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Abstract: The renormalization group approach and the operator product expansion technique are
applied to the model of a passively advected vector field by a turbulent velocity field. The latter is
governed by the stochastic Navier-Stokes equation for a compressible fluid. The model is considered
in the vicinity of space dimension d = 4 and the perturbation theory is constructed within a double
expansion scheme in y and ε = 4− d, where y describes scaling behaviour of the random force that
enters the Navier-Stokes equation. The properties of the correlation functions are investigated, and
anomalous scaling and multifractal behaviour are established. All calculations are performed in the
leading order of y, ε expansion (one-loop approximation).

Keywords: fully developed turbulence; magnetohydrodynamics; field-theoretic renormalization
group; anomalous scaling

1. Introduction

Many phenomena in the nature are associated with hydrodynamic flows. Ranging from
microscopic up to macroscopic spatial scales, fluids can exist in very different states. Especially
intriguing behaviour is observed for turbulent flows; moreover, such flows are rather a rule than an
exception [1,2]. Despite the vast amount of effort that has been put into investigation of turbulence,
fundamental properties of the underlying Navier-Stokes equation remain unsolved. The most
intriguing one is intermittency. Being an irregular alternation of phases of certain dynamics, it
means that very rare configurations of a system contribute most significally to statistical distributions.
This leads to anomalous scaling, which manifests itself in singular (usually power-like) behavior
of various statistical quantities as functions of the integral turbulence scales, with infinite sets of
independent anomalous exponents [1,2].

In astrophysical applications, turbulence is an ubiquitous phenomenon [3,4]; moreover, we usually
have to deal with a compressible fluid rather than incompressible one [4–8]. In this work, our aim
is to look closely at a compressible turbulence [9], motivated by the previous studies [10–19] of the
incompressible case and the need for an astrophysical description of a squishy medium.

A quantitative parameter that describes “intensity” of turbulent motion is the so-called Reynolds
number Re, which represents a dimensionless ratio between inertial and dissipative forces. The fully
developed turbulence (i.e., the fluid motion with Re� 1) is characterized by existence of an inertial
range—an interval of scales in which both the input and dissipation of energy are insignificant, and
the only notable dynamical process is the re-distribution of energy along the spectrum. Therefore, one

Universe 2019, 5, 37; doi:10.3390/universe5010037 www.mdpi.com/journal/universe

http://www.mdpi.com/journal/universe
http://www.mdpi.com
https://orcid.org/0000-0001-8529-4893
http://www.mdpi.com/2218-1997/5/1/37?type=check_update&version=1
http://dx.doi.org/10.3390/universe5010037
http://www.mdpi.com/journal/universe


Universe 2019, 5, 37 2 of 12

expects the inertial range to be governed by simple (and possibly universal) laws describing turbulent
processes. In accordance with this hypothesis , the classical Kolmogorov-Obukhov theory assumes that
statistical characteristics of a system, i.e., its correlation and response functions, do not depend on either
the internal (l, viscosity-related) or the external (L, external force-related) scales [1,2]. Nevertheless,
correlation functions can depend on the external scale due to certain kinematic effects—for example,
the sweeping effect, in which small turbulent eddies are carried by large ones as a whole without
distortion. Experimental studies confirm this: In most cases, measurable quantities contain some
dependence on large scale L, which is usually singular and is described by an infinite set of anomalous
exponents—a phenomenon referred to as “anomalous scaling” and “multiscaling” [20].

Within the framework of numerous semi-heuristic models, the anomalous exponents are related to
statistical properties of the local dissipation rate, the fractal (Haussdorf) dimension of structures formed
by the small-scale turbulent eddies, the characteristics of nontrivial structures (vortex filaments), and
so on [1,2]. The common drawback of such models is that they are only loosely related to underlying
hydrodynamical equations, involve arbitrary adjusting parameters and, therefore, cannot be considered
to be the basis for construction of a systematic perturbation theory in certain small (at least formal)
expansion parameter.

When solving the problem, the renormalization group method accompanied by the operator
product expansion (OPE) was applied; see the monographs [21–24]. The renormalization group (RG)
method performs a certain rearrangement (infinite resummation) of the original perturbation series,
and turns them into a series of the parameter of order unity (since we deal with fully developed
turbulence, where Re tends to infinity, it is unpossible to work with initial “naive” perturbation
expansion). In the theory of critical phenomena that parameter is ε = 4− d, the deviation of the
dimensionality of space d from its upper critical value, hence the term “epsilon expansion”. Such
expansions are still divergent, but they allow one to prove the existence of infrared (IR) scaling behavior
(if such exists) and to systematically calculate the corresponding dimensions as series in ε.

For the Navier-Stokes turbulence, the situation is much more difficult. Besides the RG expansion
parameter y is not small and the RG series are divergent, due to the sweeping effect and anomalous
scaling, the perturbation diagrams have strong divergences at L → ∞. Adequate analysis of these
issues takes one far beyond the standard RG method and should be combined with the short-distance
operator product expansion.

One of the greatest challenges is an investigation of the Navier-Stokes equation for a compressible
fluid, and, in particular, a passive scalar field advection by this velocity ensemble. Several decades ago,
the first study was carried out for a passively advected scalar field; see [25,26] and review paper [20].
Further research in this area was devoted to more realistic generalizations [11–19,27–31]. The approach
of RG+OPE was also applied to more sophisticated cases, in particular, to the one of compressible
fluid [32–41].

This paper is a continuation of our previous works [42–45] and is organized as follows.
In the introductory Section 2 we give a brief overview of the model. In Section 3 we reformulate
stochastic equations into field-theoretical language. Section 4 is devoted to the renormalization group
analysis. In Section 5 we present the fixed points’ structure and describes possible scaling regimes.
In Section 6 critical dimensions of composite fields are calculated. In Section 7 OPE is applied to the
equal-time structure functions constructed of the vector fields; the anomalous exponents are calculated.
The concluding Section 8 is devoted to a brief discussion.

2. Model

Let us start with a brief discussion of a model for compressible velocity fluctuations. The dynamics
of a compressible fluid is governed by the Navier-Stokes equation [46]:

ρ∇tvi = ν0[δik∂2 − ∂i∂k]vk + µ0∂i∂kvk − ∂i p + f v
i , (1)
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where the operator ∇t denotes an expression ∇t = ∂t + vk∂k, also known as a Lagrangian (or
convective) derivative. Further, ρ = ρ(t, x) is a fluid density field, vi = vi(t, x) is the velocity field,
∂t = ∂/∂t, ∂i = ∂/∂xi, ∂2 = ∂i∂i is the Laplace operator, p = p(t, x) is the pressure field, and f v

i is the
external force, which is specified later. In what follows we employ a condensed notation in which
we write x = (t, x), where a spatial variable x equals (x1, x2, . . . , xd) with d being a dimensionality of
space. Two parameters ν0 and µ0 are two viscosity coefficients [46]. Summations over repeated vector
indices (Einstein summation convention) are always implied in this work. In subsequent sections we
employ the RG method, in which it is necessary to distinguish between unrenormalized (bare) and
renormalized parameters. The former we denote by a subscript “0”.

Equation (1) has to be augmented by two additional relations, which are a continuity equation
and a certain thermodynamic relation [46]. The former can be written in the form

∂tρ + ∂i(ρvi) = 0 (2)

and the latter we choose as follows
δp = c2

0δρ. (3)

Here δp and δρ are deviations from the equilibrium values of pressure field and density field,
respectively.

Viscous terms in Equation (1) characterize dissipative processes in the system and are especially
important at small spatial scales. Without a continuous input of energy, turbulent processes would
eventually die out and the flow would become regular. There are various possibilities for modelling of
energy input [23]. For translationally invariant theories it is convenient to specify properties of the
random force fi in frequency-momentum representation

〈 fi(t, x) f j(t′, x′) =
δ(t− t′)
(2π)d

∫
k>m

ddk Dv
ij(k)e

ik·(x−x′), (4)

where the delta function ensures Galilean invariance of the model. The integral in Equation (4) is
infrared (IR) regularized with a parameter m ∼ L−1

v , where Lv denotes outer scale, i.e., scale of the
biggest turbulent eddies. More details can be found in the literature [23]. The kernel function Dv

ij(k) is
now chosen in the following form

Dv
ij(k) = g10ν3

0 k4−d−y
{

Pij(k) + αQij(k)
}
+g20ν3

0 δij (5)

that consists of two terms. The term proportional to the charge g10 is non-local and ensures a steady
input of energy into the system from outer scales. The value of the scaling exponent y describes a
deviation from a logarithmic behaviour. In the stochastic theory of turbulence, the main interest is in
the limit behaviour y→ 4 that yields an ideal pumping from infinite spatial scales [23]. The projection
operators Pij and Qij in the momentum space read

Pij(k) = δij −
kik j

k2 , Qij =
kik j

k2 (6)

and correspond to the transversal and longitudinal projector, respectively, k = |k| is the wave number.
In what follows, we heavily rely on a powerful methods of RG framework. The local term

proportional to g20 in (6) is not dictated by the physical considerations, but by a proper renormalization
treatment [45]. Let us briefly describe this subtle point. An important difference of the present
study with the traditional approaches [23,47] is a special role of the space dimension d = 4. Usually
the spatial dimension d plays a passive role and is considered only as an independent parameter.
However, Honkonen and Nalimov [48] showed that in the vicinity of space dimension d = 2 additional
divergences appear in the model of the incompressible Navier-Stokes ensemble, and these divergences
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have to be properly taken into account. Their procedure also results into improved perturbation
expansion [49,50]. As we see in the next section a similar situation occurs for the model (1) in the
vicinity of space dimension d = 4. Here in the 1-irreducible Green function 〈v′v′〉1-ir an additional
divergence appears. In this particular case, it is necessary to apply the technique of double expansion.
The parameteres of the expansion are y, which describes the scaling behaviour of a random force, and
ε = 4− d, i.e., the deviation from the space dimension d = 4 [31,48]. As we will see, application of
such double expansion leads to some infinite resummation of the ordinary y expansion near physically
interesting dimension d = 3 and improve answers for critical dimensions, especially their behavior at
large values of α.

The stochastic approach to magnetohydrodynamics is based on the following equation

∂tθi + ∂k(vkθi − viθk) = κ0∂2θi + f θ
i , (7)

where κ0 stands for the magnetic diffusion coefficient. For a detailed exposition we recommend
textbook [4]; the quantity θi = θi(x) is the fluctuating part of the total magnetic field.

Random force f θ
i ≡ f θ

i (x) is again assumed to be a Gaussian variable with zero mean and
given covariance,

〈 f θ
i (x) f θ

j (x′)〉 = δ(t− t′)Cij(r/Lθ), r = x− x′, (8)

where Cij(r/Lθ) is a certain function finite at limit (r/Lθ)→ 0 and rapidly decaying for (r/Lθ)→ ∞.

3. Quantum Field Theory Formulation

Our main theoretical tool is the renormalization group theory. Its proper application requires a
proof of a renormalizability of the model, i.e., a proof that only a finite number of divergent structures
exists in a diagrammatic expansion [22]. This requirement can be accomplished by the following
procedure: First the stochastic Equation (1) is divided by density field ρ, then fluctuations in viscous
terms are neglected, and, finally, using the expressions (2) and (3), the problem might be reformulated
into a system of two coupled equations

∇tvi = ν0[δik∂2 − ∂i∂k]vk+µ0∂i∂kvk −∂iφ+ fi, (9)

∇tφ = −c2
0∂ivi, (10)

where a new field φ = φ(x) has been introduced and it is related to the density fluctuations via the
relation φ = c2

0 ln(ρ/ρ) [45]. Here, a parameter c0 denotes the adiabatic speed of sound, ρ is the mean
value of ρ, and fi = fi(x) is the external force normalized per unit mass.

According to the general theorem [21,22], the stochastic problem given by Equations (7), (9),
and (10) is equivalent to the field theoretic model with a doubled set of fields Φ =

{
vi, v′i, φ, φ′

}
and De

Dominicis-Janssen action functional. The latter can be written in a compact form as a sum of two terms

Stotal[Φ] = Svel[Φ] + Smag[Φ], (11)

where the first term describes a velocity part

Svel[Φ] =
v′iD

v
ijv
′
j

2
+ v′i

[
−∇tvi + ν0(δij∂

2 − ∂i∂j)vj + u0ν0∂i∂jvj − ∂iφ

]
+ φ′[−∇tφ + v0ν0∂2φ− c2

0(∂ivi)]. (12)

Here, Dv
ij is the correlation function (5). Note that we have introduced a new dimensionless

parameter u0 = µ0/ν0 > 0 and a new term v0ν0φ′∂2φ with another positive dimensionless parameter
v0, which is needed to ensure multiplicative renormalizability. Due to succession reason we denote
this amplitude parameter with the same letter as velocity field vi; however, since it is a scalar quantity
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unlike the velocity field and since it plays completely another role we hope that this denotation will
not mislead the reader.

The second term in Equation (11) reads

Smag[Φ] =
1
2

θ′i D
θ
ijθ
′
j + θ′k[−∂tθk − (vi∂i)θk + (θi∂i)vk + ν0w0∂2θk], (13)

where we have introduced another dimensionless parameter w0 via κ0 = ν0w0. For brevity we have
not explicitly written integrals over the spatial variable x and the time variable t in Equations (12)
and (13).

In a functional formulation various stochastic quantities (correlation and structure functions) are
calculated as path integrals with weight functional exp(Stotal[Φ]). The main benefits of such approach
are transparence in a perturbation theory and potential use of the powerful methods of the quantum
field theory, such as Feynman diagrammatic technique and renormalization group procedure [22–24].

4. Renormalization Group Analysis

Ultraviolet renormalizability reveals itself in a presence divergences in Feynman graphs, which
are constructed according to simple laws [21,24] using a graphical notation from Figures 1 and 2.
From a practical point of view, an analysis of the 1-particle irreducible Green functions, later referred
to as 1-irreducible Green functions following the notation in Ref. [21], is of utmost importance.

v v
′ v v φ v

′

v φ′ φ φ′ φ φ

v φ θ θ′

Figure 1. Graphical representation of all propagators of the model given by the quadratic part of
the action (11).

v′i

vj(q)

vl(p)

≡ Vijl = −i(pjδil + qlδij),
vj

φ′

φ(k)

≡ Vj = −ikj ,
θ′i(k)

vl

θj

≡ i[δijkl − δilkj ].

Figure 2. Graphical representation of all interaction vertices of the model given by the nonlinear part
of the action (11).

Superficial UV divergences whose removal requires counterterms can be present only in those
functions Γ for which the index of divergence is a non-negative integer. The only graphs that are
needed to be calculated are two-point Green functions. For a velocity part, the following graphs have
to be analyzed

(14)
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and for a magnetic part we have one Feynman diagram

. (15)

The remaining diagrams are either UV finite or the Galilean invariance prohibits their appearance.
Because the calculation of the divergent parts of Feynman diagrams is rather straightforward and
proceeds in the usual fashion [21,22,24], we refrain from mentioning here all the technical details.
For the latter, we recommend an interested reader to consult our previous works [40,42,43,45].

Here, we just provide a result of the diagram D shown in Equation (15)

D =
Sd
2d

p2P12(p)ν
{

1− d
1 + w

[
g1

y

(
µ

m

)y

+
g2

ε

(
µ

m

)ε]
− u− w

u(u + w)

[
αg1

y

(
µ

m

)y

+
g2

ε

(
µ

m

)ε]}
, (16)

where Sd = Sd/(2π)d with Sd = 2πd/2/Γ(d/2) is the surface area of the unit sphere in the
d−dimensional space and Γ(x) is Euler’s Gamma function. The expression (16) differs from the
result obtained in Ref. [40] by the presence of terms containing the charge g2. Further, from (16) we
directly derive renormalization constant Zκ [where κ = νw, see Equation (13)] and the corresponding
anomalous dimension γκ .

5. Scaling Regimes

The relation between the initial and renormalized action functionals S(Φ, e0) = SR(ZΦΦ, e, µ)

(where e0 is the complete set of bare parameters and e is the set of their renormalized counterparts)
leads to the fundamental RG differential equation. Based on the analysis of this equation it follows
that the large scale behaviour with respect to spatial and time scales is governed by the IR attractive
(“stable”) fixed points g∗ ≡ {g∗1 , g∗2 , u∗, v∗}, whose coordinates are found from the conditions [21,22]:

βg1(g∗) = βg2(g∗) = βu(g∗) = βv(g∗) = 0, (17)

where βx = D̃µx is the so-called beta functions and D̃µ is the differential operation µ∂µ for fixed
e0. The existence of IR attractive solutions of the RG equations leads to the existence of the
scaling behaviour of Green functions. The type of the fixed point is determined by the matrix
Ωij = ∂βi/∂gj|g=g∗: for the IR attractive fixed points it has to be positive definite.

The character of the IR behaviour depends on the mutual relation between y and ε—two
formally small quantities which were introduced in the correlator of the random force (5) in the
Navier-Stokes equation.

In work [45] the velocity part (without βw) of the system (17) was analyzed. Altogether, three IR
attractive fixed points, which define possible scaling regimes of the system, were found. The fixed
point FPI with coordinates g∗1 = 0 and g∗2 = 0; the “local” fixed point FPII with coordinates g∗1 = 0 and
g∗2 6= 0; and the “nonlocal” fixed point FPIII with coordinates g∗1 6= 0 and g∗2 6= 0.

Moreover, from the analysis in Ref. [45] it follows that for nontrivial regimes the coordinate u
takes value u∗ = 1. Substituting these values together with d = 4 we obtain for the charge w the
following beta function

βw =
w− 1

16(1 + w)2

[
g1(6 + 2α + 9w + 3w2) + g2(3w2 + 9w + 8)

]
. (18)
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Note that this result is in accordance with previous work for the passive scalar case [43] and
vector case as well [51]. The only nontrivial solution for the fixed point is w∗ = 1. Also, it is rather
straightforward to show that ∂wβw > 0 at nontrivial fixed points, what ensures IR stability.

Depending on the values of y and ε, the different values of the critical dimension for various
quantities F are obtained. They can be calculated via the expression

∆[F] = dk
F + ∆ωdω

F + γ∗F, (19)

where dω
F is the canonical frequency dimension, dk

F is the momentum dimension, γ∗F is the anomalous
dimension at the critical point (FPII or FPIII), and ∆ω = 2− γ∗ν is the critical dimension of frequency.

6. Composite Fields

Measurable quantities are certain correlation or structure functions of composite operators. A local
composite operator is polynomial constructed from the fields θ(x) at a single space-time point x (as
well as from finite-order derivatives of the field θ(x)). In the Green functions with such objects, new
UV divergences arise and require the additional renormalization procedure [21].

The simplest case of a composite operator is the scalar operator F(x) = θn(x). Here, we focus on
the irreducible tensor operators of the form

F(n,l)
i1 ...il

= θi1 · · · θil (θjθj)
s + . . . , (20)

where l is the rank of the tensor (i.e., the number of the free vector indices), and n = l + 2s is the total
number of the fields θ entering the operator.

For practical calculations, it is convenient to contract the tensors (20) with an arbitrary constant
vector λ= {λi}. The resulting scalar operator takes the form

F(n,l) = (λiwi)
l(wiwi)

s + . . . , wi ≡ θi, (21)

where the subtractions, denoted by the ellipsis, necessarily include the factors of λ2 = λiλi.
In order to calculate the critical dimension of the operator we should renormalize it.

The operators (20) are in fact multiplicatively renormalizable, F(n,l) = Z(n,l)F
(n,l)
R , with certain

renormalization constants Z(n,l) (see Ref. [39]). The renormalization constants Z(n,l) are determined
by the finiteness of the 1-irreducible Green function Γnl(x; θ), which in the one-loop approximation is
diagrammatically represented as

Γnl(x; θ) = F(n,l) +
1
2

, (22)

where numerical factor 1/2 is a symmetry factor of the graph and the thick dot with two lines attached
denotes the operator vertex

V(x; x1, x2) =
δ2F(n,l)

δθiδθj
. (23)

Divergent parf of a one-loop diagram in Equation (22) reads

= − Fnl
2wd(d + 2)

[
Q1

(1 + w)

(
g1

y
+

g2

ε

)
+

Q2

u(u + w)

(
αg1

y
+

g2

ε

)]
; (24)

Q1 ≡ −n(n + d)(d− 1) + l(d + 1)(d + l − 2),

Q2 ≡ −n(d− 1)(nd + n− d) + l(d + l − 2),
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and result for Γnl in terms of n = l + 2s and l is the following:

Γnl(x; θ) = F(n,l)(x)
{

1− 1
4wd(d + 2)

[
Q1

(1 + w)

(
g1

y
+

g2

ε

)
+

Q2

u(u + w)

(
αg1

y
+

g2

ε

)]}
. (25)

The corresponding anomalous dimension γnl reads

γnl =
1

4dw(d + 2)

{
Q1

1 + w
(g1 + g2) +

Q2

u(u + w)
(αg1 + g2)

}
. (26)

To obtain the critical dimension, one needs to substitute the coordinates of the fixed points into (26)
and then use the relation (19). For the fixed point FPII the critical dimension is

∆nl =
n
4

ε +
Q1 + Q2

72
ε; (27)

for the fixed point FPIII it is

∆nl =
n
6

y +
y
12

Q1(αy + 2y− 3ε) + 3αQ2(y− ε)

9[y(2 + α)− 3ε]
. (28)

Both expressions (27) and (28) suppose higher order corrections in y and ε.
The latter result for FPIII is in agreement with previously known result for the analysis near

three-dimensional space d = 3: Expanding expression (28) in y at fixed value ε = 1 (which corresponds
to d = 3) gives

∆nl =
ny
6

+
y(Q1 + αQ2)

108
+O(y2). (29)

The first two terms (proportional to y) in Equation (29) coincide with analogous expression
obtained earlier in Ref. [40]. This means that expression (28), obtained as a result of the double y and ε

expansion near d = 4, may be considered as a certain partial infinite resummation of the ordinary y
expansion. This resummation significantly improves the situation at large α: Now we do not have the
pathology when the critical dimensions ∆nl are linear in α [see Equations (28) and (29)] and, therefore,
grow with α without a bound.

7. Operator Product Expansion

Our main interest are pair correlation functions, whose unrenormalized counterparts have been
defined in Equation (20). For Galilean invariant equal-time functions we can write the following
representation

〈F(m,i)(t, x)F(n,j)(t, x′)〉 ' µdF νdω
F (µr)−∆(m,i)−∆(n,j)ζm,i;n,j(mr, c(r)), (30)

where r = |x− x′| and c(r) is effective speed of sound. Its limiting behavior is

c(r) = c
(µr)∆c

µν
→
{

c(0) for non-local regime FPIII;

c(∞) for local regime FPII,
(31)

see Ref. [45].
Equation (30) is valid in the asymptotic limit µr � 1. The inertial-convective range corresponds to

the additional restriction mr � 1. The behaviour of the functions ζ at mr → 0 can be studied by means
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of the OPE technique [21]. The basic idea of this method is to represent a product of two operators at
two close points, x and x′ with x− x′ → 0, in the form

F(m,i)(t, x)F(n,j)(t, x′) '∑
F

CF(mr) F
(

t,
x + x′

2

)
, (32)

where functions CF are regular in their argument and a given sum runs over all permissible local
composite operators F allowed by RG and symmetry considerations. Taken into account (30) and (32)
in the limit mr → 0 we arrive at the relation

ζ(mr) '∑
F

AF(mr)× (mr)∆F . (33)

Considering OPE for the correlation functions 〈F(p,0)F(k,0)〉 with n = p + k, where F(n,l) is the
operator of the type (20), one can observe that the leading contribution to the expansion is determined
by the operator F(n,0) from the same family. Therefore, in the inertial range these correlation functions
acquire the form

〈F(p,0)(t, x)F(k,0)(t, x′)〉 ∼ r−∆(p,0)−∆(k,0)+∆(n,0) . (34)

The inequality ∆(n,0) < ∆(p,0) + ∆(k,0), which follows from both explicit one-loop expressions (27)
and (28), indicates that the operators F(n,0) demonstrate a “multifractal” behaviour; see Refs. [52,53].

A direct substitution of d = 4 leads to the following prediction for a critical dimension

∆nl = n∆θ + γ∗nl =

−n + nε
4 + (Q1+Q2)ε

4 for FPII;

−n + ny
6 + Q1y

108 + Q2αy(y−ε)
36[y(2+α)−3ε]

, for FPIII
(35)

where we have

Q1|d=4 = −3n(n + 4) + 5l(2 + l), Q2|d=4 = −3n(5n− 4) + l(2 + l). (36)

Returning to real three-dimensional space corresponds to substitution ε = 1 in Equation (35).
From these results several observations can be made. Based on (35) we see that for fixed n kind of

a hierarchy present with respect to the index l, i.e.,

∂∆nl
∂l

> 0. (37)

In other words, the higher l the less important contribution. The most relevant contribution is
given by the isotropic shell with l = 0. This is in accordance with previous studies [39,40,51]. Moreover,
we observe that there is no appearance of the parameter α for the local regime FPII and, in contrast
to [40], there is no monotonous behaviour in α of ∆nl for the non-local regime FPIII.

8. Conclusions

The authors considered the advection of a vector field by the Navier-Stokes velocity ensemble for
a compressible fluid. The dimension of the space was meant to be close to d = 4. The results were
obtained by using double expansion in parameteres y and ε = 4− d.

In the inertial range two different regimes take place, and two nontrivial IR stable fixed points
correspond to these two tipes of critical behaviour depending on the relation between the exponents y
and ε. The expressions for the critical exponents of the field θ were obtained in the leading one-loop
approximation.

The anomalous exponents of the structure functions were obtained via renormalization of the
composite fields (20), evaluation of those critical dimensions, and applying the method of OPE.
The latter allows us to derive the explicit expressions for the critical dimensions of the structure



Universe 2019, 5, 37 10 of 12

functions. In this work, the existence of the anomalous scaling was confirmed in the inertial-convective
range for both possible scaling regimes. Moreover, the main contribution into the OPE is given by the
isotropic term corresponding to l = 0, where l is the rank of the tensor and signify a degree of the
anisotropy; all other terms with l ≥ 2 provide only corrections. Another intriguing result is that some
kinds of operators exhibit the “multifractal” behaviour.

The results of this study are especially significant at large values of α (purely potential random
force). In contrast to analysis near d = 3, in the present case the anomalous dimensions of the
composite operators (27) and (28) do not grow with α without a bound. Herewith, technically
expression (28) obtained in this study may be considered as an example of infinite resummation
of ordinary y expansion.

In future research, it would be interesting to go beyond the one-loop approximation. Another
very important task to be further investigated is to study both scalar and vector active fields, i.e.,
to consider a back influence of the advected fields to the turbulent environment flow.

Author Contributions: All authors contributed equally to this work.

Funding: The work was supported by the Russian Foundation for Basic Research within the Project
No. 18-32-00238. T.L. acknowledges the support from the Ministry of Education, Science, Research and Sport
of the Slovak Republic (VEGA grant No. 1/0345/17) and from the Slovak Research and Development Agency
(grant No. APVV-16-0186). N.M.G. acknowledges the support from the Saint Petersburg Committee of Science
and High School.

Acknowledgments: The authors are indebted to M. Yu. Nalimov, L. Ts. Adzhemyan, M. Hnatič, J. Honkonen,
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