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Abstract: We calculate the strongly intensive observables for multiplicities in two rapidity windows
in the model with independent identical strings taking into account the charge sign of particles.
We express the observables through the string pair correlation functions describing the correlations
between the same and opposite sign particles produced in a string decay. We extract these charge-wise
string two-particle correlation functions from the ALICE data on the forward-backward correlations
and the balance function. Using them we predict the behavior of the charge-wise strongly intensive
observables in the model with independent identical strings. We also show that the observable
between multiplicities in two acceptance windows separated in rapidity, which is a strongly intensive
in the case with independent identical strings, loses this property, when we take into account string
fusion effects and a formation of strings of a few different types takes place in a collision. We predict
the changes in the behaviour of this observable with energy and collision centrality, arising due to the
string fusion phenomena.

Keywords: hadronic interactions; high energy; multiparticle production; quark-gluon strings;
multiplicity correlations; strongly intensive observables

1. Introduction

It is known that the investigations of long range rapidity correlations give the information about
the initial stage of high energy hadronic interactions [1]. Therefore, to find a signature of the string
fusion and percolation phenomenon [2–4] in ultrarelativistic heavy ion collisions the study of the
correlations between multiplicities in two separated rapidity intervals, known as the forward-backward
(FB) multiplicity correlations, was proposed [5].

Later it was realized [6–9] that the investigations of the FB correlations involving intensive
observables in forward and backward observation windows, as e.g., the event-mean transverse
momentum, enable to suppress the contribution of trivial “volume” fluctuations [10], originating from
fluctuations in the number of initial sources (strings) and to obtain more clear signal on the process of
string fusion, compared to usual FB multiplicity correlations.

In the present work, we explore another way to suppress the contribution of the “volume”
fluctuations, passing to the more sophisticated correlation observable. In quark-gluon string model we
calculate the strongly intensive variable

Σ(nF, nB) ≡ [〈nF〉ωnB
+ 〈nB〉ωnF

− 2 cov(nF nB)]/[〈nF〉+ 〈nB〉] (1)
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for the charged particles multiplicities nF and nB in forward and backward rapidity windows,
introduced like in [11,12] to suppress the contribution of the "volume" fluctuations in hadronic
interactions at high energy (ωn = Dn/〈n〉 is a scaled variance).

We express this observable through the fundamental characteristics of a string: the multiplicity µ0

per unit of rapidity and the two-particle correlation function Λ(η1 − η2), describing the fragmentation
of a single string (see Formula (6) below). We confirm the strongly intensive character of the observable
in the case with fluctuating number of identical strings. It does not depend on the average number of
strings, nor on the magnitude of event-by-event fluctuation of their number.

We also consider the strongly intensive observable (1) taking into account the particle charge
sign. In the case of charge symmetry, which is a very good approximation for mid-rapidity region at
LHC collision energies, these charge-wise strongly intensive observables are expressed through the
string pair correlation functions for particles of the same and opposite signs, Λsame(∆η) and Λopp(∆η).
We get information about these two functions from the ALICE data on the FB correlations [13,14] and
the balance function [15], using the relations (11) and (34). Finally, using these two-particle correlation
functions of a string, we calculate the charge-wise strongly intensive observables Σ(n+

F , n+
B ), Σ(n−F , n+

B )

and Σ(n+
F , n−F ).

We would like also to note that the variable Σ(nF, nB), introduced by the Formula (1), is definitely
not the only way to introduce the robust observable suppressing the trivial “volume” fluctuations.
As an example, the application of the nonextensive statistical mechanics approach [16] to the
multi-particle production was a great success. It allows a successful description of such subtle effects
as particle rapidity distributions, an intermittence and fractal dimensions [17,18]. In particular this
approach enables the description of particle transverse momentum distributions in the entire range of
momenta, simultaneously in ’soft’ and ’hard’ regions, by the Tsallis-Pareto distribution [19]. However,
the present paper considers only the multi-particle production in soft processes, which dominates
in the total inelastic cross-section, and which can be described in the framework of a string model.
We will also study the properties only of the strongly intensive observable defined by (1), leaving the
remaining options for future research.

2. The Model with Independent Identical Strings

In this paper we restrict our consideration to a simple case of the model with independent identical
strings [20]. In this model we suppose that the number of strings, N, fluctuates event by event around
some mean value, 〈N〉, with some scaled variance, ωN = DN/〈N〉.

To characterize the properties of a single string we introduce the single and double distributions of
particles produced from a single string fragmentation and the string two-particle correlation function
defined by a standard way (see e.g., [21]):

λ(η) ≡ dNch
dη

, λ2(η1, η2) ≡
d2Nch

dη1 dη2
, Λ(η1, η2) ≡

λ2(η1, η2)

λ(η1)λ(η2)
− 1 . (2)

In mid-rapidity region at LHC energies we assume the translation invariance in rapidity for the
string characteristics. Then

λ(η) = µ0 , λ2(η1, η2) = λ2(η1−η2) , Λ(η1, η2) = Λ(η1 − η2) . (3)

For symmetric 2π-azimuth rapidity observation windows δηF = δηB ≡ δη and a symmetric
reaction the definition of the strongly intensive variable (1) can be simplified to

Σ(nF, nB) = ωn − cov(nF, nB)/〈n〉 = [Dn − cov(nF, nB)]/〈n〉 = [〈n2〉 − 〈nFnB〉]/〈n〉 , (4)

where we imply that the observation windows δηF and δηB are separated by a rapidity gap ηgap,
which corresponds to the distance ∆η = ηgap + δη between their centers. Clear that for symmetric
reaction we have 〈nF〉 = 〈nB〉 ≡ 〈n〉 and ωnF

= ωnB
≡ ωn
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For small observation windows, of a width δη � ηcorr, where the ηcorr is the characteristic
correlation length for particles produced from the same string, we have shown in [14] that in the
framework of the model with independent identical strings:

ωn = Dn/〈n〉 = 1 + µ0δη [Λ(0) + ωN ] , cov(nF, nB)/〈n〉 = µ0δη [Λ(∆η) + ωN ] , (5)

where ∆η = ηF−ηB is a distance between the centers of the forward an backward observation
windows. Then by (4) we find

Σ(nF, nB) = 1 + µ0δη [Λ(0)−Λ(∆η)] . (6)

By (6) we really see that in the framework of this model the observable Σ(nF, nB) is a strongly
intensive. It is independent of both the mean number of string 〈N〉 and its fluctuation ωN . It depends
only on the string parameters µ0, Λ(∆η) and the width of observation windows, δη. Whereas the
scaled variance ωn, (5), is an intensive, but not a strongly intensive observable, because although it is
independent on the mean number of string 〈N〉, nevertheless through ωN it depends on fluctuation of
their number.

From the Formula (6) we see also the main properties of the Σ(nF, nB), expecting in this model.
Starting from the value 1 it increases with a distance ∆η between the centers of the observation
windows, since the two-particle correlation function of a string Λ(∆η) decrease with ∆η. The extent of
the Σ(∆η) increase with ∆η is proportional to the width of the observation windows δη. More detailed
description of the Σ(nF, nB) needs the knowledge of the two-particle correlation function of a
string Λ(∆η).

3. The Λ(∆η) from Forward-Backward Correlations

In our paper [14] in the framework of the model with independent identical strings this function
was fitted using the experimental pp ALICE data [13] on FB correlations between multiplicities in
windows separated in rapidity and azimuth at three initial energies

Λ(∆η, ∆φ) = Λ1e−
|∆η|
η1 e
− ∆φ2

ϕ2
1 ++Λ2

(
e−
|∆η−η0 |

η2 + e−
|∆η+η0 |

η2

)
e
− (|∆φ|−π)2

ϕ2
2 . (7)

together with the value of scaled variance of the number of strings ωN . For the value of the
parameters see Table 1 in that paper [14]. Recall that the comparison of the model with experimental
data in [14] enables to fix only the product of the parameters µ0Λ1, µ0Λ2 and µ0ωN . In (7) we imply
that |∆φ| ≤ π. For |∆φ| > π the periodic extension is implied.

Our string two-particle correlation functions (2) defined for 2π-azimuth observation windows
can be obtained by simple averaging over azimuth (see [14]):

Λ(∆η) =
1

2π

∫ 2π

0
Λ(∆η, ∆φ) d∆φ . (8)

So by integration of the fit (7) we find the µ0Λ(∆η), shown below by triangulares in Figure 1.
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Figure 1. The results of simultaneous fitting (lines) by Formulas (11) and (34) of the string two-particle
correlation function µ0Λ(∆η) − M, extracted in [14] from the ALICE data [13] on the FB correlations
(see Section 3), and the balance function B(∆η) - ◦, measured by ALICE [15] in pp collisions at 7 TeV.

4. Σ with Charges

In Section 1 we have introduced the strongly intensive observable Σ based on multiplicities of the
all charged hadrons measured in two rapidity intervals. Now we consider various combinations of
electric charges in these windows and similarly to Formula (1) we can define Σ(n+

F , n+
B ), Σ(n−F , n−B ),

Σ(n+
F , n−B ) and Σ(n−F , n+

B ). We can also introduce an additional strongly intensive observable that
measures correlation between multiplicities of different charges in the same window Σ(n+

F , n−F ) and
Σ(n+

B , n−B ) [22].
For symmetric reaction and symmetric windows (F � B invariance) we have 〈n+

F 〉 = 〈n
+
B 〉 ≡

〈n+〉, ωn+
F
= ωn+

B
≡ ωn+ and the same for n−. In this case we have also cov(n+

F , n−F ) = cov(n+
B , n−B ),

cov(n+
F , n−B ) = cov(n−F , n+

B ).
In case of additional charge symmetry (+ � − invariance), we have 〈n+〉 = 〈n−〉 = 〈n〉/2,

ωn+ = ωn− , cov(n+
F , n+

B ) = cov(n−F , n−B ), what is a very good approximation for mid-rapidity region
at LHC collision energies. In this approximation we have for the distributions and two-particle
correlation functions describing decay properties of a string:

λ+(η) = λ−(η) = λ(η)/2 = µ0/2 , (9)

Λ++(∆η) = Λ−−(∆η) ≡ Λsame(∆η) , Λ+−(∆η) = Λ−+(∆η) ≡ Λopp(∆η) , (10)

where we also have taken into account the translation invariance, which takes place in mid-rapidity
region at LHC energies. Easy to check that by definition (2)

Λ(∆η) = [Λopp(∆η) + Λsame(∆η)]/2 . (11)

For small observation windows in this approximation we find:

Σ(n+
F , n+

B ) = 1 + µ0δη[Λsame(0)−Λsame(∆η)]/2 , Σ(n+
F , n−B ) = 1 + µ0δη[Λsame(0)−Λopp(∆η)]/2 , (12)

Σ(n+
F , n−F ) = 1 + µ0δη[Λsame(0)−Λopp(0)]/2 . (13)

We see that as expected by analogy with (6) the Σ(n+
F , n+

B )→ 1 at ∆η → 0, however the Σ(n+
F , n−B )

tends to be equal to Σ(n+
F , n−F ) and not to 1 in this limit. Please note that combining (12) and (13) and

using the Formulas (6) and (11) we can obtain the following relation

Σ(nF, nB) = Σ(n+
F , n+

B ) + Σ(n+
F , n−B )− Σ(n+

F , n−F ) . (14)
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5. Connection with Balance Function

To obtain the correlation functions Λsame(∆η) and Λopp(∆η) separately we need some additional
experimental information, as the FB correlations, used above, depend by (11) only on the sum
of these two correlation functions. We use for this purpose else the recent results obtained by
ALICE collaboration on the so-called balance function B(∆η, ∆φ) [15]. In this paper the balance
function is defined to be proportional to the difference between unlike-sign and like-sign two-particle
correlations functions:

B(∆η, ∆φ) ≡ [c+− + c−+ − c++ − c−−]/2 , (15)

where, for example, the correlation function c+− in this paper is defined as follows

c+− ≡
S+−
f+−

, S+− ≡
1

〈N+
trig〉

d2Nsame
+−

d∆η d∆φ
, f+− ≡ α

d2Nmixed
+−

d∆η d∆φ
. (16)

Here the S+− is a “signal”, obtained from particle pair distribution. It is normalized by a mean
number of a trigger (positive) particles. The f+− is a “background”, obtained by the event mixing
procedure. The coefficient α is used to normalize the mixed-event distribution to unity in its maximum.

For a comparison with these experimental data we have to calculate the quantity B(∆η, ∆φ),
defined as in Formula (15) and (16), in the framework of our model. The c+− can be expressed through
the standard two-particle distribution ρ+−2 (η1, φ1; η2, φ2) (see e.g., Appendix C in [14]):

d2Nsame
+−

d∆η d∆φ
=
∫ π

−π
dφ1

∫ π

−π
dφ2

∫ Y/2

−Y/2
dη1

∫ Y/2

−Y/2
dη2 ρ+−2 (η1, φ1; η2, φ2) δ(η1 − η2 − ∆η) δ(φ1 − φ2 − ∆φ), (17)

which is normalized as follows∫ π

−π
dφ1

∫ π

−π
dφ2

∫ Y/2

−Y/2
dη1

∫ Y/2

−Y/2
dη2 ρ+−2 (η1, φ1; η2, φ2) = 〈n+n−〉 . (18)

For the d2Nmixed
+− /d∆η d∆φ in the background f+− we have the same formula as (17), but with

the replacement
ρ+−2 (η1, φ1; η2, φ2)→ ρ+(η1, φ1)ρ

−(η2, φ2) . (19)

The normalization conditions for one-particle distributions are as follows

∫ π

−π
dφ
∫ Y/2

−Y/2
dη ρ+(η, φ) = 〈n+〉 ,

∫ π

−π
dφ
∫ Y/2

−Y/2
dη ρ−(η, φ) = 〈n−〉 . (20)

The standard two-particle correlation function C+−
2 is defined as (see e.g., [21]):

C+−
2 (η1, φ1; η2, φ2) ≡

ρ+−2 (η1, φ1; η2, φ2)

ρ+(η1, φ1)ρ−(η2, φ2)
− 1 . (21)

If translation invariance in rapidity takes place, then we have the constant one-particle distributions:

ρ+(η, φ) = ρ+0 /(2π) , ρ−(η, φ) = ρ−0 /(2π) , (22)

and
ρ+−2 (η1, φ1; η2, φ2) = ρ+−2 (∆η, ∆φ)/(2π)2 (23)

(see Formula (18) in [14]). Then the standard two-particle correlation function C+−
2 is reduced to

C+−
2 (η1, φ1; η2, φ2) =

ρ+−2 (∆η, ∆φ)

ρ+0 ρ−0
− 1 = C+−

2 (∆η, ∆φ) . (24)
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In translation invariant case we can perform integration over (η1 + η2)/2 and (φ1 + φ2)/2 in (17).
As a result we find:

S+− =
1

〈N+
trig〉

ρ+−2 (∆η, ∆φ)

(2π)2 t2π(∆φ) tY(∆η) , (25)

where the tδy(y) is the phase space triangular weight function (see Appendix A in [14]):

tδy(y) = [θ(−y)(δy + y) + θ(y)(δy− y)] θ(δy− |y|) . (26)

Doing the integrations we implied that as indicated in Formula (17) φ1 ∈ (−π, π), φ2 ∈ (−π, π)

and hence φ1− φ2 ≡ ∆φ ∈ (−2π, 2π). If we now, taking into account the 2π-periodicity of the function
ρ+−2 (∆η, ∆φ), choose any fixed 2π period ∆φ ∈ (φ0, φ0 + 2π), as a region of the ∆φ variation, and
reduce the other values of ∆φ to this interval, then instead of (25) we get

S+− =
1

ρ+0 Y
ρ+−2 (∆η, ∆φ)

2π
tY(∆η) , (27)

where we have used that t2π(∆φ− 2π) + t2π(∆φ) + t2π(∆φ + 2π) = 2π. We have used also here that
N+

trig = 〈n+〉 = ρ+0 Y.
Similarly for f+− we find

f+− = α
ρ+0 ρ−0

2π
tY(∆η) . (28)

The normalization constant α for the background can be found from the condition that f+− must
be equal 1 in the maximum, where tY(0) = Y, what gives α = 2π/(ρ+0 ρ−0 Y). Gathering we get

c+− =
ρ+−2 (∆η, ∆φ)

2πρ+0
=

ρ−0
2π

[
C+−

2 (∆η, ∆φ) + 1
]
=

ρ0

4π

[
C+−

2 (∆η, ∆φ) + 1
]

. (29)

In last transition we took into account the charge symmetry, ρ+0 = ρ−0 = ρ0/2, which takes place
in mid-rapidity region at LHC energies. Substituting this and the simular expressions for c−+, c++

and c−− into (15) we get for the balance function

B(∆η, ∆φ) =
ρ0

8π

[
C+−

2 + C−+2 − C++
2 − C−−2

]
=

ρ0

4π

[
Copp

2 (∆η, ∆φ)− Csame
2 (∆η, ∆φ)

]
. (30)

We have used that under charge symmetry C+−
2 = C−+2 = Copp

2 and C++
2 = C−−2 = Csame

2 .
In paper [14] it was shown that in the model with independent identical strings the observed

two-particle correlation function C2 was expressed through the two-particle correlation function Λ of
a single string, as follows

Csame
2 (∆η, ∆φ) =

Λsame(∆η, ∆φ) + ωN
〈N〉 , Copp

2 (∆η, ∆φ) =
Λopp(∆η, ∆φ) + ωN

〈N〉 . (31)

Substituting them into (30) we find

B(∆η, ∆φ) =
µ0

4π
[Λopp(∆η, ∆φ)−Λsame(∆η, ∆φ)] , (32)

where we have used that ρ0/〈N〉 = µ0.
The rapidity projection of the B(∆η, ∆φ) can be found from the ALICE data [15], as a sum of the

near- and away-side contributions:

B(∆η) = B near(∆η) + B away(∆η) , (33)

which are defined in the ALICE paper, as follows
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B near(∆η) ≡
∫ π

2

− π
2

B(∆η, ∆φ) d∆φ , B away(∆η) ≡
∫ 3π

2

π
2

B(∆η, ∆φ) d∆φ .

Taking into account our definition (8) of the Λ(∆η), which corresponds the definition in paper [14]
we get from (32)

B(∆η) =
µ0

2
[Λopp(∆η)−Λsame(∆η)] , (34)

It is important to take into account that the authors of the ALICE paper [15], defining by the
di-hadron correlation method (16) the two-particle correlation functions, entering the definition of
balance function (15), impose the requirement that the transverse momentum of the “trigger” particle
must be higher than the “associated” one. This corresponds to the normalization by 〈n+n−〉/2 instead
of 〈n+n−〉 in Formula (18). As a consequence we will have a factor µ0/4 instead of µ0/2 in Formula (34)
for such normalization (see remark before the Section 6.1.1 in the paper [15]).

By (11) and (34) we can find the correlation functions Λsame(∆η) and Λopp(∆η) separately. For this
we perform simultaneous fitting of the experimental data on pp collisions at 7 TeV for balance functions
B(∆η) [15] and of µ0Λ(∆η) extracted from FB correlations [13] (see Section 3). As the FB correlations
were measured experimentally for minimum bias pp events, the results on balance functions for
70–80% pp centrality class were selected, assuming that the minimum bias is dominated by the
peripheral collisions.

We use the simplest fit for the unlike-sign two-particle correlation function of a string:

Λopp(∆η) = Λopp
0 exp

(
−|∆η|/ηopp

)
. (35)

For better data fitting of the like-sign two-particle correlation function we have to take into
account else the HBT correlation term, important at small values of ∆η:

Λsame(∆η) = Λsame
0 exp (−|∆η|/ηsame) + ΛHBT

0 exp
[
−(∆η/ηHBT)

2
]

. (36)

The results of the simultaneous fitting of the string two-particle correlation function µ0 Λ(∆η), (11),
extracted in [14] from the ALICE data [13] on FB correlations, and the balance function B(∆η), (34),
measured by ALICE [15] in pp collisions at 7 TeV are presented in Figure 1. This fitting fixes the
parameters in Formulas (35) and (36) for the charge-wise correlation functions of a string: Λopp(∆η)

and Λsame(∆η), as presented in Table 1. We see that as expected the correlation length between opposite
charge particles, ηopp, is smaller then the one between same charge particles, ηsame, due to local charge
conservation in a string fragmentation process.

Table 1. The value of the parameters in Formulas (35) and (36) for the charge-wise correlation functions
of a string: Λopp(∆η) and Λsame(∆η), obtained by the fit procedure, presented in Figure 1.

a opp same HBT
µ0Λa

0 1.16 0.5 0.25
ηa 1.34 1.87 0.33

Now with the found charge-wise correlation functions of a string: Λopp(∆η) and Λsame(∆η) by
Formulas (12) and (13) we can predict the behavior of the charge-wise strongly intensive observables
Σ(n+

F , n+
B ), Σ(n+

F , n−B ) and Σ(n+
F , n−F ) in the model with independent identical strings. In Figure 2

these dependencies are presented for the case of two small observation windows as a function of
rapidity gap ∆η between them. For comparison, the strongly intensive variable Σ(nF, nB) for the full
multiplicities in these windows, given by the Formula (14), is also presented in this figure.

We see that as it was noted in the end of the Section 4 the Σ(n+
F , n−B )→ Σ(n+

F , n−F ) = 0.96 6= 1 at
∆η → 0, whereas the Σ(n+

F , n+
B )→ 1, like the total Σ(nF, nB)→ 1 for full multiplicities.
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Figure 2. The charge-wise strongly intensive variables: Σ(n+
F , n+

B ) ≡ Σ++(∆η) (dotted line) and
Σ(n+

F , n−B ) ≡ Σ+−(∆η) (dash-dotted line) with two small observation windows as a function of
rapidity gap ∆η between them, calculated by formulas (12–13) with the string correlation functions
Λopp(∆η) and Λsame(∆η) obtained by the fit procedure shown in Figure 1. Full line—the strongly
intensive observable Σ(nF, nB) ≡ Σ(∆η) for the full multiplicities in these windows, given by the
Formula (14).

6. String Fusion Effects

In this section we consider the influence of processes of interaction between strings on the strongly
intensive observable Σ(nF, nB). This influence increases with initial energy and with going from pp to
heavy ion collisions. One of the possible ways to take these processes into account is to pass from the
model with independent identical strings to the model with string fusion and percolation [2–4].

To account the string fusion processes we used approach with the finite lattice (the grid) in the
impact parameter plane, suggested in [6] and later successfully exploited for a description of various
phenomena (correlations, anisotropic azimuthal flows, the ridge) in ultra relativistic nuclear collisions.
In this approach one splits the impact parameter plane into cells, which area is equal to the transverse
area of single string and supposes the fusion of all strings with the centers in a given cell.

In this model the definite set of strings of different types corresponds to given event. Each such
string, originating from a fusion of k primary strings, is characterized by its own parameters: the mean
multiplicity per unit of rapidity, µ

(k)
0 , and the string correlation function, Λk(∆η). These parameters

uniquely determine the strongly intensive observable, Σk(µF, µB), between multiplicities, produced
from decay of a string of a given kind k, defined by formulas similar to (1) and (4). For example,
for small observation windows, δη � η

(k)
corr, separated by the rapidity distance ∆η, similarly to (6),

we have
Σk(µF, µB) = 1 + µ

(k)
0 δη [Λk(0)−Λk(∆η)] . (37)

In the model with k string types the direct calculation gives for the observable Σ(nF, nB):

Σ(nF, nB) = ∑
k=1

αk Σk(µF, µB) , αk = 〈n(k)〉/〈n〉 , (38)

where 〈n(k)〉 is a mean number of particles produced from all sells with k fused strings in the rapidity
observation window δη. Please note that the same result was obtained in the model with two types of
strings in [12] for the long-range part of Σ(nF, nB). Substituting (37) in Formula (38) we find

Σ(nF, nB) = 1 + δη ∑
k=1

αk µ
(k)
0 [Λk(0)−Λk(∆η)] . (39)
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If we use a simple exponential approximation for Λk(∆η):

Λk(∆η) = Λ(k)
0 exp (−|∆η|/η

(k)
corr) , (40)

then we can rewrite (39) as

Σ(nF, nB) = 1 + δη ∑
k=1

αk µ
(k)
0 Λ(k)

0 [1− exp (−|∆η|/η
(k)
corr)] . (41)

We see that in this case each string of the type k is characterized by two parameters: the product
µ
(k)
0 Λ(k)

0 , where the µ
(k)
0 is the mean multiplicity per unit of rapidity from a decay of such string, and

its two-particle correlation length η
(k)
corr, which determines the correlations between particles, produced

from a fragmentation of the string.
In the framework of the string fusion model [2–4] one usually supposes that the mean multiplicity

per unit of rapidity for fused string, µ
(k)
0 , increase as

√
k with k. The dependence of the correlation

length η
(k)
corr on k is not so obvious. Basing on a simple geometrical picture of string fragmentation

(see, e.g., [23–26]) one can expect the decrease of the correlation length, η
(k)
corr, with increase of k. In this

picture with a growth of string tension the fragmentation process is finished at smaller string segments
in rapidity. The correlation takes place only between particles originating from a fragmentation of
neighbour string segments and hence the correlation length η

(k)
corr will decrease with k for fused strings.

Indirectly this fact is confirmed by the analysis [27] of the experimental STAR [28] and ALICE [29]
data on net-charge fluctuations in pp and AA collisions. The dependence of net-charge fluctuations on
the rapidity width of the observation window can be well described in a string model if one supposes
the decrease of the correlation length with the transition to collisions of heavier nuclei and/or to higher
energies, i.e., to collisions in which the proportion of fused strings is increasing.

By (41) both these factors, the increase of µ
(k)
0 and the decrease of η

(k)
corr for fused string,

lead to the steeper increase of Σk(µF, µB), (37), with ∆η and to its saturation at a higher level
ω
(k)
µ = 1 + δη µ

(k)
0 Λk(0). Due to (38) this behaviour transmits to the observable Σ(nF, nB), as the

last is a weighted average of Σk(µF, µB) with the weights αk = 〈n(k)〉/〈n〉, which are the mean portions
of the particles produced from a given type of strings.

In real experiment we have always a mixture of fused and single strings. So with the transition to
pp collisions at higher energy or/and to collisions of nuclei the proportion of fused strings will increase
and we will observe the steeper increase of Σ(nF, nB), with ∆η and its saturation at a higher level.
Really, in Figure 3 we see such behaviour of Σ(nF, nB), when we compare Σ(nF, nB) for pp collisions
at three initial energies: 0.9, 2.76 and 7 TeV, calculated by using the two-particle correlation functions
of a string Λ(∆η), obtained by a fitting [14] of the experimental pp ALICE data [13] on FB correlations
between multiplicities at these energies.
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Figure 3. The strongly intensive observable, Σ(nF, nB), between multiplicities in two small
pseudorapidity windows (of the width δη = 0.2 and 0.4) as a function of the distance between window
centers, ∆η at three initial energies: 0.9, 2.76 and 7 TeV.

Table 2 illustrates the increase of µ0Λ0 and the decrease of the correlation length ηcorr with energy
for this data. Please note that these values are the some effective ones, because in the model at each
energy we had supposed that all strings are identical. So they only indirectly reflects the influence of
the increase of the proportion of fused strings with energy in pp collisions.

Table 2. The value of the parameters in the exponetial approximations of the type (40) for the
two-particle correlation function of a string Λ(∆η), obtained by a fitting [14] of the experimental pp
ALICE data [13] on FB correlations between multiplicities at three initial energies.

√
s, TeV 0.9 2.76 7.0

µ0Λ0 0.73 0.83 0.93
ηcorr 1.52 1.43 1.33

For studies of the Σ(nF, nB) dependence on multiplicity classes we can predict the behaviour
similar to the one in Figure 3. For more central pp collisions due to the increase of the proportion of
fused strings in such collisions we also have to observe the steeper increase of Σ(nF, nB), with ∆η and
its saturation at a higher level.

Please note that from a general point of view, this simultaneously means that the observable
Σ(nF, nB), strictly speaking, can not be considered any more as strongly intensive. Through the weight
factors, αk = 〈n(k)〉/〈n〉, entering the Formula (38), the observable Σ(nF, nB) becomes dependent on
collision conditions (e.g., on the collision centrality).

7. Conclusions

In the framework of the quark-gluon string model we have considered the Σ(nF, nB) observable
for multiplicities nF and nB in two acceptance windows, δηF and δηB, separated by some rapidity
interval ∆η, which usually used in the analysis of the multi-particle production in hadronic interactions
at high energy, taking into account the charge sign of particles.

We express these observables through the fundamental string characteristics: the multiplicity
per unit of rapidity and the string pair correlation functions describing the correlations between the
same and opposite sign particles produced in a single string decay. We extract these charge-wise string
two-particle correlation functions from the ALICE data on the FB correlations and the balance function.
Using them we predict the behavior of the charge-wise strongly intensive observables in the model
with independent identical strings.
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We also discuss the influence of the process of string fusion on the string characteristics and on
the behavior of the observables. We show that the observable Σ(nF, nB), which is a strongly intensive
in the case with independent identical strings, loses this property, when we take into account the
string fusion processes and a formation of strings of a few different types takes place in a collision.
In this situation the observable Σ(nF, nB) is proved to be equal to a weighted average of its values for
different string types. Unfortunately, in this case through the weight factors this observable becomes
dependent on collision conditions. We predict the changes in the behaviour of Σ(nF, nB) with energy
and collision centrality, arising due to the string fusion phenomena.

Author Contributions: All authors contributed equally to this work.

Funding: The research was funded by the grant of the Russian Science Foundation (project 16-12-10176).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

FB forward-backward
LHC Large Hadron Collider

References

1. Dumitru, A.; Gelis, F.; McLerran, L.; Venugopalan, R. Glasma flux tubes and the near side ridge phenomenon
at RHIC. Nucl. Phys. A 2008, 810, 91. [CrossRef]

2. Biro, T.S.; Nielsen, H.B.; Knoll, J. Color Rope Model for Extreme Relativistic Heavy Ion Collisions.
Nucl. Phys. B 1984, 245, 449. [CrossRef]

3. Bialas, A.; Czyz, W. Conversion of Color Field Into QQ̄ Matter in the Central Region of High-energy Heavy
Ion Collisions. Nucl. Phys. B 1986, 267, 242. [CrossRef]

4. Braun, M.A.; Pajares, C. Particle production in nuclear collisions and string interactions. Phys. Lett. B 1992,
287, 154. [CrossRef]

5. Amelin, N.S.; Armesto, N.; Braun, M.A.; Ferreiro, E.G.; Pajares, C. Long and short range correlations and the
search of the quark gluon plasma. Phys. Rev. Lett. 1994, 73, 2813. [CrossRef] [PubMed]

6. Braun, M.A.; Kolevatov, R.S.; Pajares, C.; Vechernin, V.V. Correlations between multiplicities and average
transverse momentum in the percolating color strings approach. Eur. Phys. J. C 2004, 32, 535. [CrossRef]

7. Alessandro, B.; Antinori, F.; Belikov, J.A.; Blume, C.; Dainese, A.; Foka, P.; Giubellino, P.; Hippolyte, B.;
Kuhn, C. [ALICE Collaboration] ALICE: Physics Performance Report Volume II. J. Phys. G 2006, 32, 1295.
[CrossRef]

8. Vechernin, V.V.; Kolevatov, R.S. Long-range correlations between transverse momenta of charged particles
produced in relativistic nucleus-nucleus collisions. Phys. Atom. Nucl. 2007, 70, 1809. [CrossRef]

9. Kovalenko, V.; Vechernin, V. Forward-backward correlations between intensive observables. J. Phys. Conf. Ser.
2017, 798, 012053. [CrossRef]

10. Bravina, L.V.; Bleibel, J.; Zabrodin, E.E. On the origin of forward–backward multiplicity correlations in pp
collisions at ultrarelativistic energies. Phys. Lett. B 2018, 787, 146. [CrossRef]

11. Gorenstein, M.I.; Gazdzicki, M. Strongly intensive quantities. Phys. Rev. C 2011, 84, 014904. [CrossRef]
12. Andronov, E.V. Influence of the quark-gluon string fusion mechanism on long-range rapidity correlations

and fluctuations. Theor. Math. Phys. 2015, 185, 1383. [CrossRef]
13. Adam, J.; Adamova, D.; Aggarwal, M.M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.;

Ahmed, I.; Ahn, S. U.; Aimo, I.; et al. [ALICE Collaboration] Forward-backward multiplicity correlations in
pp collisions at

√
s = 0.9, 2.76 and 7 TeV. JHEP 2015, 05, 097. [CrossRef]

14. Vechernin, V. Forward–backward correlations between multiplicities in windows separated in azimuth and
rapidity. Nucl. Phys. A 2015, 939, 21. [CrossRef]

http://dx.doi.org/10.1016/j.nuclphysa.2008.06.012
http://dx.doi.org/10.1016/0550-3213(84)90441-3
http://dx.doi.org/10.1016/0550-3213(86)90153-7
http://dx.doi.org/10.1016/0370-2693(92)91892-D
http://dx.doi.org/10.1103/PhysRevLett.73.2813
http://www.ncbi.nlm.nih.gov/pubmed/10057202
http://dx.doi.org/10.1140/epjc/s2003-01443-6
http://dx.doi.org/10.1088/0954-3899/32/10/001
http://dx.doi.org/10.1134/S106377880710016X
http://dx.doi.org/10.1088/1742-6596/798/1/012053
http://dx.doi.org/10.1016/j.physletb.2018.10.053
http://dx.doi.org/10.1103/PhysRevC.84.014904
http://dx.doi.org/10.1007/s11232-015-0347-2
http://dx.doi.org/10.1007/JHEP05(2015)097
http://dx.doi.org/10.1016/j.nuclphysa.2015.03.009


Universe 2019, 5, 15 12 of 12

15. Adam, J.; Adamová, D.; Aggarwal, M.M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.;
Ahn, S. U. ; Aiola, S.; Akindinov, A.; et al. [ALICE Collaboration] Multiplicity and transverse momentum
evolution of charge-dependent correlations in pp, p–Pb, and Pb–Pb collisions at the LHC. Eur. Phys. J. C
2016 76, 86. [CrossRef]

16. Tsallis, C. Possible Generalization of Boltzmann-Gibbs Statistics. J. Stat. Phys. 1988 52, 479. [CrossRef]
17. Tsallis, C.; Brigatti, E. Nonextensive statistical mechanics: A brief introduction. Continuum Mech. Thermodyn.

2004, 16, 223. [CrossRef]
18. Biro, T.S.; Purcsel, G.; Urmossy, K. Non-extensive approach to quark matter. Eur. Phys. J. A 2009 40, 325.

[CrossRef]
19. Biro, T.S.; Urmossy, K.; Barnafoldi, G.G. Pion and Kaon Spectra from Distributed Mass Quark Matter.

J. Phys. G 2008 35, 044012. [CrossRef]
20. Braun, M.A.; Pajares, C.; Vechernin, V.V. On the forward-backward correlations in a two stage scenario.

Phys. Lett. B 2000 493, 54. [CrossRef]
21. Pruneau, C.; Gavin, S.; Voloshin, S. Methods for the study of particle production fluctuations. Phys. Rev. C

2002, 66, 044904. [CrossRef]
22. Andronov, A. (for the NA61/SHINE Collab.) Energy dependence of fluctuations in p+p and Be+Be collisions

from NA61/SHINE. J. Phys. Conf. Ser. 2016 668, 012036. [CrossRef]
23. Werner, K. Strings, pomerons, and the venus model of hadronic interactions at ultrarelativistic energies.

Phys. Rep. 1993 232, 87. [CrossRef]
24. Artru, X. Classical String Phenomenology. 1. How Strings Work. Phys. Rep. 1983 97, 147. [CrossRef]
25. Vechernin, V.V. Space-Time Picture of String Fragmentation and the Fusion of Colour Strings. Relativistic

Nuclear Physics and Quantum Chromodynamics. In Proceedings of the Baldin ISHEPP XIX, JINR, Dubna,
v.1, Dubna, Russia, 29 September–4 October 2008; pp. 276–281.

26. Bierlich, C.; Gustafson, G.; Lonnblad, L.; Tarasov, A. Effects of Overlapping Strings in pp Collisions. JHEP
2015, 03, 148. [CrossRef]

27. Titov, A.; Vechernin, V. Net charge fluctuations in AA collisions in a simple string-inspired model. Proc. Sci.
2013, 173, 047. [CrossRef]

28. Abelev, B.I.; Aggarwal, M.M.; Ahammed, Z.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.; Bai, Y.;
Balewski, J.; Barannikova, O.; Barnby, L.S.; et al. [STAR Collaboration] Beam-energy and system-size
dependence of dynamical net charge fluctuations. Phys. Rev. C 2009, 79, 024906. [CrossRef]

29. Abelev, B.I.; Adam, J.; Adamová, D.; Adare, A.M.; Aggarwal, M.M.; Aglieri Rinella, G.; Agocs, A.G.;
Agostinelli, A.; Aguilar Salazar, S.; Ahammed, Z.; et al. [ALICE Collaboration] Net-Charge Fluctuations in
Pb-Pb collisions at

√
sNN = 2.76 TeV. Phys. Rev. Lett. 2013, 110, 152301. [CrossRef] [PubMed]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1140/epjc/s10052-016-3915-1
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1007/s00161-004-0174-4
http://dx.doi.org/10.1140/epja/i2009-10806-6
http://dx.doi.org/10.1088/0954-3899/35/4/044012
http://dx.doi.org/10.1016/S0370-2693(00)01127-8
http://dx.doi.org/10.1103/PhysRevC.66.044904
http://dx.doi.org/10.1088/1742-6596/668/1/012036.
http://dx.doi.org/10.1016/0370-1573(93)90078-R
http://dx.doi.org/10.1016/0370-1573(83)90081-9
http://dx.doi.org/10.1007/JHEP03(2015)148
http://dx.doi.org/10.22323/1.173.0047
http://dx.doi.org/10.1103/PhysRevC.79.024906
http://dx.doi.org/10.1103/PhysRevLett.110.152301
http://www.ncbi.nlm.nih.gov/pubmed/25167254
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Model with Independent Identical Strings
	The () from Forward-Backward Correlations
	 with Charges
	Connection with Balance Function
	String Fusion Effects
	Conclusions
	References

