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Abstract: Conditional expectation values of quantum mechanical observables reflect unique
non-classical correlations, and are generally sensitive to decoherence. We consider the circumstances
under which such sensitivity to decoherence is removed, namely, when the measurement process is
subjected to conservation laws. Specifically, we address systems with additive conserved quantities
and identify sufficient conditions for the system state such that its coherence plays no role in the
conditional expectation values of observables that commute with the conserved quantity. We discuss
our findings for a specific model where the system-detector coupling is given by the Jaynes-Cummings
interaction, which is relevant to experiments tracking trajectories of qubits in cavities. Our results
clarify, among others, the role of coherence in thermal measurements in current architectures for
quantum thermodynamics experiments.
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1. Introduction

Quantum measurements stochastically disturb the state of the measured system. The paradigmatic
example is ideal projective measurements, wherein the system “collapses” to the eigenstates of the
measured observable [1]. More generally, the measurement induced back action is characterised by
completely positive, trace non-increasing maps, or quantum instruments, which can be given a Kraus
decomposition [2]. Such a state change will therefore allow us to define what the expectation value
of some other observable will be, conditional on observing a given measurement outcome. In order
to define the conditional change in the expectation value of an observable, however, we must have
a method of defining what the conditional expectation value of an observable would be prior to
observing a measurement outcome. As recently suggested in [3], this quantity can be defined by the
weak value [4,5]. The weak value can be arbitrarily large, and even imaginary, which is incompatible
with a probability distribution over the eigenvalues of the observable in question.

Conditional expectation values of observables have been associated to physically significant
quantities like tunnelling times [6–9] or the spectroscopy of a wave function [10]. The possibility
of tracking systems along single quantum trajectories conditioned to measurements outcomes in
optical [11,12] and more recently in solid state [13,14] systems, opens also the possibility to observe
individual quantum trajectories [15], implement feedback control protocols [13,16,17], determine weak
values [18,19], produce deterministic entanglement [20,21], and realize Maxwell demons [22]. It is then
possible to detect physical quantities along such quantum trajectories. Most prominently this idea has
been used to define thermodynamic quantities along quantum trajectories based on the definition of
conditional energy change along trajectories [23–25].
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These conditional values are extremely sensitive to the coherence of the initial state of the system.
This also means that they are extremely sensitive to decoherence mechanisms [26,27]. In the case of
the weak value, for example, the effect of decoherence has been studied by analysing the quantum
operation acting on the W-operator [28]. However, the effect of decoherence can be constrained in some
situations by the presence of symmetries, i.e., conserved quantities, in the measurement process. In this
work we address this issue by considering the measurement process that conserves an additive quantity
across the object system that is measured, S , and the measuring apparatus, A, and derive sufficient
conditions of the measurement process so that decoherence does not affect the result. First, we show
that if the observable OS commutes with the object system component of the conserved quantity LS ,
then the conditional expectation value of OS will not be sensitive to the coherence in the object system
with respect to LS so long as the apparatus state also commutes with the apparatus conserved quantity
LA. Second, we show that if the measurement process is generated by a Jaynes-Cummings Hamiltonian
(which conserves the total excitation number) then the conditional expectation value of an observable
that commutes with the number operator will be insensitive to the initial coherence in the system,
even if the apparatus state does not commute with the number operator, so long as the compound
system is symmetric in the number representation. This situation is relevant for experiments tracking
quantum trajectories for qubit in resonant cavities and we comment on the consequence of our result
for thermodynamic quantities investigated in these setups.

2. Measurement Models and Conservation Laws

2.1. Quantum Measurements

An observable on a quantum system S , with Hilbert spaceHS , is described by a positive operator
valued measure (POVM) M := {M(x)}x∈X , where X denotes the set of measurement outcomes
and M(x) are positive effect operators acting on HS that sum to the identity [29]. Given an initial
preparation of the system in state ρ, the probability of observing outcome x of the POVM M is given
by the Born rule as

pM
ρ (x) := tr[M(x)ρ] (1)

The physical implementation of a POVM, by means of a suitable interaction with an apparatus,
is referred to as a measurement model [30,31]. Every POVM M admits infinitely many measurement
models, described by the tuple M := (HA, $, U, ZA). Here HA is the Hilbert space of apparatus
A, and $ is the state in which the apparatus is initially prepared; U is a unitary operator acting on
HS ⊗HA; and ZA = ∑x∈X xPx

A is a self-adjoint operator defining a projective valued measure (PVM)
onA, where Px

A denote projection operators onHA. Every outcome x of the PVM ZA onA is associated
with outcome x of the POVM M on S . Consequently, a measurement model can be considered as
a method of transferring information from the object system S to the measurement apparatus A
by the unitary operator U, such that a measurement of the apparatus by ZA after this process will
replicate the statistics of directly measuring the object system by the POVM M. Because of this,
the unitary interaction stage of measurement is referred to as “premeasurement”, while the projective
measurement at the end, responsible for leaving a permanent record of measurement outcomes,
is referred to as “objectification” [32].

For each measurement outcome x, the measurement model defines an instrument [33] on S ,
given as

IMx (ρ) := trA[(1S ⊗ Px
A)U(ρ⊗ $)U†] (2)
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where trA[·] denotes the partial trace overHA. The probability reproducibility criterion, which ensures
thatM replicates the measurement statistics of M, is defined as

pM
ρ (x) = tr[IMx (ρ)] for all ρ onHS (3)

2.2. Expected Value of a Self-Adjoint Operator Conditioned on the Outcome of a POVM

The state of the system, after observing outcome x of the POVM M, implemented by the
measurement model M, is denoted as ρ(x) := IMx (ρ)/pM

ρ (x). The conditional expectation value
of a self adjoint operator OS , evaluated after observing outcome x of the POVM M, given an initial
preparation of the system in state ρ, is thus given as

〈OS〉ρ,M,x
after := tr[OSρ(x)]

=
1

pM
ρ (x)

tr[(OS ⊗ Px
A)U(ρ⊗ $)U†] (4)

The average value of 〈OS〉ρ,M,x
after , over all measurement outcomes, is simply

∑
x∈X

pM
ρ (x)〈OS〉ρ,M,x

after = tr[(OS ⊗ 1A)U(ρ⊗ $)U†] (5)

Similarly, we may define the conditional expectation value of OS , evaluated before observing
outcome x of the POVM M, given an initial preparation of the system in state ρ, as the real part of the
generalised weak value of OS [34]

〈OS〉ρ,M,x
before :=

Re (tr[M(x)OSρ])

pM
ρ (x)

≡
Re

(
tr[IMx (OSρ)]

)
pM

ρ (x)

=
1

2pM
ρ (x)

tr[(1S ⊗ Px
A)U((OSρ + ρOS)⊗ $)U†] (6)

while the average value of 〈OS〉ρ,M,x
before over all measurement outcomes is

∑
x∈X

pM
ρ (x)〈OS〉ρ,M,x

before = tr[OSρ] (7)

Note that while while 〈OS〉ρ,M,x
after depends on the specific measurement modelM for the POVM

M, the same is not true for 〈OS〉ρ,M,x
before, which is uniquely determined by the POVM M. Finally, we may

define the conditional change in the quantity OS , given outcome x of the POVM M, as the difference
between Equations (4) and (6), which is

∆Oρ,M,x
S := 〈OS〉ρ,M,x

after − 〈OS〉
ρ,M,x
before (8)

The average change in this quantity is thus simply 〈∆Oρ,M,x
S 〉 = tr[(OS ⊗ 1A)U(ρ⊗ $)U†]− tr[OSρ].

While Equations (4) and (6) can only be interpreted as statistical properties of the system in general,
they can be definite properties under specific conditions. The most trivial case is for Equation (4),
which is a definite property if ρ(x) only has support on a single (possibly degenerate) subspace of
OS . The more interesting case where the conditional expectation value can be a definite property is
for Equation (6). In the special case where ρ is a pure state |ψ〉, and M(x) is a projection on the pure
state |φ〉, Equation (6) simplifies to the real component of the familiar weak value 〈φ|OS |ψ〉/〈φ|ψ〉.
As discussed in [35], in such a case the weak value can be interpreted as the “eigenvalue” obtained by
measuring the observable OS on the system described by the two-state vector [36] 〈φ| |ψ〉, where |ψ〉
describes the evolution of the system forwards in time, while |φ〉 describes the evolution of the system
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backwards in time. To see this, consider the case where the measurement model for the observable OS
is given by an apparatus that is a particle on a line, given by a pure state described by the position
operator Q, and the premeasurement unitary interaction with the system is U(g) = e−igOS⊗P, with P
the conjugate momentum to Q, and g a strength parameter. If |ψ〉 is an eigenstate of OS , with eigenvalue
o, the apparatus will remain in a pure state after the measurement interaction, and its position will shift
by go. As such, the system in state |ψ〉 has a definite property of the observable OS . If, however, |ψ〉 is
not an eigenstate of OS , then the apparatus will be in a statistical mixture of pure states, each shifted
by a different amount; here, |ψ〉 will not have a definite property of OS . But if we also post-select the
system onto the pure state |φ〉 after its interaction with the apparatus, then if g is sufficiently small
the apparatus will remain pure, with its position shifted by ≈ g〈φ|OS |ψ〉/〈φ|ψ〉; analogously, we may
say that the two-state vector 〈φ| |ψ〉 has a definite property of the observable OS , even though this
property may lie outside the range of the eigenvalues of OS . However, such an interpretation does not
hold in the general case, where either the initial state ρ is mixed, or the POVM element M(x) is not a
projection on a pure state. This is because in such a case, the apparatus will again be in a statistical
mixture of pure states, each shifted by a different amount.

2.3. Measurements Restricted by Additive Conservation Laws

Measurements, as other physical processes, may be subject to conservation laws. These are
characterised by the commutation of the measurement unitary operator U with some quantity L.
A class of interest are additive conservation laws, meaning that L = LS + LA, with LS and LA being self
adjoint operators onHS andHA, respectively.

In the presence of additive conservation laws, measurements will be restricted by the
Wigner-Araki-Yanase (WAY) theorem [37–39]. Consider a measurement modelM := (HA, $, U, ZA)
that defines a PVM M on the system S , such that U commutes with LS + LA. The WAY theorem states
that either if M is repeatable, or ZA commutes with LA (the Yanase condition), it will follow that M
must commute with LS .

A PVM M is said to be repeatable if, conditional on observing outcome x, a subsequent
measurement of M will result in outcome x with certainty. While it is not necessary for a measurement
of M on S to be repeatable, it is necessary for the measurement of ZA on the apparatus to be repeatable;
this is because the record of a measurement outcome stored in the apparatus must be a permanent
fixture of the world.

Measurement models can be extended ad infinitum, by means of introducing a measurement
model for the apparatus observable ZA with the aid of an additional apparatus B. Therefore, if the
measurement of ZA is to be implemented under an additive conservation law LA + LB, then by the
WAY theorem the requirement of repeatability will necessitate that ZA commutes with LA.

3. Results

3.1. Conserved Quantities and Decoherence Maps

Let us now define the decoherence map with respect to a self-adjoint operator L as

ΦL(A) := ∑
l

Ql AQl (9)

where Ql are the spectral projections of L. If any physical phenomenon, such as measurement, does not
distinguish between A and ΦL(A), i.e., the two states give the same result, we may say that the
coherence of A with respect to L is a symmetry of that phenomenon.

We now explore the situations in which the coherence of the system and apparatus states ρ and
$, with respect to the conserved quantities LS and LA, will be symmetries of ∆Oρ,M,x

S , defined in
Equation (8), if OS commutes with LS . First, we shall prove that if a measurement model conserves an
additive quantity L = LS + LA, then the coherence of the object system state ρ (apparatus system state
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$) with respect to LS (LA) will be a symmetry of ∆Oρ,M,x
S , if OS commutes with LS and $ commutes

with LA (ρ commutes with LS ).

Theorem 1. Consider the POVMs M1 and M2, induced by the measurement modelsM1 := (HA, $1, U, ZA) and
M2 := (HA, $2, U, ZA). Let U commute with L = LS + LA and ZA commute with LA. Finally, let $2 = ΦLA($1),
with ΦLA defined by Equaiton (9). It follows that if both OS and ρ commute with LS , then

〈OS〉ρ,M1,x
before = 〈OS〉ρ,M2,x

before

〈OS〉ρ,M1,x
after = 〈OS〉ρ,M2,x

after (10)

Conversely, if OS commutes with LS , then for any ρ

〈OS〉ρ,M2,x
before = 〈OS〉

ΦLS (ρ),M2,x
before

〈OS〉ρ,M2,x
after = 〈OS〉

ΦLS (ρ),M2,x
after (11)

The proof is provided in Appendix A. Equation (10) shows that the coherence in the apparatus
state with respect to the conserved quantity LA is a symmetry of ∆Oρ,M,x

S if both OS and ρ commute
with the conserved quantity LS . Meanwhile, Equation (11) shows that the coherence of the system
state with respect to the conserved quantity LS is a symmetry of ∆Oρ,M,x

S if OS commutes with LS and
the apparatus state $ commutes with LA.

It is, however, possible for the coherence in both ρ and $ to be a symmetry of ∆Oρ,M,x
S even if

neither of them commutes with the conserved quantity.

Theorem 2. Consider the POVMs M1 and M2, induced by the measurement modelsM1 := (HA, $1, U, ZA)
and M2 := (HA, $2, U, ZA). Let U commute with L = LS + LA and ZA commute with LA. Finally, let
$2 = ΦLA($1), with ΦLA defined by Equaiton (9). Denote the eigenvectors of LS and LA as |φα

m〉 and
|ϕβ

µ〉 respectively, where m and µ are eigenvalues, while α and β label the degeneracy. It follows that if OS
commutes with LS , ρ⊗ $i is symmetric in the eigenbasis representation |φα

m ⊗ ϕ
β
µ〉, and the real component of

〈φα′
n ⊗ ϕ

β′
ν |U†(OS ⊗ Px

A)U|φα
m ⊗ ϕ

β
µ〉 is zero when m 6= n and µ 6= ν, then

〈OS〉ρ,M1,x
before = 〈OS〉ρ,M2,x

before = 〈OS〉
ΦLS (ρ),M1,x
before = 〈OS〉

ΦLS (ρ),M2,x
before

〈OS〉ρ,M1,x
after = 〈OS〉ρ,M2,x

after = 〈OS〉
ΦLS (ρ),M1,x
after = 〈OS〉

ΦLS (ρ),M2,x
after (12)

The proof is provided in Appendix A. It will be instructive to consider physical situations where
Theorem 2 applies.

3.2. Qubits Measured by a Jaynes-Cummings Interaction

A simple example of a measurement process with an additive conserved quantity is obtained by
a Jaynes-Cummings system-apparatus interaction. Consider the case where the measurement unitary
operator is U = e−iθHI , with the Jaynes-Cummings interaction Hamiltonian

HI := σ+
S ⊗ σ−A + σ−S ⊗ σ+

A (13)

where for X ∈ {S ,A},

σ+
X :=

dX−1

∑
k=0

√
k + 1|k + 1〉〈k| = (σ−X )† (14)
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Here, dX is the dimension of Hilbert space HX, and |k〉 denotes the excitation number k of the
system. The unitary U conserves the total excitation number N = NS +NA, where for X ∈ {S ,A},

NX =
dX−1

∑
k=0

k|k〉〈k| (15)

Given the observables OS and ZA that commute with NS and NA respectively, it follows that the
real component of 〈n⊗ ν|U†(OS ⊗ Px

A)U|m⊗ µ〉 will always be zero when n 6= m and ν 6= µ so long
as either dS = 2 or dA = 2. Let us consider the case where dS = 2, i.e., when the object system being
measured is a qubit, while the measuring apparatus can have an arbitrarily large dimension. It follows
that U = ∑dA+1

l=0 Ul , where for 1 6 l 6 dA, Ul is a 2-dimensional matrix acting on the subspace

spanned by {|0⊗ l〉, |1⊗ l − 1〉}, given as Ul = e−iθ
√

lσx = cos(θ
√

l)1 − i sin(θ
√

l)σx, with σx the
Pauli-X matrix defined as σx|0⊗ l〉 = |1⊗ l − 1〉. Consequently, for n 6= m and ν 6= µ, the real
part of 〈n⊗ ν|U|m⊗ µ〉 is zero, while the imaginary part of 〈m⊗ µ|U|m⊗ µ〉 is zero. Consequently,
by choosing OS = λ0|0〉〈0|+ λ1|1〉〈1| we may write

〈0⊗ l|U†(OS ⊗ Px
A)U|1⊗ l − 1〉 = λ0δl,x〈0⊗ l|U†|0⊗ l〉〈0⊗ l|U|1⊗ l − 1〉

+ λ1δl−1,x〈0⊗ l|U†|1⊗ l − 1〉〈1⊗ l − 1|U|1⊗ l − 1〉 (16)

where δk,x is the Kronecker delta function determining if |k〉 lies in the range of the projector Px
A .

Each term of the above equation is a product of a purely real number, with a purely imaginary number.
Therefore, the total value is purely imaginary.

Given such a model, the results of Theorem 2 will follow so long as the initial product state
of system and apparatus, ρ ⊗ $, is symmetric in the excitation number representation. As such,
let us consider the simplest example where both S and A are qubits, where ρ = |ψ〉〈ψ|, with
|ψ〉 := cos(θ1/2)|1〉 + eiφ sin(θ1/2)|0〉, while $ = |ξ〉〈ξ|, with |ξ〉 := cos(θ2/2)|1〉 + sin(θ2/2)|0〉.
Moreover, let us choose ZA = |1〉〈1| − |0〉〈0| (with outcomes x = ±) and OS = |1〉〈1| − |0〉〈0|.
According to Theorem 2, therefore, ∆Oρ,M,x

S = ∆O
ΦNS (ρ),M,x
S , with these quantities defined in

Equation (8), if φ ∈ {0, π}. This is shown in Figure 1, where ∆Oρ,M,x
S − ∆O

ΦNS (ρ),M,x
S is plotted

as a function of φ, and deviates from zero as soon as φ 6= 0, π.

Figure 1. The measurement model for the POVM onHS isM := (HA, |ξ〉, U, ZA). Here, the measurement
unitary is given as U = e−i(π/3)HI , with the Jaynes Communigs interaction Hamiltonian defined in
Equation (13). This conserves the total excitation numberNS +NA, defined in Equation (15). The apparatus
observable is ZA = |1〉〈1| − |0〉〈0|, with the corresponding outcomes x = ±. The initial state of the
apparatus is the coherent state |ξ〉 = cos(π/6)|1〉 + sin(π/6)|0〉, while the object system is initially
prepared in the coherent state |ψ〉 = cos(π/8)|1〉+ eiφ sin(π/8)|0〉. Finally, the system observable is
OS = |1〉〈1| − |0〉〈0|. When φ ∈ {0, π}, the state |ψ〉〈ψ| ⊗ |ξ〉〈ξ| is symmetric in the excitation number

representation |m, µ〉, and so by Theorem 2 ∆Oρ,M,x
S = ∆O

ΦNS (ρ),M,x
S , with these quantities defined by

Equaiton (8).
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4. Discussion

Our findings have physical implications in all cases where conditional measurements are
associated with physical quantities. A striking example is that of energy changes along quantum
trajectories [3], with its thermodynamic implications. In particular, Theorem 1 can be seen as an
extension of results pertaining to thermal operations to thermal measurements. Recall that a thermal
operation is constituted of an energy conserving unitary interaction with an apparatus that is
prepared in a Gibbs state. It is known that thermal operations are a subset of time-translation
symmetric operations [40]. This implies that, since U commutes with the total Hamiltonian HS + HA,
and the apparatus state $ commutes with HA (which is clearly the case when $ is a Gibbs state
e−HA/kBT/tr[e−HA/kBT ]), then tr[(HS ⊗ 1A)U(ρ⊗ $)U†] = tr[(HS ⊗ 1A)U(ΦHS (ρ)⊗ $)U†]. That is to
say, the coherence in ρ with respect to HS is a symmetry of the average change in energy for thermal
operations. A thermal measurement can be seen as augmenting a thermal operation with a projective
measurement of the apparatus by some observable ZA. However, conditional energy changes given
a thermal measurement are not necessarily invariant with respect to the coherence in the system;
as shown in Theorem 1, for the conditional change in energies to be invariant with respect to the
coherence in ρ, the Yanase condition must satisfied, i.e., the apparatus observable ZA must commute
with HA.

In Theorem 2 we show how, in some circumstances, the coherence in the system does not affect
the conditional change in expectation values even if the apparatus state $ does not commute with its
conserved quantity. A common example of such a situation is where the object system being measured
is a qubit, and the measurement interaction is generated by a Jaynes-Cummings Hamiltonian, with the
conserved quantity being the total excitation number. This setup describes, for example, the coupling
of a superconducting qubit and a cavity mode used to track the energy changes of the system along its
trajectories [Kater]. We show that so long as the state of the compound system prior to measurement
is symmetric in the number representation, then the coherence in the object system w.r.t the number
operator will not affect conditional expectation values of observables that commute with the number
operator, such as the energy.

5. Conclusions

In this work we have studied the effect of quantum coherence on the expectation values
of observables, conditioned on the outcome of generalized measurements, subject to symmetry
constraints. To this end we have considered a general measurement model which preserves a quantity
additive in the system and apparatus degrees of freedom (additive conservation law). We then
identified the sufficient conditions such that the conditional expectation values given some initial
state ρ will be identical to that given when the coherence of the initial state is removed. We have
finally illustrated our results for a simple measurement model of a qubit coupled to a harmonic
oscillator (e.g., an atom in a resonant electromagnetic cavity). The conditional expectation value
can be controlled by tuning a relative phase of the qubit state and it is generically different from
its incoherent counterpart; the two being equal for the value of the phase that fulfil the theorem
conditions. This shows that additive symmetries, present in systems used for quantum measurement
experiments, can strongly constrain the role of system coherences, to the point that they might not
affect the conditional expectation values of observables.
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Abbreviations

The following abbreviations are used in this manuscript:

POVM Positive operator valued measure
PVM Projective valued measure
WAY Wigner-Araki-Yanase

Appendix A. Proofs of Theorems

Proof of Theorem 1. Let us denote the spectral projections of L as Ql = ∑(m,µ)l
Qm
S ⊗Qµ

A, where Qm
S

and Qµ
A are the spectral projections of LS and LA respectively, and (m, µ)l denotes the pair of

eigenvalues which sum to m + µ = l. The commutation relation [U, L]− = O will therefore imply that
U = ∑l QlUQl , and so we have

〈OS〉ρ,Mi ,x
after :=

1

pMi
ρ (x)

tr[(OS ⊗ Px
A)U(ρ⊗ $i)U†]

=
1

pMi
ρ (x)

∑
l,l′

tr[(OS ⊗ Px
A)Q

lUQl(ρ⊗ $i)Ql′U†Ql′ ]

=
1

pMi
ρ (x)

∑
l,l′

∑
(m,µ)l

∑
(n,ν)l′

tr[(Qn
SOSQm

S ⊗Qν
APx
AQµ

A)UQl(ρ⊗ $i)Ql′U†] (A1)

Since ZA commutes with LA, and OS commutes with LS , the last line of this equation may be
rewritten as

〈OS〉ρ,Mi ,x
after =

1

pMi
ρ (x)

∑
l,l′

∑
(m,µ)l

∑
(m,µ)l′

tr[(Qm
S OSQm

S ⊗Qµ
APx
AQµ

A)UQl(ρ⊗ $i)Ql′U†]

=
1

pMi
ρ (x)

∑
l

tr[(OS ⊗ Px
A)UQl(ρ⊗ $i)QlU†] (A2)

Expanding Ql into the spectral projections of LS and LA will thus yield the expression

〈OS〉ρ,Mi ,x
after =

1

pMi
ρ (x)

∑
l

∑
(m,µ)l

∑
(n,ν)l

tr[(OS ⊗ Px
A)U(Qm

S ρQn
S ⊗Qµ

A$iQν
A)U

†] (A3)

Similarly, we may write

〈OS〉ρ,Mi ,x
before =

1

2pMi
ρ (x)

∑
l

∑
(m,µ)l

∑
(n,ν)l

tr[(1S ⊗ Px
A)U(Qm

S (OSρ + ρOS)Qn
S ⊗Qµ

A$iQν
A)U

†] (A4)

If ρ commutes with LS , then the only terms that remain in Equaitons (A3) and (A4) are those with
m = n. The fact that m + µ = m + ν = l thus implies that µ = ν, and so we may make the substituion
$i = ΦLA($i), which gives Equaiton (10). Conversely, for the POVM M2, µ = ν, and by the same
argument m = n, which implies Equaiton (11).

Proof of Theorem 2. Recall from Theorem 1 that, given the commutation relations [U, LS + LA]− = O,
[OS , LS ]− = O, and [ZA, LA]− = O, we arrive at Equaitons (A3) and (A4). We may write Equaiton (A3) as

〈OS〉ρ,Mi ,x
after =

1

pMi
ρ (x)

∑
l

∑
(m,µ)l

tr[(OS ⊗ Px
A)U(Qm

S ρQm
S ⊗Qµ

A$iQ
µ
A)U

†]

+
1

pMi
ρ (x)

∑
l

∑
(m,µ)l

∑
(n 6=m,ν 6=µ)l

tr[(OS ⊗ Px
A)U(Qm

S ρQn
S ⊗Qµ

A$iQν
A)U

†] (A5)
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Similarly, we may write Equaiton (A4) as

〈OS〉ρ,Mi ,x
before =

1

pMi
ρ (x)

∑
l

∑
(m,µ)l

(
tr[(1S ⊗ Px

A)U(OSQm
S ρQm

S ⊗Qµ
A$iQ

µ
A)U

†]
)

+
1

2pMi
ρ (x)

∑
l

∑
(m,µ)l

∑
(n 6=m,ν 6=µ)l

(
tr[(1S ⊗ Px

A)U(Qm
S (OSρ + ρOS)Qn

S ⊗Qµ
A$iQν

A)U
†]
)

(A6)

For a given l, m 6= n, and µ 6= ν the terms in Equaiton (A5) can be expanded as

tr[(OS ⊗ Px
A)U(Qm

S ρQn
S ⊗Qµ

A$iQν
A)U

†] + tr[(OS ⊗ Px
A)U(Qn

SρQm
S ⊗Qν

A$iQ
µ
A)U

†]

= ∑
α,α′ ,β,β′

〈φα′
n ⊗ ϕ

β′
ν |U†(OS ⊗ Px

A)U|φα
m ⊗ ϕ

β
µ〉〈φα

m|ρ|φα′
n 〉〈ϕ

β
µ|$i|ϕ

β′
ν 〉

+ ∑
α,α′ ,β,β′

〈φα
m ⊗ ϕ

β
µ|U†(OS ⊗ Px

A)U|φα′
n ⊗ ϕ

β′
ν 〉〈φα′

n |ρ|φα
m〉〈ϕ

β′
ν |$i|ϕ

β
µ〉 (A7)

while those of Equaiton (A6) are expanded as

tr[(1S ⊗ Px
A)U(Qm

S (OSρ + ρOS)Qn
S ⊗Qµ

A$iQν
A)U

†] + tr[(1S ⊗ Px
A)U(Qn

S (OSρ + ρOS)Qm
S ⊗Qν

A$iQ
µ
A)U

†]

= ∑
α,α′ ,β,β′

〈φα′
n ⊗ ϕ

β′
ν |U†(1S ⊗ Px

A)U|φα
m ⊗ ϕ

β
µ〉〈φα

m|(OSρ + ρOS)|φα′
n 〉〈ϕ

β
µ|$i|ϕ

β′
ν 〉

+ ∑
α,α′ ,β,β′

〈φα
m ⊗ ϕ

β
µ|U†(1S ⊗ Px

A)U|φα′
n ⊗ ϕ

β′
ν 〉〈φα′

n |(OSρ + ρOS)|φα
m〉〈ϕ

β′
ν |$i|ϕ

β
µ〉 (A8)

If ρ⊗ $ is symmetric in the representation of |φα
m ⊗ ϕ

β
µ〉, it follows that 〈φα

m|ρ|φα′
n 〉〈ϕ

β
µ|$i|ϕ

β′
ν 〉 =

〈φα′
n |ρ|φα

m〉〈ϕ
β′
ν |$i|ϕ

β
µ〉, while 〈φα

m|(OSρ + ρOS)|φα′
n 〉〈ϕ

β
µ|$i|ϕ

β′
ν 〉 = 〈φα′

n |(OSρ + ρOS)|φα
m〉〈ϕ

β′
ν |$i|ϕ

β
µ〉

and so we may write the right hand sides of Equaitons (A7) and (A8) as

∑
α,α′ ,β,β′

(
〈φα′

n ⊗ ϕ
β′
ν |U†(OS ⊗ Px

A)U|φα
m ⊗ ϕ

β
µ〉+ complex conjugate

)
〈φα

m|ρ|φα′
n 〉〈ϕ

β
µ|$i|ϕ

β′
ν 〉 (A9)

and

∑
α,α′ ,β,β′

(
〈φα′

n ⊗ ϕ
β′
ν |U†(1S ⊗ Px

A)U|φα
m ⊗ ϕ

β
µ〉+ complex conjugate

)
〈φα

m|(OSρ + ρOS)|φα′
n 〉〈ϕ

β
µ|$i|ϕ

β′
ν 〉 (A10)

Finally, if 〈φα′
n ⊗ ϕ

β′
ν |U†(OS ⊗ Px

A)U|φα
m ⊗ ϕ

β
µ〉 is purely imaginary (which implies that so

is 〈φα′
n ⊗ ϕ

β′
ν |U†(1S ⊗ Px

A)U|φα
m ⊗ ϕ

β
µ〉), it follows that the terms inside the parantheses of

Equaitons (A9) and (A10) vanish. Consequently, the second lines of Equaitons (A5) and (A6) will be
zero, and we are left with

〈OS〉ρ,Mi ,x
after =

1
pM

ρ (x) ∑
l

∑
(m,µ)l

tr[(OS ⊗ Px
A)U(Qm

S ρQm
S ⊗Qµ

A$iQ
µ
A)U

†]

〈OS〉ρ,Mi ,x
before =

1
pM

ρ (x) ∑
l

∑
(m,µ)l

tr[(1S ⊗ Px
A)U(OSQm

S ρQm
S ⊗Qµ

A$iQ
µ
A)U

†] (A11)

which results in Equaiton (12).
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