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Abstract: We present a brief mathematical-like formulation of the no-go theorem, useful for bouncing
and wormhole solutions in Horndeski theory. The no-go theorem is almost identical in the cases of
flat FLRW geometry and static, spherically symmetric setting, hence, we generalize the argument of
the theorem so that it has consise and universal form. We also give a strict mathematical proof of the
no-go argument.
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1. Introduction and Summary

Let us study the most general scalar-tensor theory with second-order equations of motion, namely,
the Horndeski theory [1]. Despite the fact that the Null Energy condition (NEC) can be violated in
a healthy way within this theory (see e.g., Ref. [2]), it turns out that non-trivial solutions without
singularities, both cosmological and gravitational, still involve instabilities or strong coupling, provided
that one considers the entire space-time manifold. The inevitable presence of pathologies was shown
for both static, spherically symmetric, and time-dependent homogeneous solutions. The corresponding
statements were formulated as no-go theorems [3–6]. Generally, one finds that the quadratic action for
linearized perturbations in Horndeski theory necessarily acquire wrong signs or zeroes in coefficients
(in some cases, the latter fact signifies a strong coupling regime). Let us illustrate the issue of stability
within a cosmological setup. For a spatially flat metric of the FLRW type, the quadratic action in
unitary gauge (i.e., with vanishing scalar field perturbations) is as follows [7,8]:

S =
∫

dtd3x a3
[GT

8

(
ḣT

ik

)2
− FT

8a2

(
∂lhT

ik

)2
+ GS ζ̇2 −FS

(Oζ)2

a2

]
,

where a is a scale factor, hT
ik stands for transverse, traceless tensor perturbations, while ζ is the only

dynamical degree of freedom in the scalar sector. Let us note that the quadratic action above is
of the most general form in the FLRW background of the Horndeski theory, modulo the specified
gauge choice. The coefficients GT , FT , GS , and FS are some expressions in terms of Lagrangian
functions, which are constrained by the stability requirement of the linearized theory. Positive GT and
GS guarantee the absence of ghosts in tensor and scalar sectors, while positive FT and FS are required
for the absence of gradient instabilities. Now, the Infinum of these coefficients naively corresponds to
a strong coupling scale, which is why we require GT , FT , GS , and FS in the following to be greater
than some positive constant value ε.
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The behaviour of perturbations in a static, spherically symmetric setup is in full analogy to the
cosmological one and the corresponding stability analysis gives similar expressions for the constraints.
Let us note that we do not give a specific form of any coefficients involved in the quadratic action, since
the no-go theorem relies on the general behaviour of the structures involved only. The only important
aspect about the coefficients GT , FT , GS , and FS is that both GT and FT are linear combinations of
Lagrangian functions and, hence, must be regular. We also use the non-trivial relations between the
GS , FS and GT , FT in a setup of the theorem.

In the following section, we formulate the no-go theorem using the notations of the cosmological
setup, but as it was explicitly shown in Ref. [9], the structure of stability conditions for the
spherically symmetric case is the same; hence, the argument below applies to both homogeneous and
inhomogeneous settings. The motivation for restating the theorem in a formal way was to have it
in a clear and concise form in order to avoid any future misunderstanding of the concept behind it.
We emphasise that we consider strong coupling, i.e., GT → 0, to be a dissatisfying feature. In the next
section, we show that due to the particular constraints imposed on the coefficients of the quadratic
action in the Horndeski theory, any complete, healthy regular solution has GS and FS , which are
singular everywhere.

2. No-Go Theorem

Theorem 1. Set up: We consider functions on R1 with the following relations (it is exactly the case of the
general Horndeski theory):

GS =
ΣGT 2

Θ2 + 3GT ,

FS =
1
a

dξ

dt
−FT ,

ξ =
aGT 2

Θ
.

Assumptions:
(1) GT , FT , Σ, Θ, and a are smooth functions of coordinate q1.
(2) ∃ε > 0 : GT > FT > ε, GS > FS > ε, a > ε.
Statement:
The only relevant function choice to satisfy the assumptions is Θ = 0 everywhere.

Proof. Suppose Θ 6= 0 at some point P, due to the continuity Θ 6= 0 in the vicinity of P. Let us consider
the whole interval where Θ 6= 0. It is limited either by points q± where Θ = 0 or q± = ∞. In this
interval, functions GS , FS , and ξ are continuous as well, since:

dξ

dt
> a(FS +FT ) > 2ε,

therefore, ξ → ∞ on the right boundary (q→ q+) and ξ → −∞ on the left boundary (q→ q−). Finally,
since ξ is continuous, ∃ point P where ξ = 0. This contradicts with positive GT and a.

Therefore, Θ = 0 everywhere.

3. Discussion

It should be noted that we did not restrict ourselves to the finite GS and FS . Indeed, taking Θ = 0
at a glance results in singular behaviour of both GS and FS [10–12]. However, it was checked explicitly

1 Coordinate q stands for time coordinate in a cosmological setup and radial coordinate in a static, spherically symmetric case,
for instance, in a wormhole setup.
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in Ref. [13] that in the flat FLRW case, the relation FS/GS , which corresponds to the sound speed
squared in the scalar sector, remains perfectly finite. The latter fact signifies that the singularities,
which arise when Θ hits zero value, are present only on the level of the linearized equations, but not
the solutions. Hence, there is nothing wrong with Θ = 0. The statement has its direct analogue in a
static, spherically symmetric case—see Ref. [9].

As it was specified in the introduction, the no-go theorem above applies to the Horndeski theory
in the homogeneous case with a generally flat FLRW form of metric. In the homogeneous cosmological
case, Θ ∝ H, where H is the Hubble parameter (see Refs. [8,10,13] for details). It is worth noting that
the empty Minkowski space is a special case of the Horndeski theory in a homogeneous setting, and
gives the example of a solution where Θ = 0 always , since a(t) = const and, hence, H = 0, while
the rest of the terms involved in Θ vanish. Thus, Minkowski space is an example of a solution which
satisfies the no-go theorem.

Generally, the theorem is quite universal when it comes to cosmological applications, since
Horndeski theories are the generalization of the numerous scalar-tensor theories with second-order
equations of motion. Another direct application of the formulated no-go theorem, as we mentioned
earlier, is available in the static, spherically symmetric setting, such as a wormhole setup [6,14,15].

We would also like to briefly comment on possible loopholes here. As ε , which is involved
in the no-go assumptions, is a strong coupling scale, we require it to be strongly positive—yet one
can consider asymptotically strong coupling but make sure that scale of the classical evolution stays
beyond the strong coupling scale. Another possibility is to consider geodesically incomplete solutions,
i.e., asymptotically singular scale factor a. Coordinate q might correspond to time (cosmological
scenario, e.g., bounce) or a radial coordinate (spherically symmetric solution, e.g., wormhole). Hence,
the no-go theorem indeed summarizes both static and homogeneous cases.
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