
{1

2
hµν
[ακ2

2
Π2
(
∂2)∂2 − 1

]
∂2 P(2)

µν, ρσ hρσ (31)

+ hµν
[
αωκ2Π0

(
∂2)∂2 − 1

]
∂2 P(0−s)

µν, ρσ hρσ
}

,

where

P(0−s)
µν, ρσ =

1
3

θµν θρσ , P(2)
µν, ρσ =

1
2
(
θµρ θνσ + θνρ θµσ

)
− P(0−s)

µν, ρσ , (32)

are projectors of the spin-0 (scalar) and spin-2 (tensor) modes, and

θµν = ηµν −
∂µ∂ν

∂2 . (33)
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After the Wick rotation, the equations for the poles are

αΠ2(p2)p2 = 2M2
P , αω Π0(p2)p2 = M2

P . (34)

Now, the solution for the tensor part (scalar sector can be elaborated in a similar way) is

p2 = m2
2 = −A2 ±

√
A2

2 +
4A2M2

P
α

. (35)

One can distinguish two possible cases in this solution.

(i) Two real positive solutions 0 < m2
2+ < m2

2−.

(ii) Two pairs of complex conjugate solutions for the mass.

In the theory of the field hαβ, the condition of unitarity of the S-matrix can be formulated in a
usual way,

S†S = 1 , or S = 1 + iT and − i(T − T†) = T†T . (36)

By defining the scattering amplitude as

〈 f |T|i〉 = (2π)D δD(pi − p f ) Tf i (37)

we arrive at

−i
(

Tf i − T∗i f

)
= ∑

k
T∗k f Tki . (38)

If we assume that for the forward scattering amplitude i = f , the previous equation simplifies to

2 Im Tii = ∑
k

T∗ik Tik > 0 . (39)

The detailed analysis of tree-level, one-loop and multi-loop diagrams shows that the relation in
Equation (39) is satisfied because massive poles always show up in complex conjugate pairs.
The analysis performed in Reference [52] is mainly at the tree-level, but the complete proof of unitarity
can be done on the basis of the O(N) scalar model within the Lee–Wick approach, as considered
in [56,57], and especially in [58,59]. The proofs of [59] directly apply to the higher derivative gravity
superrenormalizable QG with complex massive poles. Finally, we can conclude that this QG theory
is unitary, but there may be a violation of causality at the microscopic time scales, defined by the
magnitude of masses.

6. Ghost-Induced Instabilities in Cosmology

The unitarity of the S-matrix cannot be regarded as the unique condition of consistency of the QG
theory. Even more than that: since gravity is essentially a non-polynomial theory, unitarity cannot be
seen even as the most relevant consistency condition. The main requirement should be the stability of
physically relevant solutions of classical general relativity in the presence of higher derivatives and
massive ghosts.

The study of stability of the general gravitational solutions in the presence of higher derivatives
does not appear to be a realistic problem to solve. There are a few publications [60,61] (see also [62])
with conflicting results concerning the stability of Schwarzschild solution in fourth-order gravity.
The study of this subject is very complicated and cannot be described in this short review. Hence,
we concentrate on the stability on the cosmological background which is much better explored.
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The problem has been explored in several old and newer publications, for different cosmological
backgrounds. In the case of gravitational waves on de Sitter space and the typical energy of the wave
much below Mp, the situation is described in [63–65] and in a more detailed and elaborated form,
with the special attention to the role of higher derivatives, in [66]. Recently, the case of more general
cosmological backgrounds has been reported in Ref. [1] (see also a short review in [67]). Let us start by
explaining these results.

6.1. Perturbations: Low Values of k

The main conclusion of [1] is that the absence of growing modes in the fourth derivative theory
holds if only if the initial seeds of the gravitational perturbations have frequencies below the threshold
which is of the order of Planck mass. The situation is illustrated in Figure 1 for the specific case of
radiation-dominated Universe.

2000 4000 6000 8000
t

- 6000

- 4000

- 2000

0

2000

4000

6000
h H t L

k = 0.45

k = 0.43

k = 0.41

50 100 150 200
t

- 200 000

-100 000

0

100 000

200 000
h H t L

k = 0.54

Figure 1. The solution with growing modes appear only starting from k = 0.54 MP.

One can observe in Figure 1 that there are no growing modes, until the frequency k achieves the
value ≈0.54 in the Planck units. Starting from this value, we observe instability due to the effect of
massive ghost. Our interpretation of this result is that the ghost is present in the spectrum of the theory,
but if there is no real ghost in the universe, there is no instability. The massive ghost cannot be created
from the vacuum if the density of gravitons does not approach the Planck density which is required to
create a ghost from the vacuum state.

Of course, the concentration of gravitons of the Planck order of magnitude is not forbidden by all
known physical laws. Hence, we can expect that some new laws should be discovered to resolve the
problem of consistent QG. We can see that these new laws must forbid the Planck order density of
gravitons to resolve the issue, at least for the case of a cosmological background.

Let us note that the semiclassical (anomaly-induced) corrections were also considered [1]. As these
corrections are at least O(R3

...), it is natural that the qualitative result for the Planck order threshold
for stability does not change. The reason is that, until the energy of the gravitational perturbations
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does not approach the Planck order of magnitude, these corrections cannot compete with the classical
O(R2

...)-terms and, e.g., their running.
To illustrate better the existence of the Planck threshold, we included the 3D plot in Figure 2.

Figure 2. In this plot, we use the units MP = 1 and the values a1 = −1 and H = MP. The tensor
perturbation mode h is shown as function of time t and of the initial frequency k. Until the values of k
are small, there are no strongly growing solutions. However, when k gets closer to the Planck scale,
the perturbations start to explode because of the high derivatives terms.

In this figure, one can observe perturbation h as function of time and of the initial frequency k.
In the 3D plot, one can observe a “normal” oscillation for small values of k, and then the solution
explodes abruptly for k close to the Planck mass scale. Apparently, for the values k > MP, there are
run-away solutions.

6.2. Perturbations: High Values of k

Thus, we have a generally optimistic situation for the sub-Planckian frequencies. Indeed, this is
not a really nice situation, from the general perspective. The remaining question is: What can we do
with ghosts in the case of Planck order or greater frequencies? To answer this question, let us follow [2]
and take a look at the simplest possible equation for the fourth-derivative gravity without quantum or
semiclassical corrections,

1
3

h(IV) + 2Hh(III) +
(

H2 +
M2

P

32πa1

)
ḧ +

1
6
∇4h
a4 −

2
3
∇2ḧ
a2 −

2H
3
∇2ḣ
a2

−
(

HḢ + Ḧ + 6H3 −
3M2

P
H

32πa1

)
ḣ−

[ M2
P

32πa1
− 4

3

(
Ḣ + 2H2

) ]∇2h
a2

−
[
24ḢH2 + 12Ḣ2 + 16HḦ +

8
3

H(III) −
M2

P

16πa1

(
2Ḣ + 3H2

) ]
h = 0.

It is easy to note that the space derivatives ∇ and hence the wave vector k enter this equation
only in the combination

q =
k

a(t)
. (40)

When the universe expands, the frequency becomes smaller. This qualitative conclusion is
supported by numerical analysis described in Ref. [2], including the model with semiclassical
corrections taken into account.
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In Figure 3, one can see that the growth of the gravitational waves with transplanckian frequencies
really stops at some point. At least in the cosmological setting this may be a solution of the
general problem.

0 1000 2000 3000 4000 5000

- 2 ´ 10 6

-1 ´ 10 6

0

1 ´ 10 6

2 ´ 10 6

t= tph M pl

Èh
Ht
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-1000
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Figure 3. In the case of radiation a ∼
√

t background and transplanckian frequencies, there is an
explosive growth of perturbations that stabilize soon after they start. In these two plots, we use MP

(normalized), a1 = −1, H = 10−3 MP and k = 4, 1.

In this case, we have k ≥ MP in the gravitational theory with high derivatives terms. Unlike the
previous case of relatively small frequencies, one can observe the effects of ghosts, since the run-away
solutions almost instantly appear. However, after a while, these solutions become damped, because
the effective frequency tends to decrease due to the fast expansion of the universe.

7. Conclusions

Let us make a few concluding statements about the situation with ghosts which was
described above.

(i) We know that there is no way to have semiclassical or quantum gravity without higher derivatives.
The effective approaches imply treating higher derivatives as small perturbations over the basic
theory which is GR with the cosmological constant. However, this treatment has several weak
points. First, is it completely ad hoc and does not follow from the QFT logic, quite different
from the situation in QED, where higher derivatives emerge only in the loop corrections,
the corresponding terms do not run and treating them as small corrections does not lead to
inconsistencies at the energy scales where the theory is supposed to work. The situation in QG is
completely different, because the last is supposed to apply up to the Planck energies.

(ii) Higher derivatives mean ghosts and instabilities. However, in the closed system, the problem
can be solved because there is no energy to provide a global and total explosion of ghost or even
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tachyonic ghost modes (Lee–Wick approach). This way of thinking provides the theory which is
formally superrenormalizable and unitary at the same time. However, this does not solve the
problem of stability, which remains open. The main reason is that the real gravitational systems
are not closed, and the metric perturbations propagate on the non-trivial backgrounds of classical
gravitational solutions. Therefore, one needs an essential completion, or supplement to the proof
of unitarity. This means we need a new insight about how the stability problem can be solved.

(iii) The analysis of linear stability on the cosmological background shows that the perturbations with
the initial seeds with the frequencies below the Planck-order threshold do not grow. The natural
interpretation of this fact is that, without the Planck-order density of gravitons, one cannot create
ghost from the vacuum.

Perhaps there is some unknown principle of Physics which forbids Planck-scale concentration
of gravitons? Some discussion of the physical consequences of such a principle has been recently
discussed in the literature [68,69].

The restriction on the initial frequencies can be violated for the Planck-scale background,
which “opens” the phase space of quantum states and enables the production of instabilities. However,
after that, the expansion of the universe reduces the frequencies and the instabilities become stabilized.
This specific behaviour of perturbations in the theories with higher derivatives creates a hope to
observe the traces of these theories in observations of transplanckian effects, as discussed in [70–72].
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